

Foreword

This User’s Guide describes the Advanced Research WRF (ARW) Version 3.0 modeling
system, released in April 2008. As the ARW is developed further, this document will be
continuously enhanced and updated.

This document is complimentary to the ARW Tech Note
(http://www.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf), which describes the equations,
numerics, boundary conditions, and nesting etc. in greater detail. The Version 3 of the
Tech Note will be available in the summer of 2008.

Highlights of updates to WRFV3 include:

• Global modeling capability;
• New physics options: Morrison 2-moment microphysics, Goddard 6-class

microphysics, Asymmetric Convective Model 2 planetary boundary layer scheme
and Pleim-Xu land-surface model, unified Noah LSM, new Grell scheme;

• Zaengl radiation/topography (sloping and shadowing) effects for Dudhia
shortwave radiation scheme;

• Implicit upper gravity-wave absorbing layer;
• Digital filter initialization;
• New idealized cases for large eddy simulation, full-physics sea-breeze and global
• Variable time-step capability
• Merged WRF-Var and WRF in the same directory
• WRF-Var Version 3
• WRF Pre-Processing System Version 3

The Version 3 modeling system programs are not backward compatible, and it no longer
supports WRFSI. For documentation of older programs, please refer to earlier versions of
the User’s Guide.

For the latest version of this document, please visit the ARW Users’ Web site at
http://www.mmm.ucar.edu/wrf/users/.

Please send feedback to wrfhelp@ucar.edu.

Contributors to this guide:
Wei Wang, Dale Barker, Cindy Bruyère, Michael Duda, Jimy Dudhia, Dave Gill, John
Michalakes, and Syed Rizvi

http://www.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf
http://www.mmm.ucar.edu/wrf/users/
mailto:wrfhelp@ucar.edu
http://www.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf

CONTENTS

WRF-ARW V3: User’s Guide i

1. Overview
− Introduction ...1-1
− The WRF Modeling System Program Components1-2

2. Software Installation
− Introduction ..2-1

− Required Compilers and Scripting Languages.............................2-2
− Required/Optional Libraries to Download.....................................2-2

− Post-Processing Utilities...2-3
− Unix Environment Settings...2-4

− Building the WRF Code..2-4
− Building the WPS Code..2-5

− Building the WRF VAR Code ...2-5

3. The WRF Preprocessing System (WPS)
− Introduction ...3-1
− Function of Each WPS Program ...3-2

− Installing the WPS...3-4
− Running the WPS..3-7

− Creating Nested Domains with the WPS...................................3-15
− Using Multiple Meteorological Data Sources.............................3-17

− Parallelism in the WPS..3-20
− Checking WPS Output ..3-21

− WPS Utility Programs..3-22
− Writing Meteorological Data to the Intermediate Format3-25

− Creating and Editing Vtables...3-27
− Writing Static Data to the Geogrid Binary Format3-29

− Description of Namelist Variables ...3-31
− Description of GEOGRID.TBL Options3-37

− Description of index Options ...3-39
− Description of METGRID.TBL Options......................................3-42

− Available Interpolation Options in Geogrid and Metgrid3-45
− Land Use and Soil Categories in the Static Data3-48

4. WRF Initialization
− Introduction ...4-1
− Initialization for Ideal Data Cases..4-3

− Initialization for Real Data Cases ..4-5

CONTENTS

WRF-ARW V3: User’s Guide ii

5. WRF Model
− Introduction ..5-1
− Installing WRF ..5-2
− Running WRF ...5-6
− Check Output ...5-19
− Physics and Dynamics Options...5-20
− Description of Namelist Variables ...5-25

− List of Fields in WRF Output ...5-44

6. WRF-Var
− Introduction ...6-1
− Goals Of This WRF-Var Tutorial ...6-2
− Tutorial Schedule ...6-4
− Download Test Data ...6-4
− The 3D-Var Observation Preprocessor (3DVAR_OBSPROC)6-6
− Setting up WRF-Var ..6-10
− Run WRF-Var CONUS Case Study ..6-14
− WRF-Var Diagnostics..6-16
− Updating WRF lateral boundary conditions...............................6-19

7. WRF Software
− Introduction ...7-1
− WRF Build Mechanism..7-1
− Registry...7-4
− I/O Applications Program Interface (I/O API)...............................7-5
− Timekeeping..7-6
− Software Documentation...7-6
− Portability and Performance..7-7

8. Post-Processing Programs
− Introduction ... 8-1
− NCL.. .. 8-3

− RIP4 . .. 8-17
− ARWpost... 8-25

− WPP .. 8-32
− VAPOR ...8-45

− Utility: read_wrf_nc.. 8-50
− Utility: iowrf..8-53

− Utility: p_interp ..8-54
− Tools ..8-56

OVERVIEW

WRF-ARW V3: User’s Guide 1-1

Chapter 1: Overview

Table of Contents

• Introduction
• The WRF ARW Modeling System Program Components

Introduction

The Advanced Research WRF (ARW) modeling system has been in development for the
past few years. The current release is Version 3, available since April 2008. The ARW is
designed to be a flexible, state-of-the-art atmospheric simulation system that is portable
and efficient on available parallel computing platforms. The ARW is suitable for use in a
broad range of applications across scales ranging from meters to thousands of kilometers,
including:

• Idealized simulations (e.g. LES, convection, baroclinic waves)
• Parameterization research
• Data assimilation research
• Forecast research
• Real-time NWP
• Coupled-model applications
• Teaching

The Mesoscale and Microscale Meteorology Division of NCAR is currently maintaining
and supporting a subset of the overall WRF code (Version 3) that includes:

• WRF Software Framework (WSF)
• Advanced Research WRF (ARW) dynamic solver, including one-way, two-way

nesting and moving nest.
• The WRF Preprocessing System (WPS)
• WRF Variational Data Assimilation (WRF-Var) system which currently supports

3DVAR capability
• Numerous physics packages contributed by WRF partners and the research

community
• Several graphics programs and conversion programs for other graphics tools

And these are the subjects of this document.

The WRF modeling system software is in the public domain and is freely available for
community use.

OVERVIEW

WRF-ARW V3: User’s Guide 1-2

The WRF Modeling System Program Components

The following figure shows the flowchart for the WRF Modeling System Version 3.

As shown in the diagram, the WRF Modeling System consists of these major programs:

• The WRF Preprocessing System (WPS)
• WRF-Var
• ARW solver
• Post-processing & Visualization tools

WPS

This program is used primarily for real-data simulations. Its functions include 1) defining
simulation domains; 2) interpolating terrestrial data (such as terrain, landuse, and soil
types) to the simulation domain; and 3) degribbing and interpolating meteorological data
from another model to this simulation domain. Its main features include:

• GRIB 1/2 meteorological data from various centers around the world

OVERVIEW

WRF-ARW V3: User’s Guide 1-3

• Map projections for 1) polar stereographic, 2) Lambert-Conformal, 3) Mercator and
4) latitude-longitude

• Nesting
• User-interfaces to input other static data as well as met data

WRF-Var

This program is optional, but can be used to ingest observations into the interpolated
analyses created by WPS. It can also be used to update WRF model's initial condition
when WRF model is run in cycling mode. Its main features are as follows.

• It is based on incremental variational data assimilation technique
• Conjugate gradient method is utilized to minimized the cost function in analysis

control variable space
• Analysis is performed on un-staggered Arakawa A-grid
• Analysis increments are interpolated to staggered Arakawa C-grid and it gets added to

the background (first guess) to get final analysis at WRF-model grid
• Conventional observation data input may be supplied both in ASCII or “PREPBUFR”

format via “obsproc” utility
• Multiple radar data (reflectivity & radial velocity) input is supplied through ASCII

format
• Horizontal component of the background (first guess) error is represented via

recursive filter (for regional) or power spectrum (for global). The vertical component
is applied through projections on climatologically generated averaged eigenvectors
and its corresponding eigenvalues

• Horizontal and vertical background errors are non-separable. Each eigen vector has
its own horizontal climatologically determined length scale

• Preconditioning of background part of the cost function is done via control variable
transform U defined as B= UUT

• It includes “gen_be” utility to generate the climatological background error
covariance estimate via the NMC-method or ensemble perturbations

• It includes a “verification” package both with respect to “observations” or “analysis”
• A utility program to update WRF boundary condition file after WRF-Var

ARW Solver

This is the key component of the modeling system, which is composed of several
initialization programs for idealized, and real-data simulations, and the numerical
integration program. It also includes a program to do one-way nesting. The key feature of
the WRF model includes:

• fully compressible nonhydrostatic equations with hydrostatic option
• regional and global applications
• complete coriolis and curvature terms

OVERVIEW

WRF-ARW V3: User’s Guide 1-4

• two-way nesting with multiple nests and nest levels
• one-way nesting
• moving nests
• mass-based terrain following coordinate
• vertical grid-spacing can vary with height
• map-scale factors for these projections:

o polar stereographic (conformal)
o Lambert-conformal
o Mercator (conformal)
o Latitude and longitude which can be rotated

• Arakawa C-grid staggering
• Runge-Kutta 2nd and 3rd order time integration options
• scalar-conserving flux form for prognostic variables
• 2nd to 6th order advection options (horizontal and vertical)
• positive-definite advection option for moisture, scalar and TKE
• time-split small step for acoustic and gravity-wave modes:

o small step horizontally explicit, vertically implicit
o divergence damping option and vertical time off-centering
o external-mode filtering option

• Upper boundary aborption and Rayleigh damping
• lateral boundary conditions

o idealized cases: periodic, symmetric, and open radiative
o real cases: specified with relaxation zone

• full physics options for land-surface, planetary boundary layer, atmospheric and
surface radiation, microphysics and cumulus convection

• grid analysis nudging and observation nudging
• digital filter initialization
• a number of idealized examples

Graphics and Verification Tools

Several programs are supported, including RIP4 (based on NCAR Graphics), NCAR
Graphics Command Language (NCL), and conversion programs for other readily
available graphics packages: GrADS and Vis5D.

Program VAPOR, Visualization and Analysis Platform for Ocean, Atmosphere, and
Solar Researchers (http://www.vapor.ucar.edu/), is a 3-dimensional data visualization
tool, and it is developed and supported by the VAPOR team at NCAR (vapor@ucar.edu).

Program MET, Model Evaluation Tools (http://www.dtcenter.org/met/users/), is
developed and supported by the Developmental Testbed Center at NCAR
(met_help@ucar.edu).

The details of these programs are described more in the chapters in this user's guide.

http://www.vapor.ucar.edu/
mailto:vapor@ucar.edu
http://www.dtcenter.org/met/users/
mailto:met_help@ucar.edu
http://www.dtcenter.org/met/users/

SOFTWARE INSTALLATION

WRF-ARW V3: User’s Guide 2-1

Chapter 2: Software Installation

Table of Contents

• Introduction
• Required Compilers and Scripting Languages
• Required/Optional Libraries to Download
• Post-Processing Utilities
• UNIX Environment Settings
• Building the WRF Code
• Building the WPS Code
• Building the WRF-Var Code

Introduction

The WRF modeling system software installation is fairly straightforward on the ported
platforms listed below. The model-component portion of the package is mostly self-
contained, meaning that WRF model requires no external libraries (such as for FFTs or
various linear algebra solvers). Contained within the WRF system is the WRF-Var
component, which has several external libraries that the user must install (for various
observation types, FFTs, and linear algebra solvers). Similarly, the WPS package,
separate from the WRF source code, has additional external libraries that must be built
(in support of Grib2 processing). The one external package that all of the systems require
is the netCDF library, which is one of the supported I/O API packages. The netCDF
libraries or source code are available from the Unidata homepage at
http://www.unidata.ucar.edu (select DOWNLOADS, registration required).

There are three tar files for the WRF code. The first is the WRF model (including the
real and ideal pre-processors). The second is the WRF-Var code. This separate tar file
must be combined with the WRF code for the WRF-Var code to work. The third tar file
is for WRF chemistry. Again, in order to run the WRF chemistry code, both the WRF
model and the chemistry tar file must be combined.

The WRF model has been successfully ported to a number of Unix-based machines. We
do not have access to all of them and must rely on outside users and vendors to supply the
required configuration information for the compiler and loader options. Below is a list of
the supported combinations of hardware and software for WRF.

Vendor Hardware OS Compiler

Cray X1 UniCOS vendor

http://www.unidata.ucar.edu

SOFTWARE INSTALLATION

WRF-ARW V3: User’s Guide 2-2

Cray AMD Linux PGI /
PathScale

IBM Power Series AIX vendor

SGI IA64 / Opteron Linux Intel

COTS* IA32 Linux
Intel / PGI /
gfortran / g95 /
PathScale

COTS IA64 / Opteron Linux
Intel / PGI /
gfortran /
PathScale

Mac Power Series Darwin xlf / g95 / PGI / Intel

Mac Intel Darwin g95 / PGI / Intel

* Commercial Off The Shelf systems

The WRF model may be built to run on a single processor machine, a shared-memory
machine (that use the OpenMP API), a distributed memory machine (with the appropriate
MPI libraries), or on a distributed cluster (utilizing both OpenMP and MPI). The WRF-
Var and WPS packages run on the above listed systems.

Required Compilers and Scripting Languages

The WRF model, WPS, and WRF-Var are written in Fortran (what many refer to as
Fortran 90). The software layer, RSL_LITE, which sits between WRF and WRF-Var and
the MPI interface is written in C. WPS makes direct calls to the MPI libraries for
distributed memory message passing. There are also ancillary programs that are written
in C to perform file parsing and file construction, which are required for default building
of the WRF modeling code. Additionally, the WRF build mechanism uses several
scripting languages: including perl, Cshell and Bourne shell. The traditional UNIX
text/file processing utilities are used: make, m4, sed, and awk. See Chapter 7: WRF
Software (Required Software) for a more detailed listing of the necessary pieces for the
WRF build.

Required/Optional Libraries to Download

The only library that is almost always required is the netCDF package from Unidata
(login > Downloads > NetCDF). Most of the WRF post-processing packages assume that
the data from the WRF model, the WPS package, or the WRF-Var program are using the

SOFTWARE INSTALLATION

WRF-ARW V3: User’s Guide 2-3

netCDF libraries. One may also need to add /path-to-netcdf/netcdf/bin to your path so
that one may execute netcdf commands, such as ncdump.

Hint: If one wants to compile WRF system components on a Linux system that has
access to multiple compilers, link the correct external libraries. For example, do not link
the libraries built with PathScale when compiling the WRF components with gfortran.

If you are going to be running distributed memory WRF jobs, you need a version of MPI.
You can pick up a version of mpich, but you might want your system group to install the
code. A working installation of MPI is required prior to a build of WRF using distributed
memory. Either MPI-1 or MPI-2 are acceptable. Do you already have an MPI lying
around? Try

 which mpif90
 which mpicc
 which mpirun

If these are all defined executables, you are probably OK. Make sure your paths are set
up to point to the MPI lib, include, and bin directories.

Note that to output WRF model data in Grib1 format, Todd Hutchinson (WSI) has
provided a complete source library that is included with the software release. However,
when trying to link the WPS, the WRF model, and the WRF-Var data streams together,
always use the netCDF format.

Post-Processing Utilities

The more widely used (and therefore supported) WRF post-processing utilities are:

• NCL (homepage and WRF download)
o NCAR Command Language written by NCAR Scientific Computing

Division
o NCL scripts written and maintained by WRF support
o many template scripts are provided that are tailored for specific real-data

and ideal-data cases
o raw WRF output can be input with the NCL scripts
o interactive or command-file driven

• Vis5D (homepage and WRF download)
o download Vis5D executable, build format converter
o programs are available to convert the WRF output into an input format

suitable for Vis5D
o GUI interface, 3D movie loops, transparency

• GrADS (homepage and WRF download)
o download GrADS executable, build format converter
o programs are available to convert the WRF output into an input format

suitable for GrADS

SOFTWARE INSTALLATION

WRF-ARW V3: User’s Guide 2-4

o interpolates to regular lat/lon grid
o simple to generate publication quality

• RIP (homepage and WRF download)
o RIP4 written and maintained by Mark Stoelinga, UW
o interpolation to various surfaces, trajectories, hundreds of diagnostic

calculations
o Fortran source provided
o based on the NCAR Graphics package
o pre-processor converts WRF, WPS, and WRF-Var data to RIP input

format
o table driven

UNIX Environment Settings

There are only a few environmental settings that are WRF system related. Most of these
are not required, but when things start acting badly, test some out. In Cshell syntax:

• setenv WRF_EM_CORE 1
o explicitly defines which model core to build

• setenv NETCDF /usr/local/netcdf (or where ever you have it stuck)
o all of the WRF components want both the lib and the include directories

• setenv OMP_NUM_THREADS n (where n is the number of procs to use)
o if you have OpenMP on your system, this is how to specify the number of

threads
• setenv MP_STACK_SIZE 64000000

o OpenMP blows through the stack size, set it large
• unlimit

o especially if you are on a small system

Building the WRF Code

The WRF code has a fairly complicated build mechanism. It tries to determine the
architecture that you are on, and then presents you with options to allow you to select the
preferred build method. For example, if you are on a Linux machine, it determines
whether this is a 32 or 64 bit machine, and then prompts you for the desired usage of
processors (such as serial, shared memory, or distributed memory). You select from
among the available compiling options in the build mechanism. For example, do not
choose a PGI build if you do not have PGI compilers installed on your system.

• Get the WRF zipped tar file
o WRFV3 from

http://www.mmm.ucar.edu/wrf/users/get_source.html
o always get the latest version if you are not trying to continue a long project

• unzip and untar the file
o gzip -cd WRFV3.0.TAR.gz | tar -xf -

http://www.mmm.ucar.edu/wrf/users/get_source.html

SOFTWARE INSTALLATION

WRF-ARW V3: User’s Guide 2-5

• cd WRFV3
• ./configure

o serial means single processor
o smpar means Shared Memory Parallel (OpenMP)
o dmpar means Distributed Memory Parallel (MPI)
o dm+sm means Distributed Memory with Shared Memory (for example,

MPI across nodes with OpenMP within a node)
o the second option is for nesting: 0 = no nesting, 1 = standard nesting, 2 =

nesting with a prescribed set of moves, 3 = nesting that allows a domain to
follow a vortex (typhoon tracking)

• ./compile em_real (or any of the directory names in ./WRFV3/test)
• ls -ls main/*.exe

o if you built a real-data case, you should see ndown.exe, real.exe, and
wrf.exe

o if you built an ideal-data case, you should see ideal.exe and wrf.exe

Users wishing to run the WRF-Var code or the WRF chemistry code must first download
the WRF model tar file, and untar it. Then the WRF-Var (or chemistry) code is untar’ed
in the WRFV3 directory (there already exists the appropriate directories). Once the
source code from the tar files is combined, then users may proceed with the WRF-Var or
WRF chemistry build.

Building the WPS Code

Building WPS requires that WRFV3 is already built.

• Get the WPS zipped tar file
o WPS.TAR.gz from

http://www.mmm.ucar.edu/wrf/users/get_source.html
• unzip and untar the file

o gzip -cd WPS.TAR.gz | tar -xf -
• cd WPS
• ./configure

o choose one of the options
o usually, option "1" and option “2” are for serial builds, that is the best for

an initial test
o WPS requires that you build for the appropriate Grib decoding, select an

option that suitable for the data you will use with the ungrib program
• ./compile
• ls -ls *.exe

o you should see geogrid.exe, ungrib.exe, and metgrid.exe
• ls -ls util/*.exe

o you should see a number of utility executables: avg_tsfc.exe,
g1print.exe, g2print.exe, mod_levs.exe,
plotfmt.exe, plotgrids.exe, and rd_intermediate.exe

http://www.mmm.ucar.edu/wrf/users/get_source.html

SOFTWARE INSTALLATION

WRF-ARW V3: User’s Guide 2-6

Building the WRF-Var Code

WRF-Var uses the same build mechanism as WRF, and as a consequence, this
mechanism must be instructed to configure and build the code for WRF-Var rather than
WRF. Additionally, the paths to libraries needed by WRF-Var code must be set, as
described in the steps below.

• Get the WRF-Var zipped tar file from
http://www.mmm.ucar.edu/wrf/users/get_source.html

o While WRF-Var uses the same framework as the WRF model, the code is
in a separate tar file. First, the WRF model tar file is downloaded and
untar’ed (described in Building the WRF Code).

• Unzip and untar the file WRF-Var code in the WRFV3 directory
o cd WRFV3
o gzip -cd WRFVARV3.0.TAR.gz | tar -xf –

• setenv WRF_DA_CORE 1
o By setting WRF_DA_CORE (where DA refers to "data assimilation"), the

build mechanism is instructed to configure and compile WRF-Var rather
than WRF.

• Set up environment variables pointing to additional libraries required by WRF-
Var, namely, BLAS, LAPACK, and BUFR. These libraries must be installed
separately, and can be freely downloaded from
http://netlib.org/blas/, http://netlib.org/lapack/, and
http://www.nco.ncep.noaa.gov/sib/decoders/BUFRLIB/.
Assuming, for example, that these libraries have been installed in subdirectories
of /usr/local, the necessary environment variables might be set with

o setenv BLAS /usr/local/blas
o setenv LAPACK /usr/local/lapack
o setenv BUFR /usr/local/bufr

• ./configure
o serial means single processor
o smpar means Shared Memory Parallel (OpenMP)
o dmpar means Distributed Memory Parallel (MPI)
o dm+sm means Distributed Memory with Shared Memory (for example,

MPI across nodes with OpenMP within a node)
o the second option is for nesting; since WRF-Var does not work with nests,

option 1 can be selected.
• ./compile all_wrfvar
• ls -L var/da/*.exe

o If the compilation was successful, da_wrfvar.exe, da_update_bc.exe, and
other executables should be found in the var/da directory.

http://www.mmm.ucar.edu/wrf/users/get_source.html
http://netlib.org/blas/
http://netlib.org/lapack/
http://www.nco.ncep.noaa.gov/sib/decoders/BUFRLIB/

WPS

Chapter 3: WRF Preprocessing System (WPS)

Table of Contents

• Introduction
• Function of Each WPS Program
• Installing the WPS
• Running the WPS
• Creating Nested Domains with the WPS
• Using Multiple Meteorological Data Sources
• Parallelism in the WPS
• Checking WPS Output
• WPS Utility Programs
• Writing Meteorological Data to the Intermediate Format
• Creating and Editing Vtables
• Writing Static Data to the Geogrid Binary Format
• Description of Namelist Variables
• Description of GEOGRID.TBL Options
• Description of index Options
• Description of METGRID.TBL Options
• Available Interpolation Options in Geogrid and Metgrid
• Land Use and Soil Categories in the Static Data

Introduction

The WRF Preprocessing System (WPS) is a set of three programs whose collective role is
to prepare input to the real program for real-data simulations. Each of the programs
performs one stage of the preparation: geogrid defines model domains and interpolates
static geographical data to the grids; ungrib extracts meteorological fields from GRIB-
formatted files; and metgrid horizontally interpolates the meteorological fields extracted
by ungrib to the model grids defined by geogrid. The work of vertically interpolating
meteorological fields to WRF eta levels is now performed within the real program, a task
that was performed by the vinterp program in the WRF SI.

WRF-ARW V3: User’s Guide 3-1

WPS

The data flow between the programs of the WPS is shown in the figure above. Each of
the WPS programs reads parameters from a common namelist file, as shown in the figure.
This namelist file has separate namelist records for each of the programs and a shared
namelist record, which defines parameters that are used by more than one WPS program.
Not shown in the figure are additional table files that are used by individual programs.
These tables provide additional control over the programs’ operation, though they
generally do not need to be changed by the user. The GEOGRID.TBL and
METGRID.TBL files are explained later in this document, though for now, the user need
not be concerned with them.

The build mechanism for the WPS, which is very similar to the build mechanism used by
the WRF model, provides options for compiling the WPS on a variety of platforms.
When MPICH libraries and suitable compilers are available, the metgrid and geogrid
programs may be compiled for distributed memory execution, which allows large model
domains to be processed in less time. The work performed by the ungrib program is not
amenable to parallelization, so ungrib may only be run on a single processor.

Function of Each WPS Program

The WPS consists of three independent programs: geogrid, ungrib, and metgrid. Also
included in the WPS are several utility programs, which are described in the section on
utility programs. A brief description of each of the three main programs is given below,
with further details presented in subsequent sections.

Program geogrid

The purpose of geogrid is to define the simulation domains, and interpolate various
terrestrial data sets to the model grids. The simulation domains are defined using

WRF-ARW V3: User’s Guide 3-2

WPS

information specified by the user in the “geogrid” namelist record of the WPS namelist
file, namelist.wps. By default – and in addition to computing the latitude, longitude, and
map scale factors at every grid point – geogrid will interpolate soil categories, land use
category, terrain height, annual mean deep soil temperature, monthly vegetation fraction,
monthly albedo, maximum snow albedo, and slope category to the model grids. Global
data sets for each of these fields are provided through the WRF download page, and only
need to be downloaded once. Several of the data sets are available in only one resolution,
but others are made available in resolutions of 30”, 2’, 5’, and 10’; here, " denotes arc
seconds and ' denotes arc minutes. The user need not download all available resolutions
for a data set, although the interpolated fields will generally be more representative if a
resolution of data near to that of the simulation domain is used. However, users who
expect to work with domains having grid spacings that cover a large range may wish to
eventually download all available resolutions of the terrestrial data.

Besides interpolating the default terrestrial fields, the geogrid program is general enough
to be able to interpolate most continuous and categorical fields to the simulation domains.
New or additional data sets may be interpolated to the simulation domain through the use
of the table file, GEOGRID.TBL. The GEOGRID.TBL file defines each of the fields that
will be produced by geogrid; it describes the interpolation methods to be used for a field,
as well as the location on the file system where the data set for that field is located.

Output from geogrid is written in the WRF I/O API format, and thus, by selecting the
NetCDF I/O format, geogrid can be made to write its output in NetCDF for easy
visualization using external software packages, including ncview and the new release of
RIP4.

Program ungrib

The ungrib program reads GRIB files, "degribs" the data, and writes the data in a simple
format, called the intermediate format (see the section on writing data to the intermediate
format for details of the format). The GRIB files contain time-varying meteorological
fields and are typically from another regional or global model, such as NCEP's NAM or
GFS models. The ungrib program can read GRIB Edition 1 and GRIB Edition 2 files.

GRIB files typically contain more fields than are needed to initialize WRF. Both versions
of the GRIB format use various codes to identify the variables and levels in the GRIB
file. Ungrib uses tables of these codes – called Vtables, for "variable tables" – to define
which fields to extract from the GRIB file and write to the intermediate format. Details
about the codes can be found in the WMO GRIB documentation and in documentation
from the originating center. Vtables for common GRIB model output files are provided
with the ungrib software.

Vtables are provided for NAM 104 and 212 grids, the NAM AWIP format, GFS, the
NCEP/NCAR Reanalysis archived at NCAR, RUC (pressure level data and hybrid
coordinate data), AFWA's AGRMET land surface model output, ECMWF, and other data
sets. Users can create their own Vtable for other model output using any of the Vtables as

WRF-ARW V3: User’s Guide 3-3

WPS

a template; further details on the meaning of fields in a Vtable are provided in the section
on creating and editing Vtables.

Ungrib can write intermediate data files in any one of three user-selectable formats: WPS
– a new format containing additional information useful for the downstream programs; SI
– the previous intermediate format of the WRF system; and MM5 format, which is
included here so that ungrib can be used to provide GRIB2 input to the MM5 modeling
system. Any of these formats may be used by WPS to initialize WRF, although the WPS
format is recommended.

Program metgrid

The metgrid program horizontally interpolates the intermediate-format meteorological
data that are extracted by the ungrib program onto the simulation domains defined by the
geogrid program. The interpolated metgrid output can then be ingested by the WRF real
program. The range of dates that will be interpolated by metgrid are defined in the
“share” namelist record of the WPS namelist file, and date ranges must be specified
individually in the namelist for each simulation domain. Since the work of the metgrid
program, like that of the ungrib program, is time-dependent, metgrid is run every time a
new simulation is initialized.

Control over how each meteorological field is interpolated is provided by the
METGRID.TBL file. The METGRID.TBL file provides one section for each field, and
within a section, it is possible to specify options such as the interpolation methods to be
used for the field, the field that acts as the mask for masked interpolations, and the grid
staggering (e.g., U, V in ARW; H, V in NMM) to which a field is interpolated.

Output from metgrid is written in the WRF I/O API format, and thus, by selecting the
NetCDF I/O format, metgrid can be made to write its output in NetCDF for easy
visualization using external software packages, including the new version of RIP4.

Installing the WPS

The WRF Preprocessing System uses a build mechanism similar to that used by the WRF
model. External libraries for geogrid and metgrid are limited to those required by the
WRF model, since the WPS uses the WRF model's implementations of the WRF I/O
API; consequently, WRF must be compiled prior to installation of the WPS so that the I/O
API libraries in the WRF external directory will be available to WPS programs.
Additionally, the ungrib program requires three compression libraries for GRIB Edition 2
support; however, if support for GRIB2 data is not needed, ungrib can be compiled
without these compression libraries.

WRF-ARW V3: User’s Guide 3-4

WPS

Required Libraries

The only library that is required to build the WRF model is NetCDF. The user can find
the source code, precompiled binaries, and documentation at the UNIDATA home page
(http://www.unidata.ucar.edu/software/netcdf/). Most users will select the NetCDF I/O
option for WPS due to the easy access to utility programs that support the NetCDF data
format, and before configuring the WPS, users should ensure that the environment
variable NETCDF is set to the path of the NetCDF installation.

Where WRF adds a software layer between the model and the communications package,
the WPS programs geogrid and metgrid make MPI calls directly. Most multi-processor
machines come preconfigured with a version of MPI, so it is unlikely that users will need
to install this package by themselves.

Three libraries are required by the ungrib program for GRIB Edition 2 compression
support. Users are encouraged to engage their system administrators for the installation of
these packages so that traditional library paths and include paths are maintained. Paths to
user-installed compression libraries are handled in the configure.wps file by the
COMPRESSION_LIBS and COMPRESSION_INC variables.

1) JasPer (an implementation of the JPEG2000 standard for "lossy" compression)
http://www.ece.uvic.ca/~mdadams/jasper/
Go down to “JasPer software”, one of the "click here" parts is the source.

 > ./configure
 > make
 > make install

Note: The GRIB2 libraries expect to find include files in "jasper/jasper.h", so it may be
necessary to manually create a "jasper" subdirectory in the "include" directory created by
the JasPer installation, and manually link header files there.

2) PNG (compression library for "lossless" compression)
http://www.libpng.org/pub/png/libpng.html
Scroll down to "Source code" and choose a mirror site.

 > ./configure
 > make check
 > make install

3) zlib (a compression library used by the PNG library)
http://www.zlib.net/
Go to "The current release is publicly available here" section and download.

 > ./configure
 > make
 > make install

WRF-ARW V3: User’s Guide 3-5

http://www.unidata.ucar.edu/software/netcdf/
http://www.ece.uvic.ca/%7Emdadams/jasper/
http://www.libpng.org/pub/png/libpng.html
http://www.zlib.net/
http://www.unidata.ucar.edu/software/netcdf/

WPS

To get around portability issues, the NCEP GRIB libraries, w3 and g2, have been
included in the WPS distribution. The original versions of these libraries are available for
download from NCEP at http://www.nco.ncep.noaa.gov/pmb/codes/GRIB2/. The specific
tar files to download are g2lib and w3lib. Because the ungrib program requires modules
from these files, they are not suitable for usage with a traditional library option during the
link stage of the build.

Required Compilers and Scripting Languages

The WPS requires the same Fortran and C compilers as were used to build the WRF
model, since the WPS executables link to WRF's I/O API libraries. After executing the
./configure command in the WPS directory, a list of supported compilers on the
current system architecture are presented.

WPS Installation Steps

• Download the WPS.TAR.gz file and unpack it at the same directory level as
WRFV3, as shown below.

 > ls
 -rw-r--r-- 1 563863 WPS.TAR.gz
 drwxr-xr-x 18 4096 WRFV3

 > gzip -d WPS.TAR.gz

 > tar xf WPS.TAR

 > ls
 drwxr-xr-x 7 4096 WPS
 -rw-r--r-- 1 3491840 WPS.TAR
 drwxr-xr-x 18 4096 WRFV3

• At this point, a listing of the current working directory should at least include the
directories WRFV3 and WPS. First, compile WRF (see the instructions for
installing WRF). Then, after the WRF executables are generated, change to the
WPS directory and issue the configure command followed by the compile
command as below.

 > cd WPS

 > ./configure

o Choose one of the configure options

 > ./compile >& compile.output

• After issuing the compile command, a listing of the current working directory
should reveal symbolic links to executables for each of the three WPS programs:
geogrid.exe, ungrib.exe, and metgrid.exe. If any of these links do not exist, check
the compilation output in compile.output to see what went wrong.

WRF-ARW V3: User’s Guide 3-6

http://www.nco.ncep.noaa.gov/pmb/codes/GRIB2/

WPS

 > ls
 drwxr-xr-x 2 4096 arch
 -rwxr-xr-x 1 1672 clean
 -rwxr-xr-x 1 3510 compile
 -rw-r--r-- 1 85973 compile.output
 -rwxr-xr-x 1 4257 configure
 -rw-r--r-- 1 2486 configure.wps
 drwxr-xr-x 4 4096 geogrid
 lrwxrwxrwx 1 23 geogrid.exe -> geogrid/src/geogrid.exe
 -rwxr-xr-x 1 1328 link_grib.csh
 drwxr-xr-x 3 4096 metgrid
 lrwxrwxrwx 1 23 metgrid.exe -> metgrid/src/metgrid.exe
 -rw-r--r-- 1 1101 namelist.wps
 -rw-r--r-- 1 1987 namelist.wps.all_options
 -rw-r--r-- 1 1075 namelist.wps.global
 -rw-r--r-- 1 652 namelist.wps.nmm
 -rw-r--r-- 1 4786 README
 drwxr-xr-x 4 4096 ungrib
 lrwxrwxrwx 1 21 ungrib.exe -> ungrib/src/ungrib.exe
 drwxr-xr-x 3 4096 util

Running the WPS

There are essentially three main steps to running the WRF Preprocessing System:

1. Define a model coarse domain and any nested domains with geogrid.
2. Extract meteorological fields from GRIB data sets for the simulation period with

ungrib.
3. Horizontally interpolate meteorological fields to the model domains with metgrid.

When multiple simulations are to be run for the same model domains, it is only necessary
to perform the first step once; thereafter, only time-varying data need to be processed for
each simulation using steps two and three. Similarly, if several model domains are being
run for the same time period using the same meteorological data source, it is not
necessary to run ungrib separately for each simulation. Below, the details of each of the
three steps are explained.

Step 1: Define model domains with geogrid

In the root of the WPS directory structure, symbolic links to the programs geogrid.exe,
ungrib.exe, and metgrid.exe should exist if the WPS software was successfully installed.
In addition to these three links, a namelist.wps file should exist. Thus, a listing in the
WPS root directory should look something like:

 > ls
 drwxr-xr-x 2 4096 arch
 -rwxr-xr-x 1 1672 clean
 -rwxr-xr-x 1 3510 compile
 -rw-r--r-- 1 85973 compile.output
 -rwxr-xr-x 1 4257 configure
 -rw-r--r-- 1 2486 configure.wps

WRF-ARW V3: User’s Guide 3-7

WPS

 drwxr-xr-x 4 4096 geogrid
 lrwxrwxrwx 1 23 geogrid.exe -> geogrid/src/geogrid.exe
 -rwxr-xr-x 1 1328 link_grib.csh
 drwxr-xr-x 3 4096 metgrid
 lrwxrwxrwx 1 23 metgrid.exe -> metgrid/src/metgrid.exe
 -rw-r--r-- 1 1101 namelist.wps
 -rw-r--r-- 1 1987 namelist.wps.all_options
 -rw-r--r-- 1 1075 namelist.wps.global
 -rw-r--r-- 1 652 namelist.wps.nmm
 -rw-r--r-- 1 4786 README
 drwxr-xr-x 4 4096 ungrib
 lrwxrwxrwx 1 21 ungrib.exe -> ungrib/src/ungrib.exe
 drwxr-xr-x 3 4096 util

The model coarse domain and any nested domains are defined in the “geogrid” namelist
record of the namelist.wps file, and, additionally, parameters in the “share” namelist
record need to be set. An example of these two namelist records is given below, and the
user is referred to the description of namelist variables for more information on the
purpose and possible values of each variable.

&share
 wrf_core = 'ARW',
 max_dom = 2,
 start_date = '2008-03-24_12:00:00','2008-03-24_12:00:00',
 end_date = '2008-03-24_18:00:00','2008-03-24_12:00:00',
 interval_seconds = 21600,
 io_form_geogrid = 2
/

&geogrid
 parent_id = 1, 1,
 parent_grid_ratio = 1, 3,
 i_parent_start = 1, 31,
 j_parent_start = 1, 17,
 s_we = 1, 1,
 e_we = 74, 112,
 s_sn = 1, 1,
 e_sn = 61, 97,
 geog_data_res = '10m','2m',
 dx = 30000,
 dy = 30000,
 map_proj = 'lambert',
 ref_lat = 34.83,
 ref_lon = -81.03,
 truelat1 = 30.0,
 truelat2 = 60.0,
 stand_lon = -98.,
 geog_data_path = '/mmm/users/wrfhelp/WPS_GEOG/'
/

To summarize a set of typical changes to the “share” namelist record relevant to geogrid,
the WRF dynamical core must first be selected with wrf_core. If WPS is being run for
an ARW simulation, wrf_core should be set to 'ARW', and if running for an NMM
simulation, it should be set to 'NMM'. After selecting the dynamical core, the total number
of domains (in the case of ARW) or nesting levels (in the case of NMM) must be chosen
with max_dom. Since geogrid produces only time-independent data, the start_date,
end_date, and interval_seconds variables are ignored by geogrid. Optionally, a
location (if not the default, which is the current working directory) where domain files

WRF-ARW V3: User’s Guide 3-8

WPS

should be written to may be indicated with the opt_output_from_geogrid_path
variable, and the format of these domain files may be changed with io_form_geogrid.

In the “geogrid” namelist record, the projection of the simulation domain is defined, as
are the size and location of all model grids. The map projection to be used for the model
domains is specified with the map_proj variable, and the namelist variables used to set
the parameters of the projection are summarized in the table below.

Map projection / value of map_proj Projection parameters
'lambert' truelat1

truelat2 (optional)
stand_lon

'mercator' truelat1

'polar' truelat1
stand_lon

'lat-lon' pole_lat
pole_lon
stand_lon

If WRF is to be run for a regional domain configuration, the location of the coarse
domain is determined using the ref_lat and ref_lon variables, which specify the
latitude and longitude, respectively, of the center of the coarse domain. If nested domains
are to be processed, their locations with respect to the parent domain are specified with
the i_parent_start and j_parent_start variables; further details of setting up nested
domains are provided in the section on nested domains. Next, the dimensions of the
coarse domain are determined by the variables dx and dy, which specify the nominal grid
distance in the x-direction and y-direction, and e_we and e_sn, which give the number of
velocity points (i.e., u-staggered or v-staggered points) in the x- and y-directions; for the
'lambert', 'mercator', and 'polar' projections, dx and dy are given in meters, and
for the 'lat-lon' projection, dx and dy are given in degrees. For nested domains, only
the variables e_we and e_sn are used to determine the dimensions of the grid, and dx and
dy should not be specified for nests, since their values are determined recursively based
on the values of the parent_grid_ratio and parent_id variables, which specify the
ratio of a nest's parent grid distance to the nest's grid distance and the grid number of the
nest's parent, respectively.

For global WRF simulations, the coverage of the coarse domain is, of course, global, so
ref_lat and ref_lon do not apply, and dx and dy should not be specified, since the
nominal grid distance is computed automatically based on the number of grid points.
Also, it should be noted that the latitude-longitude (map_proj = 'lat-lon') is the only
projection in WRF that can support a global domain.

Besides setting variables related to the projection, location, and coverage of model
domains, the path to the static geographical data sets must be correctly specified with the
geog_data_path variable. Also, the user may select which resolution of static data
geogrid will interpolate from using the geog_data_res variable, whose value should
match one of the resolutions of data in the GEOGRID.TBL. If the full set of static data

WRF-ARW V3: User’s Guide 3-9

WPS

are downloaded from the WRF download page, possible resolutions include '30s', '2m',
'5m', and '10m', corresponding to 30-arc-second data, 2-, 5-, and 10-arc-second data.

Depending on the value of the wrf_core namelist variable, the appropriate
GEOGRID.TBL file must be used with geogrid, since the grid staggerings that WPS
interpolates to differ between dynamical cores. For the ARW, the GEOGRID.TBL.ARW
file should be used, and for the NMM, the GEOGRID.TBL.NMM file should be used.
Selection of the appropriate GEOGRID.TBL is accomplished by linking the correct file
to GEOGRID.TBL in the geogrid directory (or in the directory specified by
opt_geogrid_tbl_path, if this variable is set in the namelist).

 > ls geogrid/GEOGRID.TBL

 lrwxrwxrwx 1 15 GEOGRID.TBL -> GEOGRID.TBL.ARW

For more details on the meaning and possible values for each variable, the user is referred
to a description of the namelist variables.

Having suitably defined the simulation coarse domain and nested domains, the
geogrid.exe executable may be run to produce domain files. In the case of ARW
domains, the domain files are named geo_em.d0N.nc, where N is the number of the nest
defined in each file. When run for NMM domains, geogrid produces the file
geo_nmm.d01.nc for the coarse domain, and geo_nmm_nest.l0N.nc files for each
nesting level N. Also, note that the file suffix will vary depending on the
io_form_geogrid that is selected. To run geogrid, issue the following command:

 > ./geogrid.exe

When geogrid.exe has finished running, the message

!!!
! Successful completion of geogrid. !
!!!

should be printed, and a listing of the WPS root directory (or the directory specified by
opt_output_from_geogrid_path, if not this variable was set) should show the domain
files. If not, the geogrid.log file may be consulted in an attempt to determine the possible
cause of failure. For more information on checking the output of geogrid, the user is
referred to the section on checking WPS output.

 > ls
 drwxr-xr-x 2 4096 arch
 -rwxr-xr-x 1 1672 clean
 -rwxr-xr-x 1 3510 compile
 -rw-r--r-- 1 85973 compile.output
 -rwxr-xr-x 1 4257 configure
 -rw-r--r-- 1 2486 configure.wps
 -rw-r--r-- 1 1957004 geo_em.d01.nc
 -rw-r--r-- 1 4745324 geo_em.d02.nc
 drwxr-xr-x 4 4096 geogrid
 lrwxrwxrwx 1 23 geogrid.exe -> geogrid/src/geogrid.exe
 -rw-r--r-- 1 11169 geogrid.log

WRF-ARW V3: User’s Guide 3-10

WPS

 -rwxr-xr-x 1 1328 link_grib.csh
 drwxr-xr-x 3 4096 metgrid
 lrwxrwxrwx 1 23 metgrid.exe -> metgrid/src/metgrid.exe
 -rw-r--r-- 1 1094 namelist.wps
 -rw-r--r-- 1 1987 namelist.wps.all_options
 -rw-r--r-- 1 1075 namelist.wps.global
 -rw-r--r-- 1 652 namelist.wps.nmm
 -rw-r--r-- 1 4786 README
 drwxr-xr-x 4 4096 ungrib
 lrwxrwxrwx 1 21 ungrib.exe -> ungrib/src/ungrib.exe
 drwxr-xr-x 3 4096 util

Step 2: Extracting meteorological fields from GRIB files with ungrib

Having already downloaded meteorological data in GRIB format, the first step in
extracting fields to the intermediate format involves editing the “share” and “ungrib”
namelist records of the namelist.wps file – the same file that was edited to define the
simulation domains. An example of the two namelist records is given below.

&share
 wrf_core = 'ARW',
 max_dom = 2,
 start_date = '2008-03-24_12:00:00','2008-03-24_12:00:00',
 end_date = '2008-03-24_18:00:00','2008-03-24_12:00:00',
 interval_seconds = 21600,
 io_form_geogrid = 2
/

&ungrib
 out_format = 'WPS',
 prefix = 'FILE'
/

In the “share” namelist record, the variables that are of relevance to ungrib are the
starting and ending times of the coarse domain (start_date and end_date; alternatively,
start_year, start_month, start_day, start_hour, end_year, end_month, end_day,
and end_hour) and the interval between meteorological data files (interval_seconds).
In the “ungrib” namelist record, the variable out_format is used to select the format of
the intermediate data to be written by ungrib; the metgrid program can read any of the
formats supported by ungrib, and thus, any of 'WPS', 'SI', and 'MM5' may be specified
for out_format, although 'WPS' is recommended. Also in the "ungrib" namelist, the user
may specify a path and prefix for the intermediate files with the prefix variable. For
example, if prefix were set to 'ARGRMET', then the intermediate files created by ungrib
would be named according to AGRMET:YYYY-MM-DD_HH, where YYYY-MM-DD_HH
is the valid time of the data in the file.

After suitably modifying the namelist.wps file, a Vtable must be supplied, and the GRIB
files must be linked (or copied) to the filenames that are expected by ungrib. The WPS is
supplied with Vtable files for many sources of meteorological data, and the appropriate
Vtable may simply be symbolically linked to the file Vtable, which is the Vtable name

WRF-ARW V3: User’s Guide 3-11

WPS

expected by ungrib. For example, if the GRIB data are from the GFS model, this could be
accomplished with

 > ln -s ungrib/Variable_Tables/Vtable.GFS Vtable

The ungrib program will try to read GRIB files named GRIBFILE.AAA,
GRIBFILE.AAB, …, GRIBFILE.ZZZ. In order to simplify the work of linking the GRIB
files to these filenames, a shell script, link_grib.csh, is provided. The link_grib.csh script
takes as a command-line argument a list of the GRIB files to be linked. For example, if
the GRIB data were downloaded to the directory /data/gfs, the files could be linked with
link_grib.csh as follows:

 > ls /data/gfs
 -rw-r--r-- 1 42728372 gfs_080324_12_00
 -rw-r--r-- 1 48218303 gfs_080324_12_06

 > ./link_grib.csh /data/gfs/gfs*

After linking the GRIB files and Vtable, a listing of the WPS directory should look
something like the following:

 > ls
 drwxr-xr-x 2 4096 arch
 -rwxr-xr-x 1 1672 clean
 -rwxr-xr-x 1 3510 compile
 -rw-r--r-- 1 85973 compile.output
 -rwxr-xr-x 1 4257 configure
 -rw-r--r-- 1 2486 configure.wps
 -rw-r--r-- 1 1957004 geo_em.d01.nc
 -rw-r--r-- 1 4745324 geo_em.d02.nc
 drwxr-xr-x 4 4096 geogrid
 lrwxrwxrwx 1 23 geogrid.exe -> geogrid/src/geogrid.exe
 -rw-r--r-- 1 11169 geogrid.log
 lrwxrwxrwx 1 38 GRIBFILE.AAA -> /data/gfs/gfs_080324_12_00
 lrwxrwxrwx 1 38 GRIBFILE.AAB -> /data/gfs/gfs_080324_12_06
 -rwxr-xr-x 1 1328 link_grib.csh
 drwxr-xr-x 3 4096 metgrid
 lrwxrwxrwx 1 23 metgrid.exe -> metgrid/src/metgrid.exe
 -rw-r--r-- 1 1094 namelist.wps
 -rw-r--r-- 1 1987 namelist.wps.all_options
 -rw-r--r-- 1 1075 namelist.wps.global
 -rw-r--r-- 1 652 namelist.wps.nmm
 -rw-r--r-- 1 4786 README
 drwxr-xr-x 4 4096 ungrib
 lrwxrwxrwx 1 21 ungrib.exe -> ungrib/src/ungrib.exe
 drwxr-xr-x 3 4096 util
 lrwxrwxrwx 1 33 Vtable -> ungrib/Variable_Tables/Vtable.GFS

After editing the namelist.wps file and linking the appropriate Vtable and GRIB files, the
ungrib.exe executable may be run to produce files of meteorological data in the
intermediate format. Ungrib may be run by simply typing the following:

 > ./ungrib.exe >& ungrib.output

WRF-ARW V3: User’s Guide 3-12

WPS

Since the ungrib program may produce a significant volume of output, it is recommended
that ungrib output be redirected to a file, as in the command above. If ungrib.exe runs
successfully, the message

!!!
! Successful completion of ungrib. !
!!!

will be written to the end of the ungrib.output file, and the intermediate files should
appear in the current working directory. The intermediate files written by ungrib will
have names of the form FILE:YYYY-MM-DD_HH (unless, of course, the prefix variable
was set to a prefix other than 'FILE').

 > ls
 drwxr-xr-x 2 4096 arch
 -rwxr-xr-x 1 1672 clean
 -rwxr-xr-x 1 3510 compile
 -rw-r--r-- 1 85973 compile.output
 -rwxr-xr-x 1 4257 configure
 -rw-r--r-- 1 2486 configure.wps
 -rw-r--r-- 1 154946888 FILE:2008-03-24_12
 -rw-r--r-- 1 154946888 FILE:2008-03-24_18
 -rw-r--r-- 1 1957004 geo_em.d01.nc
 -rw-r--r-- 1 4745324 geo_em.d02.nc
 drwxr-xr-x 4 4096 geogrid
 lrwxrwxrwx 1 23 geogrid.exe -> geogrid/src/geogrid.exe
 -rw-r--r-- 1 11169 geogrid.log
 lrwxrwxrwx 1 38 GRIBFILE.AAA -> /data/gfs/gfs_080324_12_00
 lrwxrwxrwx 1 38 GRIBFILE.AAB -> /data/gfs/gfs_080324_12_06
 -rwxr-xr-x 1 1328 link_grib.csh
 drwxr-xr-x 3 4096 metgrid
 lrwxrwxrwx 1 23 metgrid.exe -> metgrid/src/metgrid.exe
 -rw-r--r-- 1 1094 namelist.wps
 -rw-r--r-- 1 1987 namelist.wps.all_options
 -rw-r--r-- 1 1075 namelist.wps.global
 -rw-r--r-- 1 652 namelist.wps.nmm
 -rw-r--r-- 1 4786 README
 drwxr-xr-x 4 4096 ungrib
 lrwxrwxrwx 1 21 ungrib.exe -> ungrib/src/ungrib.exe
 -rw-r--r-- 1 1418 ungrib.log
 -rw-r--r-- 1 27787 ungrib.output
 drwxr-xr-x 3 4096 util
 lrwxrwxrwx 1 33 Vtable ->
ungrib/Variable_Tables/Vtable.GFS

Step 3: Horizontally interpolating meteorological data with metgrid

In the final step of running the WPS, meteorological data extracted by ungrib are
horizontally interpolated to the simulation grids defined by geogrid. In order to run
metgrid, the namelist.wps file must be edited. In particular, the “share” and “metgrid”
namelist records are of relevance to the metgrid program. Examples of these records are
shown below.

&share
 wrf_core = 'ARW',

WRF-ARW V3: User’s Guide 3-13

WPS

 max_dom = 2,
 start_date = '2008-03-24_12:00:00','2008-03-24_12:00:00',
 end_date = '2008-03-24_18:00:00','2008-03-24_12:00:00',
 interval_seconds = 21600,
 io_form_geogrid = 2
/

&metgrid
 fg_name = 'FILE',
 io_form_metgrid = 2,
/

By this point, there is generally no need to change any of the variables in the “share”
namelist record, since those variables should have been suitably set in previous steps. If
the "share" namelist was not edited while running geogrid and ungrib, however, the WRF
dynamical core, number of domains, starting and ending times, interval between
meteorological data, and path to the static domain files must be set in the “share”
namelist record, as described in the steps to run geogrid and ungrib.

In the “metgrid” namelist record, the path and prefix of the intermediate meteorological
data files must be given with fg_name, the full path and file names of any intermediate
files containing constant fields may be specified with the constants_name variable, and
the output format for the horizontally interpolated files may be specified with the
io_form_metgrid variable. Other variables in the “metgrid” namelist record, namely,
opt_output_from_metgrid_path and opt_metgrid_tbl_path, allow the user to
specify where interpolated data files should be written by metgrid and where the
METGRID.TBL file may be found.

As with geogrid and the GEOGRID.TBL file, a METGRID.TBL file appropriate for the
WRF core must be linked in the metgrid directory (or in the directory specified by
opt_metgrid_tbl_path, if this variable is set).

 > ls metgrid/METGRID.TBL

 lrwxrwxrwx 1 15 METGRID.TBL -> METGRID.TBL.ARW

After suitably editing the namelist.wps file and verifying that the correct METGRID.TBL
will be used, metgrid may be run by issuing the command

 > ./metgrid.exe

If metgrid successfully ran, the message

!!!
! Successful completion of metgrid. !
!!!

will be printed. After successfully running, metgrid output files should appear in the WPS
root directory (or in the directory specified by opt_output_from_metgrid_path, if this
variable was set). These files will be named met_em.d0N.YYYY-MM-DD_HH:mm:ss.nc in
the case of ARW domains, where N is the number of the nest whose data reside in the file,

WRF-ARW V3: User’s Guide 3-14

WPS

or met_nmm.d01.YYYY-MM-DD_HH:mm:ss.nc in the case of NMM domains. Here, YYYY-
MM-DD_HH:mm:ss refers to the date of the interpolated data in each file. If these files do
not exist for each of the times in the range given in the “share” namelist record, the
metgrid.log file may be consulted to help in determining the problem in running metgrid.

 > ls
 drwxr-xr-x 2 4096 arch
 -rwxr-xr-x 1 1672 clean
 -rwxr-xr-x 1 3510 compile
 -rw-r--r-- 1 85973 compile.output
 -rwxr-xr-x 1 4257 configure
 -rw-r--r-- 1 2486 configure.wps
 -rw-r--r-- 1 154946888 FILE:2008-03-24_12
 -rw-r--r-- 1 154946888 FILE:2008-03-24_18
 -rw-r--r-- 1 1957004 geo_em.d01.nc
 -rw-r--r-- 1 4745324 geo_em.d02.nc
 drwxr-xr-x 4 4096 geogrid
 lrwxrwxrwx 1 23 geogrid.exe -> geogrid/src/geogrid.exe
 -rw-r--r-- 1 11169 geogrid.log
 lrwxrwxrwx 1 38 GRIBFILE.AAA -> /data/gfs/gfs_080324_12_00
 lrwxrwxrwx 1 38 GRIBFILE.AAB -> /data/gfs/gfs_080324_12_06
 -rwxr-xr-x 1 1328 link_grib.csh
 -rw-r--r-- 1 5217648 met_em.d01.2008-03-24_12:00:00.nc
 -rw-r--r-- 1 5217648 met_em.d01.2008-03-24_18:00:00.nc
 -rw-r--r-- 1 12658200 met_em.d02.2008-03-24_12:00:00.nc
 drwxr-xr-x 3 4096 metgrid
 lrwxrwxrwx 1 23 metgrid.exe -> metgrid/src/metgrid.exe
 -rw-r--r-- 1 65970 metgrid.log
 -rw-r--r-- 1 1094 namelist.wps
 -rw-r--r-- 1 1987 namelist.wps.all_options
 -rw-r--r-- 1 1075 namelist.wps.global
 -rw-r--r-- 1 652 namelist.wps.nmm
 -rw-r--r-- 1 4786 README
 drwxr-xr-x 4 4096 ungrib
 lrwxrwxrwx 1 21 ungrib.exe -> ungrib/src/ungrib.exe
 -rw-r--r-- 1 1418 ungrib.log
 -rw-r--r-- 1 27787 ungrib.output
 drwxr-xr-x 3 4096 util
 lrwxrwxrwx 1 33 Vtable ->
ungrib/Variable_Tables/Vtable.GFS

Creating Nested Domains with the WPS

To run the WPS for nested-domain simulations is essentially no more difficult than
running for a single-domain case; the difference with nested-domain simulations is that
the geogrid and metgrid programs process more than one grid when they are run, rather
than a single grid for the simulation. In order to specify the size and location of nests, a
number of variables in the namelist.wps file must be given lists of values, one value per
nest.

&share
 wrf_core = 'ARW',
 max_dom = 2,

WRF-ARW V3: User’s Guide 3-15

WPS

 start_date = '2008-03-24_12:00:00','2008-03-24_12:00:00',
 end_date = '2008-03-24_18:00:00','2008-03-24_12:00:00',
 interval_seconds = 21600,
 io_form_geogrid = 2
/

&geogrid
 parent_id = 1, 1,
 parent_grid_ratio = 1, 3,
 i_parent_start = 1, 31,
 j_parent_start = 1, 17,
 s_we = 1, 1,
 e_we = 74, 112,
 s_sn = 1, 1,
 e_sn = 61, 97,
 geog_data_res = '10m','2m',
 dx = 30000,
 dy = 30000,
 map_proj = 'lambert',
 ref_lat = 34.83,
 ref_lon = -81.03,
 truelat1 = 30.0,
 truelat2 = 60.0,
 stand_lon = -98.
 geog_data_path = '/mmm/users/wrfhelp/WPS_GEOG/'
/

The namelist variables that are affected by nests are shown in the (partial) namelist
records above. The example shows namelist variables for a two-domain run (the coarse
domain plus a single nest), and the effect on the namelist variables generalize to multiple
nests in the obvious way: rather than specifying lists of two values, lists of N values must
be specified, where N is the total number of model grids.

In the above example, the first change to the “share” namelist record is to the max_dom
variable, which must be set to the total number of nests in the simulation, including the
coarse domain. Having determined the number of nests, all of the other affected namelist
variables must be given a list of N values, one for each grid. The only other change to the
“share” namelist record is to the starting and ending times. Here, a starting and ending
time must be given for each nest, with the restriction that a nest cannot begin before its
parent domain or end after its parent domain; also, it is suggested that nests be given
starting and ending times that are identical to the desired starting times of the nest when
running WPS. This is because the nests get their lateral boundary conditions from their
parent domain, and thus, only the initial time for a nest needs to be processed by WPS,
except when grid nudging, also called analysis nudging, is used in WRF. It is important
to note that, when running WRF, the actual starting and ending times for all nests must be
given in the WRF namelist.input file.

The remaining changes are to the “geogrid” namelist record. In this record, the parent of
each nest must be specified with the parent_id variable. Every nest must be a child of
exactly one other nest, with the coarse domain being its own parent. Related to the
identity of a nest's parent is the nest refinement ratio with respect to its parent, which is
given by the parent_grid_ratio variable; this ratio determines the nominal grid
spacing for a nest in relation to the grid spacing of the its parent.

WRF-ARW V3: User’s Guide 3-16

WPS

Next, the lower-left corner of a nest is specified as an (i, j) location in the nest’s parent
domain; this is done through the i_parent_start and j_parent_start variables, and
the specified location is given with respect to the unstaggered grid. Finally, the
dimensions of each nest, in grid points, are given for each nest using the s_we, e_we,
s_sn, and e_sn variables. The nesting setup in our example namelist is shown in the
figure above, where it may be seen how each of the above-mentioned variables is
determined. Currently, the starting grid point values in the south-north (s_sn) and west-
east (s_we) directions must be specified as 1, and the ending grid point values (e_sn and
e_we) determine, essentially, the full dimensions of the nest; to ensure that the upper-
right corner of the nest's grid is coincident with an unstaggered grid point in the parent
domain, both e_we and e_sn must be one greater than some integer multiple of the
nesting ratio. Also, for each nest, the resolution (or list or resolutions; see the description
of namelist variables) of source data to interpolate from is specified with the
geog_data_res variable. For a complete description of these namelist variables, the user
is referred to the description of namelist variables.

Using Multiple Meteorological Data Sources

The metgrid program is capable of interpolating time-invariant fields, and it can also
interpolate from multiple sources of meteorological data. The first of these capabilities
uses the constants_name variable in the &metgrid namelist record. This variable may
be set to a list of filenames – including path information where necessary – of
intermediate-formatted files which contains time-invariant fields, and which should be
used in the output for every time period processed by metgrid. For example, short
simulations may use a constant SST field; this field need only be available at a single
time, and may be used by setting the constants_name variable to the path and filename
of the SST intermediate file. Typical uses of constants_name might look like

WRF-ARW V3: User’s Guide 3-17

WPS

&metgrid
 constants_name = '/data/ungribbed/constants/SST_FILE:2006-08-16_12'
/

or

&metgrid
 constants_name = 'LANDSEA', 'SOILHGT'
/

The second metgrid capability – that of interpolating data from multiple sources – may be
useful in situations where two or more complementary data sets need to be combined to
produce the full input data needed by real.exe. To interpolate from multiple sources of
time-varying, meteorological data, the fg_name variable in the &metgrid namelist record
should be set to a list of prefixes of intermediate files, including path information when
necessary. When multiple path-prefixes are given, and the same meteorological field is
available from more than one of the sources, data from the last-specified source will take
priority over all preceding sources. Thus, data sources may be prioritized by the order in
which the sources are given.

As an example of this capability, if surface fields are given in one data source and upper-
air data are given in another, the values assigned to the fg_name variable may look
something like:

&metgrid
 fg_name = '/data/ungribbed/SFC', '/data/ungribbed/UPPER_AIR'
/

To simplify the process of extracting fields from GRIB files, the prefix namelist
variable in the &ungrib record may be employed. This variable allows the user to control
the names of (and paths to) the intermediate files that are created by ungrib. The utility of
this namelist variable is most easily illustrated by way of an example. Suppose we wish
to work with the North American Regional Reanalysis (NARR) data set, which is split
into separate GRIB files for 3-dimensional atmospheric data, surface data, and fixed-field
data. We may begin by linking all of the "3D" GRIB files using the link_grib.csh
script, and by linking the NARR Vtable to the filename Vtable. Then, we may suitably
edit the &ungrib namelist record before running ungrib.exe so that the resulting
intermediate files have an appropriate prefix:

&ungrib
 out_format = 'WPS',
 prefix = 'NARR_3D',
/

After running ungrib.exe, the following files should exist (with a suitable substitution for
the appropriate dates):

NARR_3D:1979-01-01_00
NARR_3D:1979-01-01_03
NARR_3D:1979-01-01_06
...

WRF-ARW V3: User’s Guide 3-18

WPS

Given intermediate files for the 3-dimensional fields, we may process the surface fields
by linking the surface GRIB files and changing the prefix variable in the namelist:

&ungrib
 out_format = 'WPS',
 prefix = 'NARR_SFC',
/

Again running ungrib.exe, the following should exist in addition to the NARR_3D files:

NARR_SFC:1979-01-01_00
NARR_SFC:1979-01-01_03
NARR_SFC:1979-01-01_06
...

Finally, the fixed file is linked with the link_grib.csh script, and the prefix variable in
the namelist is again set:

&ungrib
 out_format = 'WPS',
 prefix = 'NARR_FIXED',
/

Having run ungrib.exe for the third time, the fixed fields should be available in addition
to the surface and "3D" fields:

NARR_FIXED:1979-11-08_00

For the sake of clarity, the fixed file may be renamed to remove any date information, for
example, by renaming to simply NARR_FIXED, since the fields in the file are static. In this
example, we note that the NARR fixed data are only available at a specific time, 1979
November 08 at 0000 UTC, and thus, the user would need to set the correct starting and
ending time for the data in the &share namelist record before running ungrib on the
NARR fixed file; of course, the times should be re-set before metgrid is run.

Given intermediate files for all three parts of the NARR data set, metgrid.exe may be run
after the constants_name and fg_name variables in the &metgrid namelist record are
set:

&metgrid
 constants_name = 'NARR_FIXED',
 fg_name = 'NARR_3D', 'NARR_SFC'
/

Although less common, another situation where multiple data sources would be required
is when a source of meteorological data from a regional model is insufficient to cover the
entire simulation domain, and data from a larger regional model, or a global model, must
be used when interpolating to the remaining points of the simulation grid.

WRF-ARW V3: User’s Guide 3-19

WPS

For example, to use NAM data wherever possible, and GFS data elsewhere, the following
values might be assigned in the namelist:

&metgrid
 fg_name = '/data/ungribbed/GFS', '/data/ungribbed/NAM'
/

Then the resulting model domain would use data as shown in the figure below.

If no field is found in more than one source, then no prioritization need be applied by
metgrid, and each field will simply be interpolated as usual; of course, each source should
cover the entire simulation domain to avoid areas of missing data.

Parallelism in the WPS

If the dimensions of the domains to be processed by the WPS become too large to fit in
the memory of a single CPU, it is possible to run the geogrid and metgrid programs in a
distributed memory configuration. In order to compile geogrid and metgrid for distributed
memory execution, the user must have MPI libraries installed on the target machine, and
must have compiled WPS using one of the "DM parallel" configuration options. Upon
successful compilation, the geogrid and metgrid programs may be run with the mpirun or
mpiexec commands or through a batch queuing system, depending on the machine.

As mentioned earlier, the work of the ungrib program is not amenable to parallelization,
and, further, the memory requirements for ungrib's processing are independent of the
memory requirements of geogrid and metgrid; thus, ungrib is always compiled for a
single processor and run on a single CPU, regardless of whether a "DM parallel"
configuration option was selected during configuration.

Each of the standard WRF I/O API formats (NetCDF, GRIB1, binary) has a
corresponding parallel format, whose number is given by adding 100 to the io_form value
(e.g., io_form_geogrid) for the standard format. It is not necessary to use a parallel
io_form, but when one is used, each CPU will read/write its input/output to a separate
file, whose name is simply the name that would be used during serial execution, but with

WRF-ARW V3: User’s Guide 3-20

WPS

a four-digit processor ID appended to the name. For example, running geogrid on four
processors with io_form_geogrid=102 would create output files named
geo_em.d01.nc.0000, geo_em.d01.nc.0001, geo_em.d01.nc.0002, and
geo_em.d01.nc.0003 for the coarse domain.

During distributed-memory execution, model domains are decomposed into rectangular
patches, with each processor working on a single patch. When reading/writing from/to
the WRF I/O API format, each processor reads/writes only its patch. Consequently, if a
parallel io_form is chosen for the output of geogrid, metgrid must be run using the same
number of processors as were used to run geogrid. Similarly, if a parallel io_form is
chosen for the metgrid output files, the real program must be run using the same number
of processors. Of course, it is still possible to use a standard io_form when running on
multiple processors, in which case all data for the model domain will be
distributed/collected upon input/output. As a final note, when geogrid or metgrid are run
on multiple processors, each processor will write its own log file, with the log file names
being appended with the same four-digit processor ID numbers that are used for the I/O
API files.

Checking WPS Output

When running the WPS, it may be helpful to examine the output produced by the
programs. For example, when determining the location of nests, it may be helpful to see
the interpolated static geographical data and latitude/longitude fields. As another
example, when importing a new source of data into WPS – either static data or
meteorological data – it can often be helpful to check the resulting interpolated fields in
order to make adjustments the interpolation methods used by geogrid or metgrid.

By using the NetCDF format for the geogrid and metgrid I/O forms, a variety of
visualization tools that read NetCDF data may be used to check the domain files
processed by geogrid or the horizontally interpolated meteorological fields produced by
metgrid. In order to set the file format for geogrid and metgrid to NetCDF, the user
should specify 2 as the io_form_geogrid and io_form_metgrid in the WPS namelist
file:

&share
 io_form_geogrid = 2,
/

&metgrid
 io_form_metgrid = 2,
/

Among the available tools, the ncdump, ncview, and new RIP4 programs may be of
interest. The ncdump program is a compact utility distributed with the NetCDF libraries
that lists the variables and attributes in a NetCDF file. This can be useful, in particular,
for checking the domain parameters (e.g., west-east dimension, south-north dimension, or
domain center point) in geogrid domain files, or for listing the fields in a file. The ncview
program provides an interactive way to view fields in NetCDF files. Also, for users

WRF-ARW V3: User’s Guide 3-21

WPS

wishing to produce plots of fields suitable for use in publications, the new release of the
RIP4 program may be of interest. The new RIP4 is capable of plotting horizontal
contours, map backgrounds, and overlaying multiple fields within the same plot.

Output from the ungrib program is always written in a simple binary format (either
‘WPS’, ‘SI’, or ‘MM5’), so software for viewing NetCDF files will almost certainly be of
no use. However, an NCAR Graphics-based utility, plotfmt, is supplied with the WPS
source code. This utility produces contour plots of the fields found in an intermediate-
format file. If the NCAR Graphics libraries are properly installed, the plotfmt program is
automatically compiled, along with other utility programs, when WPS is built.

WPS Utility Programs

Besides the three main WPS programs – geogrid, ungrib, and metgrid – there are a
number of utility programs that come with the WPS, and which are compiled in the util
directory. These utilities may be used to examine data files, visualize the location of
nested domains, compute pressure fields, and compute average surface temperature
fields.

A. avg_tsfc.exe

The avg_tsfc.exe program computes a daily mean surface temperature given input files in
the intermediate format. Based on the range of dates specified in the "share" namelist
section of the namelist.wps file, and also considering the interval between intermediate
files, avg_tsfc.exe will use as many complete days' worth of data as possible in
computing the average, beginning at the starting date specified in the namelist. If a
complete day's worth of data is not available, no output file will be written, and the
program will halt as soon as this can be determined. Similarly, any intermediate files for
dates that cannot be used as part of a complete 24-hour period are ignored; for example,
if there are five intermediate files available at a six-hour interval, the last file would be
ignored. The computed average field is written to a new file named TAVGSFC using the
same intermediate format version as the input files. This daily mean surface temperature
field can then be ingested by metgrid by specifying 'TAVGSFC' for the constants_name
variable in the "metgrid" namelist section.

B. mod_levs.exe

The mod_levs.exe program is used to remove levels of data from intermediate format
files. The levels which are to be kept are specified in new namelist record in the
namelist.wps file:

&mod_levs
 press_pa = 201300 , 200100 , 100000 ,
 95000 , 90000 ,
 85000 , 80000 ,

WRF-ARW V3: User’s Guide 3-22

WPS

 75000 , 70000 ,
 65000 , 60000 ,
 55000 , 50000 ,
 45000 , 40000 ,
 35000 , 30000 ,
 25000 , 20000 ,
 15000 , 10000 ,
 5000 , 1000
/

Within the &mod_levs namelist record, the variable press_pa is used to specify a list of
levels to keep; the specified levels should match values of xlvl in the intermediate
format files (see the discussion of the WPS intermediate format for more information on
the fields of the intermediate files). The mod_levs program takes two command-line
arguments as its input. The first argument is the name of the intermediate file to operate
on, and the second argument is the name of the output file to be written.

Removing all but a specified subset of levels from meteorological data sets is particularly
useful, for example, when one data set is to be used for the model initial conditions and a
second data set is to be used for the lateral boundary conditions. This can be done by
providing the initial conditions data set at the first time period to be interpolated by
metgrid, and the boundary conditions data set for all other times. If the both data sets
have the same number of vertical levels, then no work needs to be done; however, when
these two data sets have a different number of levels, it will be necessary, at a minimum,
to remove (m – n) levels, where m > n and m and n are the number of levels in each of the
two data sets, from the data set with m levels. The necessity of having the same number
of vertical levels in all files is due to a limitation in real.exe, which requires a constant
number of vertical levels to interpolate from.

The mod_levs utility is something of a temporary solution to the problem of
accommodating two or more data sets with differing numbers of vertical levels. Should a
user choose to use mod_levs, it should be noted that, although the vertical locations of the
levels need not match between data sets, all data sets should have a surface level of data,
and, when running real.exe and wrf.exe, the value of p_top must be chosen to be below
the lowest top among the data sets.

C. calc_ecmwf_p.exe

In the course of vertically interpolating meteorological fields, the real program requires a
3d pressure field on the same levels as the other atmospheric fields. The
calc_ecmwf_p.exe utility may be used to create such a pressure field for use with
ECMWF sigma-level data sets. Given a surface pressure field or (log of surface pressure
field) and a list of coefficients A and B, calc_ecmwf_p.exe computes the pressure at an
ECMWF sigma level k at grid point (i,j) as Pijk = Ak + Bk*Psfcij. The list of coefficients
can be copied from a table appropriate to the number of sigma levels in the data set from
http://www.ecmwf.int/products/data/technical/model_levels/index.html. This table should
be written in plain text to a file, ecmwf_coeffs, in the current working directory; for
example, with 16 sigma levels, the file emcwf_coeffs would contain something like:

WRF-ARW V3: User’s Guide 3-23

http://www.ecmwf.int/products/data/technical/model_levels/index.html

WPS

 0 0.000000 0.000000000
 1 5000.000000 0.000000000
 2 9890.519531 0.001720764
 3 14166.304688 0.013197623
 4 17346.066406 0.042217135
 5 19121.152344 0.093761623
 6 19371.250000 0.169571340
 7 18164.472656 0.268015683
 8 15742.183594 0.384274483
 9 12488.050781 0.510830879
 10 8881.824219 0.638268471
 11 5437.539063 0.756384850
 12 2626.257813 0.855612755
 13 783.296631 0.928746223
 14 0.000000 0.972985268
 15 0.000000 0.992281914
 16 0.000000 1.000000000

Given a set of intermediate files produced by ungrib and the file ecmwf_coeffs,
calc_ecmwf_p loops over all time periods in namelist.wps, and produces an additional
intermediate file, PRES:YYYY-MM-DD_HH, for each time, which contains pressure data
for each full sigma level as well as a 3d relative humidity field. This intermediate file
should be specified to metgrid, along with the intermediate data produced by ungrib, by
adding 'PRES' to the list of prefixes in the fg_name namelist variable.

D. plotgrids.exe

The plotgrids.exe program is an NCAR Graphics-based utility whose purpose is to plot
the locations of all nests defined in the namelist.wps file. The program operates on the
namelist.wps file, and thus, may be run without having run any of the three main WPS
programs. Upon successful completion, plotgrids produces an NCAR Graphics metafile,
gmeta, which may be viewed using the idt command. The coarse domain is drawn to fill
the plot frame, a map outline with political boundaries is drawn over the coarse domain,
and any nested domains are drawn as rectangles outlining the extent of each nest. This
utility may be useful particularly during initial placement of domains, at which time the
user can iteratively adjust the locations of nests by editing the namelist.wps file, running
plotgrids.exe, and determining a set of adjustments to the nest locations. Currently, this
utility does not work for ARW domains that use the latitude-longitude projection (i.e.,
when map_proj = 'lat-lon').

E. g1print.exe

The g1print.exe program takes as its only command-line argument the name of a GRIB
Edition 1 file. The program prints a listing of the fields, levels, and dates of the data in
the file.

F. g2print.exe

Similar to g1print.exe, the g2print.exe program takes as its only command-line argument
the name of a GRIB Edition 2 file. The program prints a listing of the fields, levels, and
dates of the data in the file.

WRF-ARW V3: User’s Guide 3-24

WPS

G. plotfmt.exe

The plotfmt.exe is an NCAR Graphics program that plots the contents of an intermediate
format file. The program takes as its only command-line argument the name of the file to
plot, and produces an NCAR Graphics metafile, which contains contour plots of each
field in input file. The graphics metafile output, gmeta, may be viewed with the idt
command, or converted to another format using utilities such as ctrans.

H. rd_intermediate.exe

Given the name of a singe intermediate format file on the command line, the
rd_intermediate.exe program prints information about the fields contained in the file.

Writing Meteorological Data to the Intermediate Format

The role of the ungrib program is to decode GRIB data sets into a simple intermediate
format that is understood by metgrid. If meteorological data are not available in GRIB
Edition 1 or GRIB Edition 2 formats, the user is responsible for writing such data into the
intermediate file format. Fortunately, the intermediate format is relatively simple,
consisting of a sequence of unformatted Fortran writes. It is important to note that these
unformatted writes use big-endian byte order, which can typically be specified with
compiler flags. Below, we describe the WPS intermediate format; users interested in the
SI or MM5 intermediate formats can first gain familiarity with the WPS format, which is
very similar, and later examine the Fortran subroutines that read and write all three
intermediate formats (metgrid/src/read_met_module.F90 and
metgrid/src/write_met_module.F90, respectively).

When writing data to the WPS intermediate format, 2-dimensional fields are written as a
rectangular array of real values. 3-dimensional arrays must be split across the vertical
dimension into 2-dimensional arrays, which are written independently. It should also be
noted that, for global data sets, either a Gaussian or cylindrical equidistant projection
must be used, and for regional data sets, either a Mercator, Lambert conformal, polar
stereographic, or cylindrical equidistant may be used. The sequence of writes used to
write a single 2-dimensional array in the WPS intermediate format is as follows (note that
not all of the variables declared below are used for a given projection of the data).

integer :: version ! Format version (must =5 for WPS format)
integer :: nx, ny ! x- and y-dimensions of 2-d array
integer :: iproj ! Code for projection of data in array:
 ! 0 = cylindrical equidistant
 ! 1 = Mercator
 ! 3 = Lambert conformal conic
 ! 4 = Gaussian (global only!)
 ! 5 = Polar stereographic
real :: nlats ! Number of latitudes north of equator
 ! (for Gaussian grids)
real :: xfcst ! Forecast hour of data

WRF-ARW V3: User’s Guide 3-25

WPS

real :: xlvl ! Vertical level of data in 2-d array
real :: startlat, startlon ! Lat/lon of point in array indicated by
 ! startloc string
real :: deltalat, deltalon ! Grid spacing, degrees
real :: dx, dy ! Grid spacing, km
real :: xlonc ! Standard longitude of projection
real :: truelat1, truelat2 ! True latitudes of projection
real :: earth_radius ! Earth radius, km
real, dimension(nx,ny) :: slab ! The 2-d array holding the data
logical :: is_wind_grid_rel ! Flag indicating whether winds are
 ! relative to source grid (TRUE) or
 ! relative to earth (FALSE)
character (len=8) :: startloc ! Which point in array is given by
 ! startlat/startlon; set either
 ! to 'SWCORNER' or 'CENTER '
character (len=9) :: field ! Name of the field
character (len=24) :: hdate ! Valid date for data YYYY:MM:DD_HH:00:00
character (len=25) :: units ! Units of data
character (len=32) :: map_source ! Source model / originating center
character (len=46) :: desc ! Short description of data

! 1) WRITE FORMAT VERSION
write(unit=ounit) version

! 2) WRITE METADATA
! Cylindrical equidistant
if (iproj == 0) then
 write(unit=ounit) hdate, xfcst, map_source, field, &
 units, desc, xlvl, nx, ny, iproj
 write(unit=ounit) startloc, startlat, startlon, &
 deltalat, deltalon, earth_radius

! Mercator
else if (iproj == 1) then
 write(unit=ounit) hdate, xfcst, map_source, field, &
 units, desc, xlvl, nx, ny, iproj
 write(unit=ounit) startloc, startlat, startlon, dx, dy, &
 truelat1, earth_radius

! Lambert conformal
else if (iproj == 3) then
 write(unit=ounit) hdate, xfcst, map_source, field, &
 units, desc, xlvl, nx, ny, iproj
 write(unit=ounit) startloc, startlat, startlon, dx, dy, &
 xlonc, truelat1, truelat2, earth_radius

! Gaussian
else if (iproj == 4) then
 write(unit=ounit) hdate, xfcst, map_source, field, &
 units, desc, xlvl, nx, ny, iproj
 write(unit=ounit) startloc, startlat, startlon, &
 nlats, deltalon, earth_radius

! Polar stereographic
else if (iproj == 5) then
 write(unit=ounit) hdate, xfcst, map_source, field, &
 units, desc, xlvl, nx, ny, iproj
 write(unit=ounit) startloc, startlat, startlon, dx, dy, &
 xlonc, truelat1, earth_radius

end if

WRF-ARW V3: User’s Guide 3-26

WPS

! 3) WRITE WIND ROTATION FLAG
write(unit=ounit) is_wind_grid_rel

! 4) WRITE 2-D ARRAY OF DATA
write(unit=ounit) slab

Creating and Editing Vtables

Although Vtables are provided for many common data sets, it would be impossible for
ungrib to anticipate every possible source of meteorological data in GRIB format. When
a new source of data is to be processed by ungrib.exe, the user may create a new Vtable
either from scratch, or by using an existing Vtable as an example. In either case, a basic
knowledge of the meaning and use of the various fields of the Vtable will be helpful.

Each Vtable contains either seven or eleven fields, depending on whether the Vtable is
for a GRIB Edition 1 data source or a GRIB Edition 2 data source, respectively. The
fields of a Vtable fall into one of three categories: fields that describe how the data are
identified within the GRIB file, fields that describe how the data are identified by the
ungrib and metgrid programs, and fields specific to GRIB Edition 2. Each variable to be
extracted by ungrib.exe will have one or more lines in the Vtable, with multiple lines for
data that are split among different level types – for example, a surface level and upper-air
levels. The fields that must be specified for a line, or entry, in the Vtable depends on the
specifics of the field and level.

The first group of fields, those that describe how the data are identified within the GRIB
file, are given under the column headings of the Vtable shown below.

GRIB1| Level| From | To |
Param| Type |Level1|Level2|
-----+------+------+------+

The "GRIB1 Param" field specifies the GRIB code for the meteorological field, which is
a number unique to that field within the data set. However, different data sets may use
different GRIB codes for the same field – for example, temperature at upper-air levels
has GRIB code 11 in GFS data, but GRIB code 130 in ECMWF data. To find the GRIB
code for a field, the g1print.exe and g2print.exe utility program may be used.

Given a GRIB code, the "Level Type", "From Level1", and "From Level2" fields are
used to specify which levels a field may be found at. As with the "GRIB1 Param" field,
the g1print.exe and g2print.exe programs may be used to find values for the level fields.
The meanings of the level fields are dependent on the "Level Type" field, and are
summarized in the following table.

WRF-ARW V3: User’s Guide 3-27

WPS

Level Level Type From Level1 To Level2
Upper-air 100 * (blank)
Surface 1 0 (blank)

Sea-level 102 0 (blank)
Levels at a specified

height AGL
105 Height, in meters, of

the level above ground
(blank)

Fields given as layers 112 Starting level for the
layer

Ending level for
the layer

When layer fields (Level Type 112) are specified, the starting and ending points for the
layer have units that are dependent on the field itself; appropriate values may be found
with the g1print.exe and g2print.exe utility programs.

The second group of fields in a Vtable, those that describe how the data are identified
within the metgrid and real programs, fall under the column headings shown below.

| metgrid | metgrid | metgrid |
| Name | Units | Description |
+----------+---------+---+

The most important of these three fields is the "metgrid Name" field, which determines
the variable name that will be assigned to a meteorological field when it is written to the
intermediate files by ungrib. This name should also match an entry in the
METGRID.TBL file, so that the metgrid program can determine how the field is to be
horizontally interpolated. The "metgrid Units" and "metgrid Description" fields specify
the units and a short description for the field, respectively; here, it is important to note
that if no description is given for a field, then ungrib will not write that field out to the
intermediate files.

The final group of fields, which provide GRIB2-specific information, are found under the
column headings below.

|GRIB2|GRIB2|GRIB2|GRIB2|
|Discp|Catgy|Param|Level|
+-----------------------+

The GRIB2 fields are only needed in a Vtable that is to be used for GRIB Edition 2 data
sets, although having these fields in a Vtable does not prevent that Vtable from also being
used for GRIB Edition 1 data. For example, the Vtable.GFS file contains GRIB2 Vtable
fields, but is used for both 1-degree (GRIB1) GFS and 0.5-degree (GRIB2) GFS data
sets. Since Vtables are provided for most known GRIB Edition 2 data sets, the
corresponding Vtable fields are not described here at present.

WRF-ARW V3: User’s Guide 3-28

WPS

Writing Static Data to the Geogrid Binary Format

The static geographical data sets that are interpolated by the geogrid program are stored
as regular 2-dimensional and 3-dimensional arrays written in a simple binary raster
format. Users with a new source for a given static field can ingest their data with WPS by
writing the data set into this binary format. The geogrid format is capable of supporting
single-level and multi-level continuous fields, categorical fields represented as dominant
categories, and categorical fields given as fractional fields for each category. The most
simple of these field types in terms of representation in the binary format is a categorical
field given as a dominant category at each source grid point, an example of which is the
30-second USGS land use data set.

For a categorical field given as dominant categories, the data must first be stored in a
regular 2-dimensional array of integers, with each integer giving the dominant category at
the corresponding source grid point. Given this array, the data are written to a file, row-
by-row, beginning at the bottom, or southern-most, row. For example, in the figure
above, the elements of the n × m array would be written in the order x11, x12, ..., x1m, x21,
..., x2m, ..., xn1, ..., xnm. When written to the file, every element is stored as a 1-, 2-, 3-, or
4-byte integer in big-endian byte order (i.e., for the 4-byte integer ABCD, byte A is stored
at the lowest address and byte D at the highest), although little-endian files may be used
by setting endian=little in the "index" file for the data set. Every element in a file
must use the same number of bytes for its storage, and, of course, it is advantageous to
use the fewest number of bytes needed to represent the complete range of values in the
array.

Similar in format to a field of dominant categories is the case of a field of continuous, or
real, values. Like dominant-category fields, single-level continuous fields are first
organized as a regular 2-dimensional array, then written, row-by-row, to a binary file.
However, because a continuous field may contain non-integral or negative values, the
storage representation of each element within the file is slightly more complex. All
elements in the array must first be converted to integral values. This is done by first
scaling all elements by a constant, chosen to maintain the required precision, and then

WRF-ARW V3: User’s Guide 3-29

WPS

removing any remaining fractional part through rounding. For example, if three decimal
places of precision are required, the value -2.71828 would need to be scaled by 1000 and
rounded to -2718. Following conversion of all array elements to integral values, if any
negative values are found in the array, a second conversion must be applied: if elements
are stored using 1 byte each, then 28 is added to each negative element; for storage using
2 bytes, 216 is added to each negative element; for storage using 3 bytes, 224 is added to
each negative element; and for storage using 4 bytes, a value of 232 is added to each
negative element. It is important to note that no conversion is applied to positive
elements. Finally, the resulting positive, integral array is written as in the case of a
dominant-category field.

Multi-level continuous fields are handled much the same as single-level continuous
fields. For an n × m × r array, conversion to a positive, integral field is first performed as
described above. Then, each n × m sub-array is written contiguously to the binary file as
before, beginning with the smallest r index. Categorical fields that are given as fractional
fields for each possible category can be thought of as multi-level continuous fields, where
each level k is the fractional field for category k.

When writing a field to a file in the geogrid binary format, the user should adhere to the
naming convention used by the geogrid program, which expects data files to have names
of the form xstart-xend.ystart-yend, where xstart, xend, ystart, and yend are five-digit
positive integers specifying, respectively, the starting x-index of the array contained in
the file, the ending x-index of the array, the starting y-index of the array, and the ending
y-index of the array; here, indexing begins at 1, rather than 0. So, for example, an 800 ×
1200 array (i.e., 800 rows and 1200 columns) might be named 00001-01200.00001-
00800.

When a data set is given in several pieces, each of the pieces may be formed as a regular
rectangular array, and each array may be written to a separate file. In this case, the
relative locations of the arrays are determined by the range of x- and y-indices in the file
names for each of the arrays. It is important to note, however, that every tile must have
the same x- and y-dimensions, and that tiles of data within a data set must not overlap;
furthermore, all tiles must start and end on multiples of the index ranges. For example,
the global 30-second USGS topography data set is divided into arrays of dimension 1200
× 1200, with each array containing a 10-degree × 10-degree piece of the data set; the file
whose south-west corner is located at (90S, 180W) is named 00001-01200.00001-01200,
and the file whose north-east corner is located at (90N, 180E) is named 42001-
43200.20401-21600.

Clearly, since the starting and ending indices must have five digits, a field cannot have
more than 99999 data points in either of the x- or y-directions. In case a field has more
than 99999 data points in either dimension, the user can simply split the data set into
several smaller data sets which will be identified separately to geogrid. For example, a
very large global data set may be split into data sets for the Eastern and Western
hemispheres.

WRF-ARW V3: User’s Guide 3-30

WPS

Besides the binary data files themselves, geogrid requires one extra metadata file per data
set. This metadata file is always named 'index', and thus, two data sets cannot reside in
the same directory. Essentially, this metadata file is the first file that geogrid looks for
when processing a data set, and the contents of the file provide geogrid with all of the
information necessary for constructing names of possible data files. The contents of an
example index file are given below.

 type = continuous
 signed = yes
 projection = regular_ll
 dx = 0.00833333
 dy = 0.00833333
 known_x = 1.0
 known_y = 1.0
 known_lat = -89.99583
 known_lon = -179.99583
 wordsize = 2
 tile_x = 1200
 tile_y = 1200
 tile_z = 1
 tile_bdr=3
 units="meters MSL"
 description="Topography height"

For a complete listing of keywords that may appear in an index file, along with the
meaning of each keyword, the user is referred to the section on index file options.

Description of the Namelist Variables

A. SHARE section

This section provides variables that are used by more than one WPS program. For
example, the wrf_core variable specifies whether WPS is to produce data for the ARW
or the NMM core – information which is needed by both the geogrid and metgrid
programs.

1. WRF_CORE : A character string set to either 'ARW' or 'NMM' that tells WPS which
dynamical core the input data are being prepared for. Default value is 'ARW'.

2. MAX_DOM : An integer specifying the total number of domains/nests, including the
parent domain, in the simulation. Default value is 1.

3. START_YEAR : A list of MAX_DOM 4-digit integers specifying the starting UTC
year of the simulation for each nest. No default value.

4. START_MONTH : A list of MAX_DOM 2-digit integers specifying the starting UTC
month of the simulation for each nest. No default value.

WRF-ARW V3: User’s Guide 3-31

WPS

5. START_DAY : A list of MAX_DOM 2-digit integers specifying the starting UTC day
of the simulation for each nest. No default value.

6. START_HOUR : A list of MAX_DOM 2-digit integers specifying the starting UTC
hour of the simulation for each nest. No default value.

7. END_YEAR : A list of MAX_DOM 4-digit integers specifying the ending UTC year
of the simulation for each nest. No default value.

8. END_MONTH : A list of MAX_DOM 2-digit integers specifying the ending UTC
month of the simulation for each nest. No default value.

9. END_DAY : A list of MAX_DOM 2-digit integers specifying the ending UTC day of
the simulation for each nest. No default value.

10. END_HOUR : A list of MAX_DOM 2-digit integers specifying the ending UTC hour
of the simulation for each nest. No default value.

11. START_DATE : A list of MAX_DOM character strings of the form 'YYYY-MM-
DD_HH:mm:ss' specifying the starting UTC date of the simulation for each nest. The
start_date variable is an alternate to specifying start_year, start_month,
start_day, and start_hour, and if both methods are used for specifying the starting
time, the start_date variable will take precedence. No default value.

12. END_DATE : A list of MAX_DOM character strings of the form 'YYYY-MM-
DD_HH:mm:ss' specifying the ending UTC date of the simulation for each nest. The
end_date variable is an alternate to specifying end_year, end_month, end_day, and
end_hour, and if both methods are used for specifying the ending time, the end_date
variable will take precedence. No default value.

13. INTERVAL_SECONDS : The integer number of seconds between time-varying
meteorological input files. No default value.

14. IO_FORM_GEOGRID : The WRF I/O API format that the domain files created by
the geogrid program will be written in. Possible options are: 1 for binary; 2 for NetCDF;
3 for GRIB1. When option 1 is given, domain files will have a suffix of .int; when option
2 is given, domain files will have a suffix of .nc; when option 3 is given, domain files
will have a suffix of .gr1. Default value is 2 (NetCDF).

15. OPT_OUTPUT_FROM_GEOGRID_PATH : A character string giving the path,
either relative or absolute, to the location where output files from geogrid should be
written to and read from. Default value is './'.

16. DEBUG_LEVEL : An integer value indicating the extent to which different types of
messages should be sent to standard output. When debug_level is set to 0, only
generally useful messages and warning messages will be written to standard output.

WRF-ARW V3: User’s Guide 3-32

WPS

When debug_level is greater than 100, informational messages that provide further
runtime details are also written to standard output. Debugging messages and messages
specifically intended for log files are never written to standard output, but are always
written to the log files. Default value is 0.

B. GEOGRID section

This section specifies variables that are specific to the geogrid program. Variables in the
geogrid section primarily define the size and location of all model domains, and where
the static geographical data are found.

1. PARENT_ID : A list of MAX_DOM integers specifying, for each nest, the domain
number of the nest’s parent; for the coarsest domain, this variable should be set to 1.
Default value is 1.

2. PARENT_GRID_RATIO : A list of MAX_DOM integers specifying, for each nest,
the nesting ratio relative to the domain’s parent. No default value.

3. I_PARENT_START : A list of MAX_DOM integers specifying, for each nest, the x-
coordinate of the lower-left corner of the nest in the parent unstaggered grid. For the
coarsest domain, a value of 1 should be specified. No default value.

4. J_PARENT_START : A list of MAX_DOM integers specifying, for each nest, the y-
coordinate of the lower-left corner of the nest in the parent unstaggered grid. For the
coarsest domain, a value of 1 should be specified. No default value.

5. S_WE : A list of MAX_DOM integers which should all be set to 1. Default value is 1.

6. E_WE : A list of MAX_DOM integers specifying, for each nest, the nest’s full west-
east dimension. For nested domains, e_we must be one greater than an integer multiple of
the nest's parent_grid_ratio (i.e., e_ew = n*parent_grid_ratio+1 for some positive
integer n). No default value.

7. S_SN : A list of MAX_DOM integers which should all be set to 1. Default value is 1.

8. E_SN : A list of MAX_DOM integers specifying, for each nest, the nest’s full south-
north dimension. For nested domains, e_sn must be one greater than an integer multiple
of the nest's parent_grid_ratio (i.e., e_sn = n*parent_grid_ratio+1 for some
positive integer n). No default value.

9. GEOG_DATA_RES : A list of MAX_DOM character strings specifying, for each nest,
a corresponding resolution or list of resolutions separated by + symbols of source data to
be used when interpolating static terrestrial data to the nest’s grid. For each nest, this
string should contain a resolution matching a string preceding a colon in a rel_path or
abs_path specification (see the description of GEOGRID.TBL options) in the
GEOGRID.TBL file for each field. If a resolution in the string does not match any such

WRF-ARW V3: User’s Guide 3-33

WPS

string in a rel_path or abs_path specification for a field in GEOGRID.TBL, a default
resolution of data for that field, if one is specified, will be used. If multiple resolutions
match, the first resolution to match a string in a rel_path or abs_path specification in
the GEOGRID.TBL file will be used. Default value is 'default'.

10. DX : A real value specifying the grid distance in the x-direction where the map scale
factor is 1. For ARW, the grid distance is in meters for the 'polar', 'lambert', and
'mercator' projection, and in degrees longitude for the 'lat-lon' projection; for
NMM, the grid distance is in degrees longitude. Grid distances for nests are determined
recursively based on values specified for parent_grid_ratio and parent_id. No
default value.

11. DY : A real value specifying the nominal grid distance in the y-direction where the
map scale factor is 1. For ARW, the grid distance is in meters for the 'polar',
'lambert', and 'mercator' projection, and in degrees latitude for the 'lat-lon'
projection; for NMM, the grid distance is in degrees latitude. Grid distances for nests are
determined recursively based on values specified for parent_grid_ratio and
parent_id. No default value.

12. MAP_PROJ : A character string specifying the projection of the simulation domain.
For ARW, accepted projections are 'lambert', 'polar', 'mercator', and 'lat-lon';
for NMM, a projection of 'rotated_ll' must be specified. Default value is 'lambert'.

13. REF_LAT : A real value specifying the latitude part of a (latitude, longitude) location
whose (i,j) location in the simulation domain is known. For ARW, ref_lat gives the
latitude of the center-point of the coarse domain by default (i.e., when ref_x and ref_y
are not specified). For NMM, ref_lat always gives the latitude to which the origin is
rotated. No default value.

14. REF_LON : A real value specifying the longitude part of a (latitude, longitude)
location whose (i, j) location in the simulation domain is known. For ARW, ref_lon
gives the longitude of the center-point of the coarse domain by default (i.e., when ref_x
and ref_y are not specified). For NMM, ref_lon always gives the longitude to which
the origin is rotated. For both ARW and NMM, west longitudes are negative, and the
value of ref_lon should be in the range [-180, 180]. No default value.

15. REF_X : A real value specifying the i part of an (i, j) location whose (latitude,
longitude) location in the simulation domain is known. The (i, j) location is always given
with respect to the mass-staggered grid, whose dimensions are one less than the
dimensions of the unstaggered grid. Default value is (((E_WE-1.)+1.)/2.) = (E_WE/2.).

16. REF_Y : A real value specifying the j part of an (i, j) location whose (latitude,
longitude) location in the simulation domain is known. The (i, j) location is always given
with respect to the mass-staggered grid, whose dimensions are one less than the
dimensions of the unstaggered grid. Default value is (((E_SN-1.)+1.)/2.) = (E_SN/2.).

WRF-ARW V3: User’s Guide 3-34

WPS

17. TRUELAT1 : A real value specifying, for ARW, the first true latitude for the
Lambert conformal conic projection, or the only true latitude for the polar stereographic
projection. For NMM, truelat1 is ignored. No default value.

18. TRUELAT2 : A real value specifying, for ARW, the second true latitude for the
Lambert conformal conic projection. For NMM, truelat2 is ignored. No default value.

19. STAND_LON : A real value specifying, for ARW, the longitude that is parallel with
the y-axis in conic and azimuthal projections. For NMM, stand_lon is ignored. No
default value.

20. POLE_LAT : For the latitude-longitude projection for ARW, the latitude of the North
Pole with respect to the computational latitude-longitude grid in which -90.0° latitude is
at the bottom of a global domain, 90.0° latitude is at the top, and 180.0° longitude is at
the center. Default value is 90.0.

21. POLE_LON : For the latitude-longitude projection for ARW, the longitude of the
North Pole with respect to the computational lat/lon grid in which -90.0° latitude is at the
bottom of a global domain, 90.0° latitude is at the top, and 180.0° longitude is at the
center. Default value is 0.0.

22. GEOG_DATA_PATH : A character string giving the path, either relative or absolute,
to the directory where the geographical data directories may be found. This path is the
one to which rel_path specifications in the GEOGRID.TBL file are given in relation to.
No default value.

23. OPT_GEOGRID_TBL_PATH : A character string giving the path, either relative or
absolute, to the GEOGRID.TBL file. The path should not contain the actual file name, as
GEOGRID.TBL is assumed, but should only give the path where this file is located.
Default value is './geogrid/'.

C. UNGRIB section

Currently, this section contains only two variables, which determine the output format
written by ungrib and the name of the output files.

1. OUT_FORMAT : A character string set either to 'WPS', 'SI', or 'MM5'. If set to
'MM5', ungrib will write output in the format of the MM5 pregrid program; if set to 'SI',
ungrib will write output in the format of grib_prep.exe; if set to 'WPS', ungrib will write
data in the WPS intermediate format. Default value is 'WPS'.

2. PREFIX : A character string that will be used as the prefix for intermediate-format
files created by ungrib; here, prefix refers to the string PREFIX in the filename
PREFIX:YYYY-MM-DD_HH of an intermediate file. The prefix may contain path
information, either relative or absolute, in which case the intermediate files will be

WRF-ARW V3: User’s Guide 3-35

WPS

written in the directory specified. This option may be useful to avoid renaming
intermediate files if ungrib is to be run on multiple sources of GRIB data. Default value is
'FILE'.

D. METGRID section

This section defines variables used only by the metgrid program. Typically, the user will
be interested in the fg_name variable, and may need to modify other variables of this
section less frequently.

1. FG_NAME : A list of character strings specifying the path and prefix of ungribbed
data files. The path may be relative or absolute, and the prefix should contain all
characters of the filenames up to, but not including, the colon preceding the date. When
more than one fg_name is specified, and the same field is found in two or more input
sources, the data in the last encountered source will take priority over all preceding
sources for that field. Default value is an empty list (i.e., no meteorological fields).

2. CONSTANTS_NAME : A list of character strings specifying the path and full
filename of ungribbed data files which are time-invariant. The path may be relative or
absolute, and the filename should be the complete filename; since the data are assumed to
be time-invariant, no date will be appended to the specified filename. Default value is an
empty list (i.e., no constant fields).

3. IO_FORM_METGRID : The WRF I/O API format that the output created by the
metgrid program will be written in. Possible options are: 1 for binary; 2 for NetCDF; 3
for GRIB1. When option 1 is given, output files will have a suffix of .int; when option 2
is given, output files will have a suffix of .nc; when option 3 is given, output files will
have a suffix of .gr1. Default value is 2 (NetCDF).

4. OPT_OUTPUT_FROM_METGRID_PATH : A character string giving the path, either
relative or absolute, to the location where output files from metgrid should be written to.
The default value is the current working directory (i.e., the default value is './').

5. OPT_METGRID_TBL_PATH : A character string giving the path, either relative or
absolute, to the METGRID.TBL file; the path should not contain the actual file name, as
METGRID.TBL is assumed, but should only give the path where this file is located.
Default value is './metgrid/'.

6. OPT_IGNORE_DOM_CENTER : A logical value, either .TRUE. or .FALSE.,
specifying whether, for times other than the initial time, interpolation of meteorological
fields to points on the interior of the simulation domain should be avoided in order to
decrease the runtime of metgrid. This option currently has no effect. Default value is
.FALSE..

WRF-ARW V3: User’s Guide 3-36

WPS

Description of GEOGRID.TBL Options

The GEOGRID.TBL file is a text file that defines parameters of each of the data sets to
be interpolated by geogrid. Each data set is defined in a separate section, with sections
being delimited by a line of equality symbols (e.g., ‘==============’). Within each
section, there are specifications, each of which has the form of keyword=value. Some
keywords are required in each data set section, while others are optional; some keywords
are mutually exclusive with other keywords. Below, the possible keywords and their
expected range of values are described.

1. NAME : A character string specifying the name that will be assigned to the
interpolated field upon output. No default value.

2. PRIORITY : An integer specifying the priority that the data source identified in the
table section takes with respect to other sources of data for the same field. If a field has n
sources of data, then there must be n separate table entries for the field, each of which
must be given a unique value for priority in the range [1,n]. No default value.

3. DEST_TYPE : A character string, either categorical or continuous, that tells
whether the interpolated field from the data source given in the table section is to be
treated as a continuous or a categorical field. No default value.

4. INTERP_OPTION : A sequence of one or more character strings, which are the names
of interpolation methods to be used when horizontally interpolating the field. Available
interpolation methods are: average_4pt, average_16pt, wt_average_4pt,
wt_average_16pt, nearest_neighbor, four_pt, sixteen_pt, search,
average_gcell(r); for the grid cell average method (average_gcell), the optional
argument r specifies the minimum ratio of source data resolution to simulation grid
resolution at which the method will be applied; unless specified, r = 0.0, and the option is
used for any ratio. When a sequence of two or more methods are given, the methods
should be separated by a + sign. No default value.

5. SMOOTH_OPTION : A character string giving the name of a smoothing method to be
applied to the field after interpolation. Available smoothing options are: 1-2-1, smth-
desmth, and smth-desmth_special (ARW only). Default value is null (i.e., no
smoothing is applied).

6. SMOOTH_PASSES : If smoothing is to be performed on the interpolated field,
smooth_passes specifies an integer number of passes of the smoothing method to apply
to the field. Default value is 1.

7. REL_PATH : A character string specifying the path relative to the path given in the
namelist variable geog_data_path. A specification is of the general form
RES_STRING:REL_PATH, where RES_STRING is a character string identifying the
source or resolution of the data in some unique way and may be specified in the namelist
variable geog_data_res, and REL_PATH is a path relative to geog_data_path where

WRF-ARW V3: User’s Guide 3-37

WPS

the index and data tiles for the data source are found. More than one rel_path
specification may be given in a table section if there are multiple sources or resolutions
for the data source, just as multiple resolutions may be specified (in a sequence delimited
by + symbols) for geog_data_res. See also abs_path. No default value.

8. ABS_PATH : A character string specifying the absolute path to the index and data tiles
for the data source. A specification is of the general form RES_STRING:ABS_PATH,
where RES_STRING is a character string identifying the source or resolution of the data
in some unique way and may be specified in the namelist variable geog_data_res, and
ABS_PATH is the absolute path to the data source's files. More than one abs_path
specification may be given in a table section if there are multiple sources or resolutions
for the data source, just as multiple resolutions may be specified (in a sequence delimited
by + symbols) for geog_data_res. See also rel_path. No default value.

9. OUTPUT_STAGGER : A character string specifying the grid staggering to which the
field is to be interpolated. For ARW domains, possible values are U, V, and M; for NMM
domains, possible values are HH and VV. Default value for ARW is M; default value for
NMM is HH.

10. LANDMASK_WATER : An integer value that is the index of the category within the
field that represents water. When landmask_water is specified in the table section of a
field for which dest_type=categorical, the LANDMASK field will be computed from
the field using the specified category as the water category. The keywords
landmask_water and landmask_land are mutually exclusive. Default value is null (i.e.,
a landmask will not be computed from the field).

11. LANDMASK_LAND : An integer value that is the index of the category within the
field that represents land. When landmask_water is specified in the table section of a
field for which dest_type=categorical, the LANDMASK field will be computed from
the field using the specified category as the land category. The keywords
landmask_water and landmask_land are mutually exclusive. Default value is null (i.e.,
a landmask will not be computed from the field).

12. MASKED : Either land or water, indicating that the field is not valid at land or
water points, respectively. If the masked keyword is used for a field, those grid points that
are of the masked type (land or water) will be assigned the value specified by
fill_missing. Default value is null (i.e., the field is not masked).

13. FILL_MISSING : A real value used to fill in any missing or masked grid points in the
interpolated field. Default value is 1.E20.

14. HALT_ON_MISSING : Either yes or no, indicating whether geogrid should halt with
a fatal message when a missing value is encountered in the interpolated field. Default
value is no.

WRF-ARW V3: User’s Guide 3-38

WPS

15. DOMINANT_CATEGORY : When specified as a character string, the effect is to
cause geogrid to compute the dominant category from the fractional categorical field, and
to output the dominant category field with the name specified by the value of
dominant_category. This option can only be used for fields with
dest_type=categorical. Default value is null (i.e., no dominant category will be
computed from the fractional categorical field).

16. DOMINANT_ONLY : When specified as a character string, the effect is similar to
that of the dominant_category keyword: geogrid will compute the dominant category
from the fractional categorical field and output the dominant category field with the name
specified by the value of dominant_only. Unlike with dominant_category, though,
when dominant_only is used, the fractional categorical field will not appear in the
geogrid output. This option can only be used for fields with dest_type=categorical.
Default value is null (i.e., no dominant category will be computed from the fractional
categorical field).

17. DF_DX : When df_dx is assigned a character string value, the effect is to cause
geogrid to compute the directional derivative of the field in the x-direction using a central
difference along the interior of the domain, or a one-sided difference at the boundary of
the domain; the derivative field will be named according to the character string assigned
to the keyword df_dx. Default value is null (i.e., no derivative field is computed).

18. DF_DY : When df_dy is assigned a character string value, the effect is to cause
geogrid to compute the directional derivative of the field in the y-direction using a central
difference along the interior of the domain, or a one-sided difference at the boundary of
the domain; the derivative field will be named according to the character string assigned
to the keyword df_dy. Default value is null (i.e., no derivative field is computed).

19. Z_DIM_NAME : For 3-dimensional output fields, a character string giving the name
of the vertical dimension, or z-dimension. A continuous field may have multiple levels,
and thus be a 3-dimensional field, and a categorical field may take the form of a 3-
dimensional field if it is written out as fractional fields for each category. No default
value.

Description of index Options

Related to the GEOGRID.TBL are the index files that are associated with each static data
set. An index file defines parameters specific to that data set, while the GEOGRID.TBL
file describes how each of the data sets should be treated by geogrid. As with the
GEOGRID.TBL file, specifications in an index file are of the form keyword=value.
Below are possible keywords and their possible values.

WRF-ARW V3: User’s Guide 3-39

WPS

1. PROJECTION : A character string specifying the projection of the data, which may be
either lambert, polar, mercator, regular_ll, albers_nad83, or polar_wgs84. No
default value.

2. TYPE : A character string, either categorical or continuous, that determines
whether the data in the data files should be interpreted as a continuous field or as discrete
indices. For categorical data represented by a fractional field for each possible category,
type should be set to continuous. No default value.

3. SIGNED : Either yes or no, indicating whether the values in the data files (which are
always represented as integers) are signed in two's complement form or not. Default
value is no.

4. UNITS : A character string, enclosed in quotation marks ("), specifying the units of the
interpolated field; the string will be written to the geogrid output files as a variable time-
independent attribute. No default value.

5. DESCRIPTION : A character string, enclosed in quotation marks ("), giving a short
description of the interpolated field; the string will be written to the geogrid output files
as a variable time-independent attribute. No default value.

6. DX : A real value giving the grid spacing in the x-direction of the data set. If
projection is one of lambert, polar, mercator, albers_nad83, or polar_wgs84, dx
gives the grid spacing in meters; if projection is regular_ll, dx gives the grid spacing
in degrees. No default value.

7. DY : A real value giving the grid spacing in the y-direction of the data set. If
projection is one of lambert, polar, mercator, albers_nad83, or polar_wgs84, dy
gives the grid spacing in meters; if projection is regular_ll, dy gives the grid spacing
in degrees. No default value.

8. KNOWN_X : A real value specifying the i-coordinate of an (i,j) location
corresponding to a (latitude, longitude) location that is known in the projection. Default
value is 1.

9. KNOWN_Y : A real value specifying the j-coordinate of an (i,j) location
corresponding to a (latitude, longitude) location that is known in the projection. Default
value is 1.

10. KNOWN_LAT : A real value specifying the latitude of a (latitude, longitude)
location that is known in the projection. No default value.

11. KNOWN_LON : A real value specifying the longitude of a (latitude, longitude)
location that is known in the projection. No default value.

WRF-ARW V3: User’s Guide 3-40

WPS

12. STDLON : A real value specifying the longitude that is parallel with the y-axis in
conic and azimuthal projections. No default value.

13. TRUELAT1 : A real value specifying, the first true latitude for the Lambert
conformal conic projection, or the true latitude for the polar stereographic projection. No
default value.

14. TRUELAT2 : A real value specifying, the second true latitude for the Lambert
conformal conic projection.. No default value.

15. WORDSIZE : An integer giving the number of bytes used to represent the value of
each grid point in the data files. No default value.

16. TILE_X : An integer specifying the number of grid points in the x-direction,
excluding any halo points, for a single tile of source data. No default value.

17. TILE_Y : An integer specifying the number of grid points in the y-direction,
excluding any halo points, for a single tile of source data. No default value.

18. TILE_Z : An integer specifying the number of grid points in the z-direction for a
single tile of source data; this keyword serves as an alternative to the pair of keywords
tile_z_start and tile_z_end, and when this keyword is used, the starting z-index is
assumed to be 1. No default value.

19. TILE_Z_START : An integer specifying the starting index in the z-direction of the
array in the data files. If this keyword is used, tile_z_end must also be specified. No
default value.

20. TILE_Z_END : An integer specifying the ending index in the z-direction of the array
in the data files. If this keyword is used, tile_z_start must also be specified. No
default value

21. CATEGORY_MIN : For categorical data (type=categorical), an integer specifying
the minimum category index that is found in the data set. If this keyword is used,
category_max must also be specified. No default value.

22. CATEGORY_MAX : For categorical data (type=categorical), an integer
specifying the maximum category index that is found in the data set. If this keyword is
used, category_min must also be specified. No default value.

23. TILE_BDR : An integer specifying the halo width, in grid points, for each tile of data.
Default value is 0.

24. MISSING_VALUE : A real value that, when encountered in the data set, should be
interpreted as missing data. No default value.

WRF-ARW V3: User’s Guide 3-41

WPS

25. SCALE_FACTOR : A real value that data should be scaled by (through
multiplication) after being read in as integers from tiles of the data set. Default value is 1.

26. ROW_ORDER : A character string, either bottom_top or top_bottom, specifying
whether the rows of the data set arrays were written proceeding from the lowest-index
row to the highest (bottom_top) or from highest to lowest (top_bottom). This keyword
may be useful when utilizing some USGS data sets, which are provided in top_bottom
order. Default value is bottom_top.

27. ENDIAN : A character string, either big or little, specifying whether the values in
the static data set arrays are in big-endian or little-endian byte order. Default value is big.

Description of METGRID.TBL Options

The METGRID.TBL file is a text file that defines parameters of each of the
meteorological fields to be interpolated by metgrid. Parameters for each field are defined
in a separate section, with sections being delimited by a line of equality symbols (e.g.,
‘==============’). Within each section, there are specifications, each of which has
the form of keyword=value. Some keywords are required in a section, while others are
optional; some keywords are mutually exclusive with other keywords. Below, the
possible keywords and their expected range of values are described.

1. NAME : A character string giving the name of the meteorological field to which the
containing section of the table pertains. The name should exactly match that of the field
as given in the intermediate files (and, thus, the name given in the Vtable used in
generating the intermediate files). This field is required. No default value.

2. OUTPUT : Either yes or no, indicating whether the field is to be written to the metgrid
output files or not. Default value is yes.

3. MANDATORY : Either yes or no, indicating whether the field is required for
successful completion of metgrid. Default value is no.

4. OUTPUT_NAME : A character string giving the name that the interpolated field
should be output as. When a value is specified for output_name, the interpolation options
from the table section pertaining to the field with the specified name are used. Thus, the
effects of specifying output_name are two-fold: The interpolated field is assigned the
specified name before being written out, and the interpolation methods are taken from the
section pertaining to the field whose name matches the value assigned to the
output_name keyword. No default value.

5. FROM_INPUT : A character string used to compare against the values in the fg_name
namelist variable; if from_input is specified, the containing table section will only be
used when the time-varying input source has a filename that contains the value of

WRF-ARW V3: User’s Guide 3-42

WPS

from_input as a substring. Thus, from_input may be used to specify different
interpolation options for the same field, depending on which source of the field is being
processed. No default value.

6. OUTPUT_STAGGER : The model grid staggering to which the field should be
interpolated. For ARW, this must be one of U, V, and M; for NMM, this must be one of HH
and VV. Default value for ARW is M; default value for NMM is HH.

7. IS_U_FIELD : Either yes or no, indicating whether the field is to be used as the wind
U-component field. For ARW, the wind U-component field must be interpolated to the U
staggering (output_stagger=U); for NMM, the wind U-component field must be
interpolated to the V staggering (output_stagger=VV). Default value is no.

8. IS_V_FIELD : Either yes or no, indicating whether the field is to be used as the wind
V-component field. For ARW, the wind V-component field must be interpolated to the V
staggering (output_stagger=V); for NMM, the wind V-component field must be
interpolated to the V staggering (output_stagger=VV).Default value is no.

9. INTERP_OPTION : A sequence of one or more names of interpolation methods to be
used when horizontally interpolating the field. Available interpolation methods are:
average_4pt, average_16pt, wt_average_4pt, wt_average_16pt,
nearest_neighbor, four_pt, sixteen_pt, search, average_gcell(r); for the grid
cell average method (average_gcell), the optional argument r specifies the minimum
ratio of source data resolution to simulation grid resolution at which the method will be
applied; unless specified, r = 0.0, and the option is used for any ratio. When a sequence
of two or more methods are given, the methods should be separated by a + sign. Default
value is nearest_neighbor.

10. INTERP_MASK : The name of the field to be used as an interpolation mask, along
with the value within that field which signals masked points. A specification takes the
form field(maskval), where field is the name of the field and maskval is a real value.
Default value is no mask.

11. INTERP_LAND_MASK : The name of the field to be used as an interpolation mask
when interpolating to water points (determined by the static LANDMASK field), along
with the value within that field which signals land points. A specification takes the form
field(maskval), where field is the name of the field and maskval is a real value. Default
value is no mask.

12. INTERP_WATER_MASK : The name of the field to be used as an interpolation
mask when interpolating to land points (determined by the static LANDMASK field),
along with the value within that field which signals water points. A specification takes
the form field(maskval), where field is the name of the field and maskval is a real value.
Default value is no mask.

WRF-ARW V3: User’s Guide 3-43

WPS

13. FILL_MISSING : A real number specifying the value to be assigned to model grid
points that received no interpolated value, for example, because of missing or incomplete
meteorological data. Default value is 1.E20.

14. Z_DIM_NAME : For 3-dimensional meteorological fields, a character string giving
the name of the vertical dimension to be used for the field on output. Default value is
num_metgrid_levels.

15. DERIVED : Either yes or no, indicating whether the field is to be derived from other
interpolated fields, rather than interpolated from an input field. Default value is no.

16. FILL_LEV : The fill_lev keyword, which may be specified multiple times within a
table section, specifies how a level of the field should be filled if that level does not
already exist. A generic value for the keyword takes the form DLEVEL:FIELD(SLEVEL),
where DLEVEL specifies the level in the field to be filled, FIELD specifies the source
field from which to copy levels, and SLEVEL specifies the level within the source field to
use. DLEVEL may either be an integer or the string all. FIELD may either be the name
of another field, the string const, or the string vertical_index. If FIELD is specified as
const, then SLEVEL is a constant value that will be used to fill with; if FIELD is
specified as vertical_index, then (SLEVEL) must not be specified, and the value of the
vertical index of the source field is used; if DLEVEL is 'all', then all levels from the field
specified by the level_template keyword are used to fill the corresponding levels in the
field, one at a time. No default value.

17. LEVEL_TEMPLATE : A character string giving the name of a field from which a list
of vertical levels should be obtained and used as a template. This keyword is used in
conjunction with a fill_lev specification that uses all in the DLEVEL part of its
specification. No default value.

18. MASKED : Either land or water, indicating whether the field is invalid over land or
water, respectively. When a field is masked, or invalid, the static LANDMASK field will
be used to determine which model grid points the field should be interpolated to; invalid
points will be assigned the value given by the FILL_MISSING keyword. Default value is
null (i.e., the field is valid for both land and water points).

19. MISSING_VALUE : A real number giving the value in the input field that is assumed
to represent missing data. No default value.

20. VERTICAL_INTERP_OPTION : A character string specifying the vertical
interpolation method that should be used when vertically interpolating to missing points.
Currently, this option is not implemented. No default value.

21. FLAG_IN_OUTPUT : A character string giving the name of a global attribute which
will be assigned a value of 1 and written to the metgrid output if the interpolated field is
to be output (output=yes). Default value is null (i.e., no flag will be written for the
field).

WRF-ARW V3: User’s Guide 3-44

WPS

Available Interpolation Options in Geogrid and Metgrid

Through the GEOGRID.TBL and METGRID.TBL files, the user can control the method
by which source data – either static fields in the case of geogrid or meteorological fields
in the case of metgrid – are interpolated. In fact, a list of interpolation methods may be
given, in which case, if it is not possible to employ the i-th method in the list, the (i+1)-st
method will be employed, until either some method can be used or there are no methods
left to try in the list. For example, to use a four-point bi-linear interpolation scheme for a
field, we could specify interp_option=four_pt. However, if the field had areas of
missing values, which could prevent the four_pt option from being used, we could
request that a simple four-point average be tried if the four_pt method couldn't be used
by specifying interp_option=four_pt+average_4pt instead. Below, each of the
available interpolation options in the WPS are described conceptually; for the details of
each method, the user is referred to the source code in the file
WPS/geogrid/src/interp_options.F.

1. four_pt : Four-point bi-linear interpolation

The four-point bi-linear interpolation method requires four valid source points aij,
, surrounding the point (x,y), to which geogrid or metgrid must interpolate, as

illustrated in the figure above. Intuitively, the method works by linearly interpolating to
the x-coordinate of the point (x,y) between a11 and a12, and between a21 and a22, and then
linearly interpolating to the y-coordinate using these two interpolated values.

1 , 2i j≤ ≤

WRF-ARW V3: User’s Guide 3-45

WPS

WRF-ARW V3: User’s Guide 3-46

2. sixteen_pt : Sixteen-point overlapping parabolic interpolation

The sixteen_pt overlapping parabolic interpolation method requires sixteen valid source
points surrounding the point (x,y), as illustrated in the figure above. The method works by
fitting one parabola to the points ai1, ai2, and ai3, and another parabola to the points ai2,
ai3, and ai4, for row i, 1 ; then, an intermediate interpolated value pi within row i at
the x-coordinate of the point is computed by taking an average of the values of the two
parabolas evaluated at x, with the average being weighted linearly by the distance of x
between ai2, and ai3. Finally, the interpolated value at (x,y) is found by performing the
same operations as for a row of points, but for the column of interpolated values pi to the
y-coordinate of (x,y).

4i≤ ≤

3. average_4pt : Simple four-point average interpolation

The four-point average interpolation method requires at least one valid source data point
from the four source points surrounding the point (x,y). The interpolated value is simply
the average value of all valid values among these four points.

4. wt_average_4pt : Weighted four-point average interpolation

The weighted four-point average interpolation method can handle missing or masked
source data points, and the interpolated value is given as the weighted average of all valid
values, with the weight wij for the source point aij, 1 , 2i j≤ ≤ , given by

2 2max{0,1 () () }ij i jw x x y= − − + − y .

Here, xi is the x-coordinate of aij and yj is the y-coordinate of aij.

5. average_16pt : Simple sixteen-point average interpolation

The sixteen-point average interpolation method works in an identical way to the four-
point average, but considers the sixteen points surrounding the point (x,y).

WPS

WRF-ARW V3: User’s Guide 3-47

6. wt_average_16pt : Weighted sixteen-point average interpolation

The weighted sixteen-point average interpolation method works like the weighted four-
point average, but considers the sixteen points surrounding (x,y); the weights in this
method are given by

2 2max{0, 2 () () }ij i jw x x y= − − + − y ,

where xi and yj are as defined for the weighted four-point method, and 1 , . 4i j≤ ≤

7. nearest_neighbor : Nearest neighbor interpolation

The nearest neighbor interpolation method simply sets the interpolated value at (x,y) to
the value of the nearest source data point, regardless of whether this nearest source point
is valid, missing, or masked.

8. search : Breadth-first search interpolation

The breadth-first search option works by treating the source data array as a 2-d grid
graph, where each source data point, whether valid or not, is represented by a vertex.
Then, the value assigned to the point (x,y) is found by beginning a breadth-first search at
the vertex corresponding to the nearest neighbor of (x,y), and stopping once a vertex
representing a valid (i.e., not masked or missing) source data point is found.

9. average_gcell : Model grid-cell average

The grid-cell average interpolator may be used when the resolution of the source data is
higher than the resolution of the model grid. For a model grid cell Γ, the method takes a
simple average of the values of all source data points that are nearer to the center of Γ

WPS

than to the center of any other grid cell. The operation of the grid-cell average method is
illustrated in the figure above, where the interpolated value for the model grid cell –
represented as the large rectangle – is given by the simple average of the values of all of
the shaded source grid cells.

Land Use and Soil Categories in the Static Data

The default land use and soil category data sets that are provided as part of the WPS
static data tar file contain categories that are matched with the USGS categories described
in the VEGPARM.TBL and SOILPARM.TBL files in the WRF run directory.
Descriptions of the 24 land use categories and 16 soil categories are provided in the
tables below.

Table 1: USGS 24-category Land Use Categories

Land Use Category Land Use Description
1 Urban and Built-up Land
2 Dryland Cropland and Pasture
3 Irrigated Cropland and Pasture
4 Mixed Dryland/Irrigated Cropland and Pasture
5 Cropland/Grassland Mosaic
6 Cropland/Woodland Mosaic
7 Grassland
8 Shrubland
9 Mixed Shrubland/Grassland
10 Savanna
11 Deciduous Broadleaf Forest
12 Deciduous Needleleaf Forest
13 Evergreen Broadleaf
14 Evergreen Needleleaf
15 Mixed Forest
16 Water Bodies
17 Herbaceous Wetland
18 Wooden Wetland
19 Barren or Sparsely Vegetated
20 Herbaceous Tundra
21 Wooded Tundra
22 Mixed Tundra
23 Bare Ground Tundra
24 Snow or Ice

WRF-ARW V3: User’s Guide 3-48

WPS

Table 2: 16-category Soil Categories

Soil Category Soil Description
1 Sand
2 Loamy Sand
3 Sandy Loam
4 Silt Loam
5 Silt
6 Loam
7 Sandy Clay Loam
8 Silty Clay Loam
9 Clay Loam
10 Sandy Clay
11 Silty Clay
12 Clay
13 Organic Material
14 Water
15 Bedrock
16 Other (land-ice)

WRF-ARW V3: User’s Guide 3-49

WPS

WRF-ARW V3: User’s Guide 3-50

INITIALIZATION

WRF-ARW V3: User’s Guide 4-1

Chapter 4: WRF Initialization

Table of Contents

• Introduction
• Initialization for Ideal Data Cases
• Initialization for Real Data Cases

Introduction

The WRF model has two large classes of simulations that it is able to generate: those with
an ideal initialization and those utilizing real data. The idealized simulations typically
manufacture an initial condition file for the WRF model from an existing 1-D or 2-D
sounding and assume a simplified orography. The real-data cases usually require pre-
processing from the WPS package, which provides atmospheric and static fields with a
fidelity appropriate to the chosen grid resolution for the model. The WRF model itself is
not altered by choosing one initialization option over another, but the WRF pre-
processors, the real.exe and ideal.exe programs, are specifically built based upon a user's
selection.

The real.exe and ideal.exe programs are never used together. Both the real.exe and
ideal.exe are the programs that are processed just prior to the WRF model run.

The ideal vs real cases are divided as follows:

• Ideal cases – initialization programs named “ideal.exe”
o 3d

_ em_b_wave - baroclinic wave, 100 km
_ em_heldsuarez – global case with polar filtering, 625 km
_ em_les – large eddy simulation, 100 m
_ em_quarter_ss - super cell, 2 km

o 2d
_ em_grav2d_x – gravity current, 100 m
_ em_hill2d_x – flow over a hill, 2 km
_ em_seabreeze – water and land, 2 km, full physics
_ em_squall2d_x – squall line, 250 m
_ em_squall2d_y – transpose of above problem

• Real data cases – initialization program named “real.exe”

o em_real – examples from 4 to 30 km

INITIALIZATION

WRF-ARW V3: User’s Guide 4-2

The selection of the type of forecast is made when issuing the ./compile statement.
When selecting a different case to study, the code must be re-compiled to choose the
correct initialization model. For example, after configuring the setup for the architecture,
if the user issues the command ./compile em_real, then the initialization program
is built using module_initialize_real.F as the target module (one of the
./WRFV3/dyn_em/module_initialize_*.F files). Similarly, if the users
specifies ./compile em_les, then the Fortran module for the large eddy simulation
(module_initialize_les.F) is automatically inserted into the build for ideal.exe.
In each of these initialization modules, the same sort of activities goes on:

• compute a base state / reference profile for geopotential and column pressure
• compute the perturbations from the base state for geopotential and column

pressure
• initialize meteorological variables: u, v, potential temperature, vapor mixing ratio
• initialize static fields for the projection and the physical surface; for many of the

idealized cases, these are simplified initializations such as map factors set to one,
and topography elevation set to zero

Both the real.exe program and ideal.exe programs share a large portion of source code, to
handle the following duties:

• read data from the namelist
• allocate space
• generate initial condition file

The real-data case does some additional processing:

• read input data from the WRF Preprocessing System (WPS)
• compute dry surface pressure, model levels, and vertically interpolate data
• prepare soil fields for use in model (usually, vertical interpolation to the requested

levels)
• check to verify soil categories, land use, land mask, soil temperature, sea surface

temperature are all consistent with each other
• multiple input time periods are processed to generate the lateral boundary

conditions, which are required unless processing a global forecast
• 3d boundary data (u, v, potential temperature, vapor mixing ratio, total

geopotential) are coupled with map factors (on the correct staggering) and total
column pressure

The “real.exe” program may be run as either a serial or a distributed memory job. Since
the idealized cases only require that the initialization run for a single time period (no
lateral boundary file is required) and are therefore quick to process, all of the “ideal.exe”
programs should be run on a single processor as a serial job.

INITIALIZATION

WRF-ARW V3: User’s Guide 4-3

Initialization for Ideal Cases

The program "ideal.exe" is the program in the WRF system to run with a controlled
scenario. Typically this program requires no input except for the namelist.input and the
input_sounding files (except for the b_wave case which uses a 2-D binary sounding file).
The program outputs the wrfinput_d01 file that is read by the WRF model executable
("wrf.exe") . Since no external data is required to run the idealized cases, even for
researchers interested in real-data cases, the idealized simulations are an easy way to
insure that the model is working correctly on a particular architecture and compiler.

Idealized runs can use any of the boundary conditions except "specified", and are not, by
default, set up to run with sophisticated physics (other than from microphysics). Most
have are no radiation, surface fluxes or frictional effects (other than the sea breeze case,
LES, and the global Held-Suarez). The idealized cases are mostly useful for dynamical
studies, reproducing converged or otherwise known solutions, and idealized cloud
modeling.

There are 2d and 3d examples of idealized cases, with and without topography, and with
and without an initial thermal perturbation. The namelist can control the size of domain,
number of vertical levels, model top height, grid size, time step, diffusion and damping
properties, boundary conditions, and physics options. A large number of existing
namelist settings are already found within each of the directories associated with a
particular case.

The input_sounding (also already in appropriate case directories) can be any set of levels
that goes at least up to the model top height (ztop) in the namelist. The first line is the
surface pressure (hPa), potential temperature (K) and moisture mixing ratio (g/kg). Each
subsequent line has five input values: height (meters above sea-level), potential
temperature (K), vapor mixing ratio (g/kg), x-direction wind component (m/s), y-
direction wind component (m/s). The “ideal.exe” program interpolates the data from the
input_sounding file, and will extrapolate if not enough data is provided.

The base state sounding for idealized cases is the initial sounding minus the moisture, and
so does not have to be defined separately. Note for the baroclinic wave case: a 1-D input
sounding is not used because the initial 3d arrays are read in from the file input_jet. This
means for the baroclinic wave case the namelist.input file cannot be used to change the
horizontal or vertical dimensions.

Making modifications apart from namelist-controlled options or soundings has to be done
by editing the Fortran code. Such modifications would include changing the topography,
the distribution of vertical levels, the properties of an initialization bubble, or preparing a
case to use more physics, such as a land-surface model. The Fortran code to edit is
contained in ./WRFV3/dyn_em/module_initialize_[case].F, where [case] is the case
chosen in compilation, e.g. module_initialize_squall2d_x.F. The subroutine to modify is
init_domain_rk. To change the vertical levels, only the 1d array znw must be defined,
containing the full levels starting from 1 at k=1 and ending with 0 at k=kde. To change

INITIALIZATION

WRF-ARW V3: User’s Guide 4-4

the topography, only the 2d array ht(i,j) must be defined, making sure it is periodic if
those boundary conditions are used. To change the bubble, search for the string "bubble"
to locate the code to change.

Each of the cases provide an excellent set of examples to the user. The method to specify
a thermal bubble is given in the super cell case. In the hill2d case, the topography is
accounted for properly in setting up the initial 3d arrays, so that example should be
followed for any topography cases. A symmetry example in the squall line cases tests
that your indexing modifications are correct.

Available Ideal Test Cases

The available test cases are

1. squall2d_x (test/em_squall2d_x)
o 2D squall line (x,z) using Kessler microphysics and a fixed 300 m^2/s

viscosity.
o periodicity condition used in y so that 3D model produces 2D simulation.
o v velocity should be zero and there should be no variation in y in the

results.
2. squall2d_y (test/em_squall2d_y)

o Same as squall2d_x, except with (x) rotated to (y).
o u velocity should be zero and there should be no variation in x in the

results.
3. 3D quarter-circle shear supercell simulation (test/em_quarter_ss).

o Left and right moving supercells are produced.
o See the README.quarter_ss file in the test directory for more

information.
4. 2D flow over a bell-shaped hill (x,z) (test/em_hill2d_x)

o 10 km half-width, 2 km grid-length, 100 m high hill, 10 m/s flow,
N=0.01/s, 30 km high domain, 80 levels, open radiative boundaries,
absorbing upper boundary.

o Case is in linear hydrostatic regime, so vertical tilted waves with ~6km
vertical wavelength.

5. 3D baroclinic waves (test/em_b_wave)
o Baroclinically unstable jet u(y,z) on an f-plane.
o Symmetric north and south, periodic east and west boundaries.
o 100 km grid size 16 km top with 4 km damping layer.
o 41x81 points in (x,y), 64 layers.

6. 2D gravity current (test/em_grav2d_x)
o Test case is described in Straka et al, INT J NUMER METH FL 17 (1): 1-

22 JUL 15 1993.
o See the README.grav2d_x file in the test directory.

7. 2D sea breeze (test/em_seabreeze_x)
o 2 km grid size, 20 km top, land/ water.

INITIALIZATION

WRF-ARW V3: User’s Guide 4-5

o Can be run with full physics, radiation, surface, boundary layer, land
options.

8. 3D large eddy simulation (test/em_les)
o 100 m grid size, 2 km top.
o Surface layer physics with fluxes.
o Doubly periodic

9. 3D Held-Suarez (test/em_heldsuarez)
o global domain, 625 km in x-direction, 556 km in y-direction, 120 km top.
o Radiation, polar filter above 45o.
o Period in x-direction, polar boundary conditions in y-direction

Initialization for Real Data Cases

The real-data WRF cases are those that have the input data to the “real.exe” program
provided by the WRF Preprocessing System (WPS). This data from the WPS was
originally generated from a previously run external analysis or forecast model. The
original data was probably in GriB format and was probably ingested into the WPS by
first ftp'ing the raw GriB data from one of the national weather agencies’ anonymous ftp
sites.

For example, suppose a WRF forecast is desired with the following criteria:

• 2000 January 24 1200 UTC through January 25 1200 UTC
• the original GriB data is available at 6 h increments

The following files will be generated by the WPS:

• met_em.d01.2000-01-24_12:00:00
• met_em.d01.2000-01-24_18:00:00
• met_em.d01.2000-01-25_00:00:00
• met_em.d01.2000-01-25_06:00:00
• met_em.d01.2000-01-25_12:00:00

The convention is to use "met" to signify data that is output from the WPS “metgrid.exe”
program and input into the “real.exe” program. The "d01" portion of the name identifies
to which domain this data refers, which permits nesting. The trailing characters are the
date, where each WPS output file has only a single time-slice of processed data. For
regional forecasts, multiple time periods must be processed by “real.exe” so that a lateral
boundary file is available to the model. The global option for WRF requires only an
initial condition.

The WPS package delivers data that is ready to be used in the WRF system by the
“real.exe” program.

INITIALIZATION

WRF-ARW V3: User’s Guide 4-6

• The data adheres to the WRF IO API. Unless you are developing special tools,
stick with the netCDF option to communicate between the WPS package and
“real.exe”.

• The data has already been horizontally interpolated to the correct grid-point
staggering for each variable, and the winds are correctly rotated to the WRF
model projection.

• 3D meteorological data from the WPS: pressure, u, v, potential temperature,
vapor mixing ratio, geopotential height

• 3D surface data from the WPS: soil temperature, soil moisture, soil liquid
• 2D meteorological data from the WPS: land sea mask, sea level pressure, sea

surface temperature, sea ice, snow depth, water equivalent snow depth, canopy
water

• 2D static data for the physical surface: terrain elevation, land use categories, soil
texture categories, temporally interpolated monthly data, elevation of the input
model’s topography

• 2D static data for the projection: map factors, Coriolis, projection rotation
• 1D array of the vertical coordinate
• constants: domain size, date

Real Data Test Case: 2000 January 24/12 through 25/12

• A test data set is accessible from the WRF download page. Under the "WRF
Model Test Data" list, select the January data. This is a 74x61, 30-km domain
centered over the eastern US.

• make sure you have successfully built the code (fine-grid nested initial data is
available in the download, so the code may be built with the basic nest option),
./WRFV3/main/real.exe and ./WRFV3/main/wrf.exe both exist

• in the ./WRFV3/test/em_real directory, copy the namelist for the January case to
the default name (cp namelist.input.jan00 namelist.input)

• link the WPS files (the “met_em*” files from the download) into the
./WRFV3/test/em_real directory

• for a single processor, to execute the real program, type real.exe (this should
take less than a minute for this small case with five time periods)

• after running the real.exe program, the files “wrfinput_d01” and “wrfbdy_d01”
should be in the directory, these will be directly used by the WRF model

• the “wrf.exe” program is executed next (type wrf.exe), this should take a few
minutes (only a 12 h forecast is requested in the namelist file)

• the output file wrfout_d01:2000-01-24_12:00:00 should contain a 12-h forecast at
3-h intervals

MODEL

WRF-ARW V3: User’s Guide 5-1

Chapter 5: WRF Model

Table of Contents

• Introduction
• Installing WRF
• Running WRF

o Idealized Case
o Real Data Case
o Restart Run
o One-way and Two-Way Nested Forecasts
o One-Way Nested Forecast Using ndown
o Moving Nest
o Three-dimensional Analysis Nudging
o Observation Nudging
o Global Run
o DFI Run

• Check Output
• Trouble Shooting
• Physics and Dynamics Options
• Description of Namelist Variables
• List of Fields in WRF Output

Introduction

The WRF model is a fully compressible, and nonhydrostatic model (with a runtime
hydrostatic option). Its vertical coordinate is a terrain-following hydrostatic pressure
coordinate. The grid staggering is the Arakawa C-grid. The model uses the Runge-Kutta
2nd and 3rd order time integration schemes, and 2nd to 6th order advection schemes in
both horizontal and vertical. It uses a time-split small step for acoustic and gravity-wave
modes. The dynamics conserves scalar variables.

The WRF model code contains several initialization programs (ideal.exe and real.exe; see
Chapter 4), a numerical integration program (wrf.exe), and a program to do one-way
nesting (ndown.exe). The WRF model Version 3 supports a variety of capabilities. These
include

• Real-data and idealized simulations
• Various lateral boundary condition options for real-data and idealized simulations
• Full physics options, and various filter options

MODEL

WRF-ARW V3: User’s Guide 5-2

• Positive-definite advection scheme
• Non-hydrostatic and hydrostatic (runtime option)
• One-way, two-way nesting and moving nest
• Three-dimensional analysis nudging
• Observation nudging
• Regional and global applications
• Digital filter initialization

Other References

• WRF tutorial presentation:
http://www.mmm.ucar.edu/wrf/users/supports/tutorial.html

• WRF-ARW Tech Note (V3 will be available in summer 2008):
http://www.mmm.ucar.edu/wrf/users/pub-doc.html

• Chapter 2 of this document for software requirement.

Installing WRF

Before compiling WRF code on a computer, check to see if the netCDF library is
installed. This is because one of the supported WRF I/O options is netCDF, and it is the
one commonly used, and supported by the post-processing programs. If the netCDF is
installed in a path other than /usr/local/, then find the path, and use the environment
variable NETCDF to define where the path is. To do so, type

setenv NETCDF path-to-netcdf-library

Often the netCDF library and its include/ directory are collocated. If this is not the case,
create a directory, link both netCDF lib and include directories in this directory, and use
environment variable to set the path to this directory.

If the netCDF library is not available on the computer, it needs to be installed first.
NetCDF source code or pre-built binary may be downloaded from and installation
instruction can be found on the Unidata Web page at http://www.unidata.ucar.edu/.

Hint: for Linux users:

If PGI or Intel compiler are used on a Linux computer, make sure netCDF is installed
using the same compiler. Use NETCDF environment variable to point to the PGI/Intel
compiled netCDF library.

WRF source code tar file can be downloaded from
http://www.mmm.ucar.edu/wrf/download/get_source.html. Once the tar file is gunzipped
(gunzip WRFV3.TAR.gz), and untared (untar WRFV3.TAR), and it will create a
WRFV3/ directory. This contains:

http://www.mmm.ucar.edu/wrf/users/supports/tutorial.html
http://www.mmm.ucar.edu/wrf/users/pub-doc.html
http://www.unidata.ucar.edu/
http://www.mmm.ucar.edu/wrf/download/get_source.html

MODEL

WRF-ARW V3: User’s Guide 5-3

Makefile Top-level makefile
README General information about WRF/ARW core

README_test_cases Explanation of the test cases

README.NMM General information for WRF/NMM core

README.rsl_output For NMM

Registry/ Directory for WRF Registry files

arch/ Directory where compile options are gathered

clean script to clean created files, executables

compile script for compiling WRF code

configure script to create the configure.wrf file for compile

chem/ WRF chemistry, supported by NOAA/GSD

dyn_em/ Directory for ARW dynamics and numerics

dyn_exp/ Directory for a 'toy' dynamic core

dyn_nmm/ Directory for NMM dynamics and numerics,
supported by DTC

external/ Directory that contains external packages, such as
those for IO, time keeping and MPI

frame/ Directory that contains modules for WRF
framework

inc/ Directory that contains include files

main/ Directory for main routines, such as wrf.F, and all
executables after compilation

phys/ Directory for all physics modules

run/ Directory where one may run WRF

share/ Directory that contains mostly modules for WRF
mediation layer and WRF I/O

test/ Directory that contains test case directories, may be
used to run WRF

tools/ Directory that contains tools for developers

The steps to compile and run the model are:

1. configure: generate a configuration file for compilation
2. compile: compile the code
3. run the model

Go to WRFV3 (top) directory and type

./configure

MODEL

WRF-ARW V3: User’s Guide 5-4

and a list of choices for your computer should appear. These choices range from
compiling for a single processor job (serial), to using OpenMP shared-memory (smpar) or
distributed-memory parallelization (dmpar) options for multiple processors, or
combination of shared-memory and distributed memory options (dm+sm). When a
selection is made, a second choice for compiling nesting will appear. For example, on a
Linux computer, the above steps look like:

> setenv NETCDF /usr/local/netcdf-pgi
> ./configure

checking for perl5... no
checking for perl... found /usr/bin/perl (perl)
Will use NETCDF in dir: /usr/local/netcdf-pgi
PHDF5 not set in environment. Will configure WRF for use without.
$JASPERLIB or $JASPERINC not found in environment, configuring to build
without grib2 I/O...

Please select from among the following supported platforms.

1. Linux i486 i586 i686, gfortran compiler with gcc (serial)
2. Linux i486 i586 i686, gfortran compiler with gcc (smpar)
3. Linux i486 i586 i686, gfortran compiler with gcc (dmpar)
4. Linux i486 i586 i686, gfortran compiler with gcc (dm+sm)
5. Linux i486 i586 i686, g95 compiler with gcc (serial)
6. Linux i486 i586 i686, g95 compiler with gcc (dmpar)
7. Linux i486 i586 i686, PGI compiler with gcc (serial)
8. Linux i486 i586 i686, PGI compiler with gcc (smpar)
9. Linux i486 i586 i686, PGI compiler with gcc (dmpar)
10. Linux i486 i586 i686, PGI compiler with gcc (dm+sm)
11. Linux x86_64 i486 i586 i686, ifort compiler with icc (non-SGI
installations) (serial)
12. Linux x86_64 i486 i586 i686, ifort compiler with icc (non-SGI
installations) (smpar)
13. Linux x86_64 i486 i586 i686, ifort compiler with icc (non-SGI
installations) (dmpar)
14. Linux x86_64 i486 i586 i686, ifort compiler with icc (non-SGI
installations) (dm+sm)
15. Linux i486 i586 i686 x86_64, PathScale compiler with pathcc
(serial)
16. Linux i486 i586 i686 x86_64, PathScale compiler with pathcc
(dmpar)

Enter selection [1-16] : 9

Compile for nesting? (0=no nesting, 1=basic, 2=preset moves, 3=vortex
following) [default 0]: 1

Enter appropriate options that are best for your computer and application.

When the return key is hit, a configure.wrf file will be created. Edit compile
options/paths, if necessary.

MODEL

WRF-ARW V3: User’s Guide 5-5

Hint: It is helpful to start with something simple, such as the serial build. If it is
successful, move on to build smpar or dmpar code. Remember to type ‘clean –a’
between each build.

Hint: On some computers (e.g. some Intel machines), it may be necessary to set the
following environment variable before one compiles:

setenv WRF_EM_CORE 1

To compile the code, type

./compile

and the following choices will appear:

 Usage:

compile wrf compile wrf in run dir (Note, no
real.exe, ndown.exe or ideal.exe generated)

or choose a test case (see README_test_cases for
details):

compile em_b_wave
compile em_esmf_exp (example only)
compile em_grav2d_x
compile em_heldsuarez
compile em_hill2d_x
compile em_les
compile em_quarter_ss
compile em_real
compile em_seabreeze2d_x
compile em_squall2d_x
compile em_squall2d_y
compile exp_real (example of a toy solver)
compile nmm_real (NMM solver)

 compile –h help message

where em stands for the Advanced Research WRF dynamic solver (which currently is the
'Eulerian mass-coordinate' solver). Type one of the above to compile. When you switch
from one test case to another, you must type one of the above to recompile. The recompile
is necessary to create a new initialization executable (i.e. real.exe, and ideal.exe -
there is a different ideal.exe for each of the idealized test cases), while wrf.exe is
the same for all test cases.

MODEL

WRF-ARW V3: User’s Guide 5-6

If you want to remove all object files (except those in external/directory) and
executables, type 'clean'.

Type 'clean -a' to remove built files in ALL directories, including
configure.wrf. This is recommended if you make any mistake during the process, or
if you have edited the Registry.EM file.

 a. Idealized case

For any 2D test cases (labeled in the case names), serial or OpenMP (smpar) compile
options must be used. Suppose you would like to compile and run the 2-dimensional
squall case, type

./compile em_squall2d_x >& compile.log

After a successful compilation, you should have two executables created in the main/
directory: ideal.exe and wrf.exe. These two executables will be linked to the
corresponding test/case_name and run/ directories. cd to either directory to run the
model.

It is a good practice to save the entire compile output to a file. When the executables were
not present, this output is useful to help diagnose the compiler errors.

b. Real-data case

For a real-data case, type

./compile em_real >& compile.log &

When the compile is successful, it will create three executables in the main/directory:
ndown.exe, real.exe and wrf.exe.

real.exe: for WRF initialization of real data cases
ndown.exe : for one-way nesting
wrf.exe : WRF model integration

Like in the idealized cases, these executables will be linked to test/em_real and run/
directories. cd to one of these two directories to run the model.

Running WRF

One may run the model executables in either the run/ directory, or the
test/case_name directory. In either case, one should see executables, ideal.exe
or real.exe (and ndown.exe), and wrf.exe, linked files (mostly for real-data
cases), and one or more namelist.input files in the directory.

MODEL

WRF-ARW V3: User’s Guide 5-7

Hint: If you would like to run the model executables in a different directory, copy or link
the files in test/em_* directory to that directory, and run from there.

Idealized, real data, restart run, two-way nested, and one-way nested runs are explained on
the following pages. Read on.

a. Idealized case

Suppose the test case em_squall2d_x is compiled, to run, type

cd test/em_squall2d_x

Edit namelist.input file (see README.namelist in WRFV3/run/ directory or
its Web version) to change length of integration, frequency of output, size of domain,
timestep, physics options, and other parameters.

If you see a script in the test case directory, called run_me_first.csh, run this one
first by typing:

./run_me_first.csh

This links some physics data files that might be needed to run the case.

To run the initialization program, type

./ideal.exe

This program will typically read an input sounding file located in that directory, and
generate an initial condition file wrfinput_d01. All idealized cases do not require
lateral boundary file because of the boundary condition choices they use, such as the
periodic option. If the job is run successfully, the last thing it prints should be: ‘wrf:
SUCCESS COMPLETE IDEAL INIT’.

To run the model and save the standard output to a file, type

./wrf.exe >& wrf.out &

or for a 3D test case compiled with MPI (dmpar) option,

mpirun –np 4 ./wrf.exe

Pairs of rsl.out.* and rsl.error.* files will appear with any MPI runs. These are
standard out and error files. Note that the execution command for MPI runs may be
different on different machines. Check the user manual.

MODEL

WRF-ARW V3: User’s Guide 5-8

If the model run is successful, the last thing printed in ‘wrf.out’ or rsl.*.0000 file
should be: ‘wrf: SUCCESS COMPLETE WRF’. Ouput files wrfout_d01_0001-
01-01* and wrfrst* should be present in the run directory, depending on how
namelist variables are specified for output. The time stamp on these files originates from
the start times in the namelist file.

b. Real-data case

To make a real-data case run, cd to the working directory by typing

cd test/em_real (or cd run)

Start with a namelist.input template file in the directory, edit it to match your case.

Running a real-data case requires successfully running the WRF Preprocessing System
programs (or WPS). Make sure met_em.* files from WPS are seen in the run directory
(either link or copy the files):

ls –l ../../WPS/met_em*
ln –s ../../WPS/met_em* .

Make sure you edit the following variables in namelist.input file:

num_metgrid_levels: number of_ incoming data levels (can be found by using
ncdump command on met_em.d01.<date> file)
eta_levels: model eta levels from 1 to 0, if you choose to do so. If not, real will
compute a nice set of eta levels.

Other options for use to assist vertical interpolation are:

use_surface: whether to use surface input data
extrap_type: vertical extrapolation of non-temperature fields
t_extrap_type: vertical extrapolation for potential temperature
use_levels_below_ground: use levels below input surface level
force_sfc_in_vinterp: force vertical interpolation to use surface data
lowest_lev_from_sfc: place surface data in the lowest model level
p_top_requested: pressure top used in the model, default is 5000 Pa
interp_type: vertical interpolation method: linear in p(default) or log(p)
lagrange_order: vertical interpolation order, linear (default) or quadratic
zap_close_levels: allow surface data to be used if it is close to a constant pressure
level.

Other minimum set of namelist variables to edit are:

MODEL

WRF-ARW V3: User’s Guide 5-9

start_*, end_*: start and end times for data processing and model integration
interval_seconds: input data interval for boundary conditions
time_step: model time step, and can be set as large as 6*DX (in km)
e_ws, e_sn, e_vert: domain dimensions in west-east, south-north and vertical
dx, dy: model grid distance in meters

To run real-data initialization program compiled using serial or OpenMP (smpar) options,
type

./real.exe >& real.out

Successful completion of the job should have ‘real_em: SUCCESS EM_REAL
INIT’ printed at the end of real.out file. It should also produce wrfinput_d01 and
wrfbdy_d01 files. In real data case, both files are required.

Run WRF model by typing

./wrf.exe

A successful run should produce one or several output files named like
wrfout_d01_yyyy-mm-dd_hh:mm:ss. For example, if you start the model at 1200
UTC, January 24 2000, then your first output file should have the name:

wrfout_d01_2000-01-24_12:00:00

The time stamp on the file name is always the first time the output file is written. It is
always good to check the times written to the output file by typing:

ncdump -v Times wrfout_d01_2000-01-24_12:00:00

You may have other wrfout files depending on the namelist options (how often you split
the output files and so on using namelist option frames_per_outfile).You may also
create restart files if you have restart frequency (restart_interval in the
namelist.input file) set within your total integration length. The restart file should have
names like

wrfrst_d01_yyyy-mm-dd_hh:mm:ss

The time stamp on a restart file is the time that restart file is valid at.

For DM (distributed memory) parallel systems, some form of mpirun command will be
needed to run the executables. For example, on a Linux cluster, the command to run MPI
code and using 4 processors may look like:

mpirun -np 4 ./real.exe
mpirun -np 4 ./wrf.exe

MODEL

WRF-ARW V3: User’s Guide 5-10

On some IBMs, the command may be:

poe ./real.exe
poe ./wrf.exe

for a batch job, and

poe ./real.exe -rmpool 1 -procs 4
poe ./wrf.exe -rmpool 1 -procs 4

for an interactive run. (Interactive MPI job is not an option on NCAR IBMs bluevista and
blueice)

c. Restart Run

A restart run allows a user to extend a run to a longer simulation period. It is effectively a
continuous run made of several shorter runs. Hence the results at the end of one or more
restart runs should be identical to a single run without any restart.

In order to do a restart run, one must first create restart file. This is done by setting
namelist variable restart_interval (unit is in minutes) to be equal to or less than
the simulation length in the first model run, as specified by run_* variables or start_*
and end_* times. When the model reaches the time to write a restart file, a restart file
named wrfrst_<domain_id>_<date> will be written. The date string represents
the time when the restart file is valid.

When one starts the restart run, edit the namelist.input file, so that your start_*
time will be set to the restart time (which is the time the restart file is written). The other
namelist variable one must set is restart, this variable should be set to .true. for a
restart run.

In summary, these namelists should be modified:

start_*, end_*: start and end times for restart model integration
restart: logical to indicate whether the run is a restart or not

d. Two-way Nested Runs

A two-way nested run is a run where multiple domains at different grid resolutions are run
simultaneously and communicate with each other: The coarser domain provides boundary
values for the nest, and the nest feedbacks its calculation back to the coarser domain. The
model can handle multiple domains at the same nest level (no overlapping nest), and
multiple nest levels (telescoping).

When preparing for a nested run, make sure that the code is compiled with basic nest
options (option 1).

MODEL

WRF-ARW V3: User’s Guide 5-11

Most of options to start a nest run are handled through the namelist. All variables in the
namelist.input file that have multiple columns of entries need to be edited with
caution. Do start with a namelist template. The following are the key namelist variables to
modify:

start_*, end_*: start and end simulation times for the nest

input_from_file: whether a nest requires an input file (e.g. wrfinput_d02). This
is typically used for a real data case, since the nest input file contains nest topography and
land information.

fine_input_stream: which fields from the nest input file are used in nest
initialization. The fields to be used are defined in the Registry.EM. Typically they include
static fields (such as terrain, landuse), and masked surface fields (such as skin
temperature, soil moisture and temperature). Useful for nest starting at a later time than
the coarse domain.

max_dom: the total number of domains to run. For example, if you want to have one
coarse domain and one nest, set this variable to 2.

grid_id: domain identifier that is used in the wrfout naming convention. The most
coarse grid must have grid_id of 1.

parent_id: used to indicate the parent domain of a nest. grid_id value is used.

i_parent_start/j_parent_start: lower-left corner starting indices of the nest
domain in its parent domain. These parameters should be the same as in
namelist.wps.

parent_grid_ratio: integer parent-to-nest domain grid size ratio. Typically odd
number ratio is used in real-data applications.

parent_time_step_ratio: integer time-step ratio for the nest domain. It may be
different from the parent_grid_ratio, though they are typically set the same.

feedback: this is the key setup to define a two-way nested (or one-way nested) run.
When feedback is on, the values of the coarse domain are overwritten by the values of the
variables (average of cell values for mass points, and average of the cell-face values for
horizontal momentum points) in the nest at the coincident points. For masked fields, only
the single point value at the collocating points is fedback. If the parent_grid_ratio
is even, an arbitrary choice of southwest corner point value is used for feedback. This is
the reason it is better to use odd parent_grid_ratio with this option. When
feedback is off , it is equivalent to a one-way nested run, since nest results are not
reflected in the parent domain.

smooth_option: this a smoothing option for the parent domain in area of the nest if
feedback is on. Three options are available: 0 = no smoothing; 1 = 1-2-1 smoothing; 2 =
smoothing-desmoothing.

MODEL

WRF-ARW V3: User’s Guide 5-12

3-D Idealized Cases

For 3-D idealized cases, no nest input files are required. The key here is the specification
of the namelist.input file. What the model does is to interpolate all variables
required in the nest from the coarse domain fields. Set

input_from_file = F, F

Real Data Cases

For real-data cases, three input options are supported. The first one is similar to running
the idealized cases. That is to have all fields for the nest interpolated from the coarse
domain (input_from_file = T, F). The disadvantage of this option is obvious,
one will not benefit from the higher resolution static fields (such as terrain, landuse, and
so on).

The second option is to set input_from_file = T for each domain, which means
that the nest will have a nest wrfinput file to read in. The limitation of this option is that
this only allows the nest to start at the same time as the coarse domain.

The third option is in addition to setting input_from_file = T for each domain,
also set fine_input_stream = 2 for each domain. Why a value of 2? This is based
on the Registry setting, which designates certain fields to be read in from auxiliary input
stream number 2. This option allows the nest initialization to use 3-D meteorological
fields interpolated from the coarse domain, static fields and masked, time-varying surface
fields from the nest wrfinput. It hence allows a nest to start at a later time than hour 0.
Setting fine_input_stream = 0 is equivalent to the second option.

To run real.exe for a nested run, one must first run WPS and create data for all the
nests. Suppose WPS is run for a two-domain nest case, and these files should be present in
a WPS directory:

met_em.d01.2000-01-24_12:00:00
met_em.d01.2000-01-24_18:00:00
met_em.d01.2000-01-25_00:00:00
met_em.d01.2000-01-25_06:00:00
met_em.d01.2000-01-25_12:00:00
met_em.d02.2000-01-24_12:00:00

Typically only the first time period of the nest input file is needed to create nest wrfinput
file. Link or move all these files to the run directory.

Edit the namelist.input file and set the correct values for all relevant variables,
described on the previous pages (in particular, set max_dom = 2, for the total number of
domains to run), as well as physics options. Type the following to run:

MODEL

WRF-ARW V3: User’s Guide 5-13

./real.exe >& real.out

or

mpirun –np 4 ./real.exe

If successful, this will create all input files for coarse as well as nest domains. For a two-
domain example, these are

wrfinput_d01
wrfinput_d02
wrfbdy_d01

To run WRF, type

./wrf.exe

or

mpirun –np 4 ./wrf.exe

If successful, the model should create wrfout files for both domain 1 and 2:

wrfout_d01_2000-01-24_12:00:00
wrfout_d02_2000-01-24_12:00:00

e. One-way Nested Run Using ndown

WRF supports two separate one-way nested option. In this section, one-way nesting is
defined as a finer-grid-resolution run made as a subsequent run after the coarser-grid-
resolution run, where the ndown program is run in between the two forecasts. The initial
and lateral boundary conditions for this finer-grid run are obtained from the coarse grid
run, together with input from higher resolution terrestrial fields (e.g. terrain, landuse, etc.),
and masked surface fields (such as soil temperature and moisture). The program that
performs this task is ndown.exe. Note that the use of this program requires the code to
be compiled for nesting.

When one-way nesting is used, the coarse-to-fine grid ratio is only restricted to be an
integer. An integer less than or equal to 5 is recommended.

To make a one-way nested run involves these steps:

1) Generate a coarse-grid model output
2) Make temporary fine-grid initial condition wrfinput_d01 file (note that only a
single time period is required, valid at the desired start time of the fine-grid domain)
3) Run program ndown, with coarse-grid model output and a fine-grid initial

MODEL

WRF-ARW V3: User’s Guide 5-14

condition to generate fine grid initial and boundary conditions, similar to the output
from the real.exe program)
4) Run the fine-grid simulation

To compile, choose an option that supports nesting.

Step 1: Make a coarse grid run

This is no different than any of the single domain WRF run as described above.

Step 2: Make a temporary fine grid initial condition file

The purpose of this step is to ingest higher resolution terrestrial fields and corresponding
land-water masked soil fields.

Before doing this step, WPS should be run for one coarse and one nest domains (this helps
to line up the nest with the coarse domain), and for the one time period the one-way
nested run is to start. This generates a WPS output file for the nested domain (domain 2):
met_em.d02.<date>.

- Rename met_em.d02.* to met.d01.* for the single requested fine-grid start
time. Move the original domain 1 WPS output files before you do this.
- Edit the namelist.input file for fine-grid domain (pay attention to column 1
only) and edit in the correct start time, grid dimensions.
- Run real.exe for this domain. This will produce a wrfinput_d01 file.
- Rename this wrfinput_d01 file to wrfndi_d02.

Step 3: Make the final fine-grid initial and boundary condition files

- Edit namelist.input again, and this time one needs to edit two columns: one for
dimensions of the coarse grid, and one for the fine grid. Note that the boundary
condition frequency (namelist variable interval_seconds) is the time in seconds
between the coarse-grid model output times.
- Run ndown.exe, with inputs from the coarse grid wrfout file(s), and
wrfndi_d02 file generated from Step 2 above. This will produce wrfinput_d02
and wrfbdy_d02 files.

Note that program ndown may be run serially or in MPI, depending on the selected
compile option. The ndown program must be built to support nesting, however. To run
the program, type,

./ndown.exe
or
mpirun –np 4 ./ndown.exe

MODEL

WRF-ARW V3: User’s Guide 5-15

Step 4: Make the fine-grid WRF run

- Rename wrfinput_d02 and wrfbdy_d02 to wrfinput_d01 and
wrfbdy_d01, respectively.
- Edit namelist.input one more time, and it is now for the fine-grid domain only.
- Run WRF for this grid.

The figure on the next page summarizes the data flow for a one-way nested run using
program ndown.

f. Moving-Nested Run

Two types of moving tests are allowed in WRF. In the first option, a user specifies the
nest movement in the namelist. The second option is to move the nest automatically
based on an automatic vortex-following algorithm. This option is designed to follow the
movement of a well-defined tropical cyclone.

To make the specified moving nest run, select the right nesting compile option (option
‘preset moves’). To run the model, only the coarse grid input files are required. In this
option, the nest initialization is defined from the coarse grid data - no nest input is used.
In addition to the namelist options applied to a nested run, the following needs to be
added to namelist section &domains:

num_moves: the total number of moves one can make in a model run. A move of any
domain counts against this total. The maximum is currently set to 50, but it can be
changed by change MAX_MOVES in frame/module_driver_constants.F.

move_id: a list of nest IDs, one per move, indicating which domain is to move for a
given move.

move_interval: the number of minutes since the beginning of the run that a move is
supposed to occur. The nest will move on the next time step after the specified instant of
model time has passed.

move_cd_x,move_cd_y: distance in number of grid points and direction of the nest
move(positive numbers indicating moving toward east and north, while negative numbers
indicating moving toward west and south).

Parameter max_moves is set to be 50, but can be modified in source code file
frame/module_driver_constants.F if needed.

MODEL

WRF-ARW V3: User’s Guide 5-16

MODEL

WRF-ARW V3: User’s Guide 5-17

To make the automatic moving nest runs, select the ‘vortex-following’ option when
configuring. (Note that this compile would only support auto-moving nest, and will not
support the specified moving nest at the same time.) Again, no nest input is needed. If one
wants to use values other than the default ones, add and edit the following namelist
variables in &domains section:

vortex_interval: how often the vortex position is calculated in minutes (default is
15 minutes).

max_vortex_speed: used with vortex_interval to compute the radius of search for
the new vortex center position (default is 40 m/sec).

corral_dist: the distance in number of coarse grid cells that the moving nest is
allowed to come near the coarse grid boundary (default is 8).

track_level: the pressure level (in Pa) where the vortex is tracked.

In both types of moving nest runs, the initial location of the nest is specified through
i_parent_start and j_parent_start in the namelist.input file.

The automatic moving nest works best for well-developed vortex.

g. Three-Dimensional Analysis Nudging Run

Prepare input data to WRF as usual using WPS. If nudging is desired in the nest domains,
make sure all time periods for all domains are processed in WPS.

Set the following options before running real.exe, in addition to others described
earlier (see namelist template namelist.input.grid_fdda in test/em_real/
directory for guidance):

grid_fdda = 1

Run real.exe as before, and this will create, in addition to wrfinput_d0* and
wrfbdy_d01 files, a file named ‘wrffdda_d0*’. Other grid nudging namelists are
ignored at this stage. But it is a good practice to fill them all before one runs real. In
particular, set

gfdda_inname = “wrffdda_d<domain>”
gfdda_interval = time interval of input data in minutes
gfdda_end_h = end time of grid nudging in hours

See http://www.mmm.ucar.edu/wrf/users/wrfv2/How_to_run_grid_fdda.html and
README.grid_fdda in WRFV3/test/em_real/ for more information.

http://www.mmm.ucar.edu/wrf/users/wrfv2/How_to_run_grid_fdda.html

MODEL

WRF-ARW V3: User’s Guide 5-18

h. Observation Nudging Run

In addition to the usual input data preparation using WPS, station observation files are
required. See http://www.mmm.ucar.edu/wrf/users/wrfv2/How_to_run_obs_fdda.html for
instructions. The observation file names expected by WRF are OBS_DOMAIN101 for
domain 1, and OBS_DOMAIN201 for domain 2, etc.

Observation nudging is activated in the model by the following namelists:

obs_nudge_opt = 1
fdda_start = 0 (obs nudging start time in minutes)
fdda_end = 360 (obs nudging end time in minutes)

Look for example to set other obs nudging namelist variables in namelist template
namelist.input.obs_fdda in test/em_real/ directory. See
http://www.mmm.ucar.edu/wrf/users/wrfv2/How_to_run_obs_fdda.html and
README.obs_fdda in WRFV3/test/em_real/ for more information.

i. Global Run

WRFV3 begins to support global capability. To make a global run, run WPS starting with
namelist template namelist.wps.gloabl. Set map_proj = ‘lat-lon’. Run
the rest of WPS programs as usual but only for one time period. This is because the
domain covers the entire global, lateral boundary conditions are no longer needed.

Run program real.exe as usual but only for one time period. Lateral boundary file
wrfbdy_d01 is not needed.

Copy over namelist.input.global to namelist.input, and edit it. Run the
model as usual.

Note that since this is a new option in the model, use it with caution. Not all options have
been tested. For example, all filter options have not been tested.

j. Using Digital Filter Initialization

Digital filter initialization (DFI) is a way to remove initial model noise as measured by the
surface pressure tendency. It runs a digital filter during a model integration, backward and
forward, and then start the forecast. In WRF implementation, this can all be done in one
job run. In V3, DFI can only be used in a single domain run.

No special requirement for data preparation.

http://www.mmm.ucar.edu/wrf/users/wrfv2/How_to_run_obs_fdda.html
http://www.mmm.ucar.edu/wrf/users/wrfv2/How_to_run_obs_fdda.html

MODEL

WRF-ARW V3: User’s Guide 5-19

Start with namelist template namelist.input.dfi. This namelist file contains an
extra namelist record for DFI: &dfi_control. Edit it to match your case configuration.
For a typical application, the following options are used:

Dfi_opt = 3
dfi_nfilter = 7 (filter option: Dolph)
dfi_cutoff_seconds = 3600 (should not be longer than the filter window)

For time specification, it typically needs to integrate backward for 0.5 0 1 hour, and
integrate forward for half of the time.

If option dfi_write_filtered_input is set to true, a filtered wrfinput file,
wrfinput_initialized_d01, will be produced.

Check Output

Once a model run is completed, it is a good practice to check a couple of things quickly.

If you have run the model on multiple processors using MPI, you should have a number of
rsl.out.* and rsl.error.* files. Type ‘tail rsl.out.0000’ to see if you
get ‘SUCCESS COMPLETE WRF’. This is a good indication that the model has run
successfully.

The namelist options are written to a separate file: namelist.output.

Check the output times written to wrfout* file by using netCDF command:

 ncdump –v Times wrfout_d01_yyyy-mm-dd_hh:00:00

Take a look at either rsl.out.0000 file or other standard out file. This file logs the
times taken to compute for one model time step, and to write one history and restart
output:

Timing for main: time 2006-01-21_23:55:00 on domain 2: 4.91110 elapsed seconds.
Timing for main: time 2006-01-21_23:56:00 on domain 2: 4.73350 elapsed seconds.
Timing for main: time 2006-01-21_23:57:00 on domain 2: 4.72360 elapsed seconds.
Timing for main: time 2006-01-21_23:57:00 on domain 1: 19.55880 elapsed seconds.

and

Timing for Writing wrfout_d02_2006-01-22_00:00:00 for domain 2: 1.17970 elapsed seconds.
Timing for main: time 2006-01-22_00:00:00 on domain 1: 27.66230 elapsed seconds.
Timing for Writing wrfout_d01_2006-01-22_00:00:00 for domain 1: 0.60250 elapsed seconds.

If the model did not run to completion, take a look at these standard output/error files too.
If the model has become numerically unstable, it may have violated the CFL criterion (for
numerical stability). Check whether this is true by typing the following:

grep cfl rsl.error.* or grep cfl wrf.out

MODEL

WRF-ARW V3: User’s Guide 5-20

you might see something like these:

5 points exceeded cfl=2 in domain 1 at time 4.200000
 MAX AT i,j,k: 123 48 3 cfl,w,d(eta)= 4.165821
21 points exceeded cfl=2 in domain 1 at time 4.200000

 MAX AT i,j,k: 123 49 4 cfl,w,d(eta)= 10.66290

When this happens, often reducing time step can help.

Trouble Shooting

If the model aborts very quickly, it is likely that either the computer memory is not large
enough to run the specific configuration, or the input data have some serious problem. For
the first problem, try to type ‘unlimit’ to see if more memory can be obtained.

To check if the input data is the problem, use ncview or other netCDF file browser.

Another frequent error seen is ‘module_configure: initial_config: error
reading namelist’. This is an error message from the model complaining about
errors and typos in the namelist.input file. Edit namelist.input file with
caution. If unsure, always start with an available template. A namelist record where the
namelist read error occurs is provided in the V3 error message, and it should help with
identifying the error.

Physics and Dynamics Options

Physics Options

WRF offers multiple physics options that can be combined in any way. The options
typically range from simple and efficient to sophisticated and more computationally
costly, and from newly developed schemes to well tried schemes such as those in current
operational models.

The choices vary with each major WRF release, but here we will outline those available in
WRF Version 3.

1. Microphysics (mp_physics)

a. Kessler scheme: A warm-rain (i.e. no ice) scheme used commonly in idealized
cloud modeling studies (mp_physics = 1).

b. Lin et al. scheme: A sophisticated scheme that has ice, snow and graupel processes,
suitable for real-data high-resolution simulations (2).

c. WRF Single-Moment 3-class scheme: A simple efficient scheme with ice and snow
processes suitable for mesoscale grid sizes (3).

d. WRF Single-Moment 5-class scheme: A slightly more sophisticated version of (c)
that allows for mixed-phase processes and super-cooled water (4).

MODEL

WRF-ARW V3: User’s Guide 5-21

e. Eta microphysics: The operational microphysics in NCEP models. A simple
efficient scheme with diagnostic mixed-phase processes (5).

f. WRF Single-Moment 6-class scheme: A scheme with ice, snow and graupel
processes suitable for high-resolution simulations (6).

g. Goddard microphysics scheme. A scheme with ice, snow and graupel processes
suitable for high-resolution simulations (7). New in Version 3.0.

h. Thompson et al. scheme: A new scheme with ice, snow and graupel processes
suitable for high-resolution simulations (8; replacing the version in 2.1)

i. Morrison double-moment scheme (10). Double-moment ice, snow, rain and graupel
for cloud-resolving simulations. New in Version 3.0.

2.1 Longwave Radiation (ra_lw_physics)

a. RRTM scheme: Rapid Radiative Transfer Model. An accurate scheme using look-
up tables for efficiency. Accounts for multiple bands, trace gases, and microphysics
species (ra_lw_physics = 1).

b. GFDL scheme: Eta operational radiation scheme. An older multi-band scheme with
carbon dioxide, ozone and microphysics effects (99).

c. CAM scheme: from the CAM 3 climate model used in CCSM. Allows for aerosols
and trace gases (3).

2.2 Shortwave Radiation (ra_sw_physics)

a. Dudhia scheme: Simple downward integration allowing efficiently for clouds and
clear-sky absorption and scattering. When used in high-resolution simulations, sloping
and shadowing effects may be considered (ra_sw_physics = 1).

b. Goddard shortwave: Two-stream multi-band scheme with ozone from climatology
and cloud effects (2).

c. GFDL shortwave: Eta operational scheme. Two-stream multi-band scheme with
ozone from climatology and cloud effects (99).

d. CAM scheme: from the CAM 3 climate model used in CCSM. Allows for aerosols
and trace gases (3).

3.1 Surface Layer (sf_sfclay_physics)

a.MM5 similarity: Based on Monin-Obukhov with Carslon-Boland viscous sub-layer
and standard similarity functions from look-up tables (sf_sfclay_physics = 1).

b. Eta similarity: Used in Eta model. Based on Monin-Obukhov with Zilitinkevich
thermal roughness length and standard similarity functions from look-up tables(2).

c. Pleim-Xiu surface layer. (7). New in Version 3.0.

MODEL

WRF-ARW V3: User’s Guide 5-22

3.2 Land Surface (sf_surface_physics)

a.5-layer thermal diffusion: Soil temperature only scheme, using five layers
(sf_surface_physics = 1).

b. Noah Land Surface Model: Unified NCEP/NCAR/AFWA scheme with soil
temperature and moisture in four layers, fractional snow cover and frozen soil physics
(2).

-Urban canopy model (ucmcall): 3-category UCM option

c. RUC Land Surface Model: RUC operational scheme with soil temperature and
moisture in six layers, multi-layer snow and frozen soil physics (3).

d. Pleim-Xiu Land Surface Model. Two-layer scheme with vegetation and sub-grid
tiling (7). New in Version 3.0.

4. Planetary Boundary layer (bl_pbl_physics)

a. Yonsei University scheme: Non-local-K scheme with explicit entrainment layer and
parabolic K profile in unstable mixed layer (bl_pbl_physics = 1).

b. Mellor-Yamada-Janjic scheme: Eta operational scheme. One-dimensional
prognostic turbulent kinetic energy scheme with local vertical mixing (2).

c. MRF scheme: Older version of (a) with implicit treatment of entrainment layer as
part of non-local-K mixed layer (99).

d. ACM PBL. Asymmetric Convective Model with non-local upward mixing and local
downward mixing (7). New in Version 3.0.

5. Cumulus Parameterization (cu_physics)

a. Kain-Fritsch scheme: Deep and shallow convection sub-grid scheme using a mass
flux approach with downdrafts and CAPE removal time scale (cu_physics = 1).

b. Betts-Miller-Janjic scheme. Operational Eta scheme. Column moist adjustment
scheme relaxing towards a well-mixed profile (2).

c. Grell-Devenyi ensemble scheme: Multi-closure, multi-parameter, ensemble method
with typically 144 sub-grid members (3).

d. Grell 3d ensemble cumulus scheme. Scheme for higher resolution domains allowing
for subsidence in neighboring columns (5). New in Version 3.0.

e. Old Kain-Fritsch scheme: Deep convection scheme using a mass flux approach with
downdrafts and CAPE removal time scale (99).

Diffusion and Damping Options

Diffusion in WRF is categorized under two parameters, the diffusion option and the K
option. The diffusion option selects how the derivatives used in diffusion are calculated,
and the K option selects how the K coefficients are calculated. Note that when a PBL

MODEL

WRF-ARW V3: User’s Guide 5-23

option is selected, vertical diffusion is done by the PBL scheme, and not by the diffusion
scheme.

1.1 Diffusion Option (diff_opt)

a. Simple diffusion: Gradients are simply taken along coordinate surfaces (diff_opt =
1).

b. Full diffusion: Gradients use full metric terms to more accurately compute
horizontal gradients in sloped coordinates (diff_opt = 2).

1.2 K Option (km_opt)

Note that when using a PBL scheme, only options (a) and (d) below make sense,
because (b) and (c) are designed for 3d diffusion.

a. Constant: K is specified by namelist values for horizontal and vertical diffusion
(km_opt = 1).

b. 3d TKE: A prognostic equation for turbulent kinetic energy is used, and K is based
on TKE (km_opt = 2).

c. 3d Deformation: K is diagnosed from 3d deformation and stability following a
Smagorinsky approach (km_opt = 3).

d. 2d Deformation: K for horizontal diffusion is diagnosed from just horizontal
deformation. The vertical diffusion is assumed to be done by the PBL scheme (km_opt
= 4).

1.3 6th Order Horizontal Diffusion (diff_6th_opt)

6th-orderhorizontal hyper diffusion (del^6) on all variables to act as a selective short-
wave numerical noise filter. Can be used in conjunction with diff_opt.

2. Damping Options

These are independently activated choices.

a. Upper Damping: Either a layer of increased diffusion (damp_opt =1) or a Rayleigh
relaxation layer (2) or an implicit gravity-wave damping layer (3, new in Version 3.0),
can be added near the model top to control reflection from the upper boundary.

b. w-Damping: For operational robustness, vertical motion can be damped to prevent
the model from becoming unstable with locally large vertical
velocities. This only affects strong updraft cores, so has very little impact on results
otherwise.

c. Divergence Damping: Controls horizontally propagating sound waves.

d. External Mode Damping: Controls upper-surface (external) waves.

e. Time Off-centering (epssm): Controls vertically propagating sound waves.

MODEL

WRF-ARW V3: User’s Guide 5-24

Advection Options

a. Horizontal advection orders for momentum (h_mom_adv_order) and scalar
(h_sca_adv_order) can be 2ndto 6th, with 5th order being the recommended one.

b. Vertical advection orders for momentum (v_mom_adv_order) and scalar
(v_sca_adv_order) can be 2ndand 6th, with 3rd order being the recommended one.

c. Positive-definite advection option can be applied to moisture (pd_moist= .true.),
scalar (pd_scalar), chemistry variables (pd_chem) and tke (pd_tke).

Other Dynamics Options

a. The model can be run hydrostatically by setting non_hydrostatic switch to .false.

b. Coriolis term can be applied to wind perturbation (pert_coriolis = .true.) only
(idealized only).

c. For diff_opt = 2 only, vertical diffusion may act on full fields (not just on
perturbation from 1D base profile (mix_full_fields = .true.; idealized only).

Lateral Boundary Condition Options

a. Periodic (periodic_x / periodic_y): for idealized cases.

b. Open (open_xs, open_xe, open_ys, open_ye): for idealized cases.

c. Symmetric (symmetric_xs, symmetric_xe, symmetric_ys, symmetric_ye): for
idealized cases.

d. Specified (specified): for real-data cases. The first row and column are specified
with external model values (spec_zone = 1, and it should not change). The rows
and columns in relax_zone have values blended from external model and WRF.
The value of relax_zone may be changed, as long as spec_bdy_width = spec_zone
+ relax_zone.

spec_exp: exponential multiplier for relaxation zone ramp, used with specified
boundary condition. 0. = linear ramp, default; 0.33 = ~3*dx exp decay factor. May
be useful for long simulations.

e. Nested (nested): for real and idealized cases.

MODEL

WRF-ARW V3: User’s Guide 5-25

Description of Namelist Variables

The following is a description of namelist variables. The variables that are a function of
nests are indicated by (max_dom) following the variable. Also see README.namelist
file in WRFV3/run/ directory.

Variable Names Value Description
&time_control Time control
run_days 1 run time in days
run_hours 0 run time in hours

Note: if it is more than 1 day, one may use
both run_days and run_hours or just
run_hours. e.g. if the total run length is 36
hrs, you may set run_days = 1, and
run_hours = 12, or run_days = 0, and
run_hours 36

run_minutes 0 run time in minutes
run_seconds 0 run time in seconds

start_year (max_dom) 2001 four digit year of starting time
start_month (max_dom) 06 two digit month of starting time
start_day (max_dom) 11 two digit day of starting time
start_hour (max_dom) 12 two digit hour of starting time
start_minute (max_dom) 00 two digit minute of starting time
start_second (max_dom) 00 two digit second of starting time

Note: the start time is used to name the
first wrfout file. It also controls the start
time for nest domains, and the time to
restart

end_year (max_dom) 2001 four digit year of ending time
end_month (max_dom) 06 two digit month of ending time
end_day (max_dom) 12 two digit day of ending time
end_hour (max_dom) 12 two digit hour of ending time
end_minute (max_dom) 00 two digit minute of ending time
end_second (max_dom) 00 two digit second of ending time

Note all end times also control when the
nest domain integrations end. All start and
end times are used by real.exe. One may
use either run_days/run_hours etc. or
end_year/month/day/hour etc. to control

MODEL

WRF-ARW V3: User’s Guide 5-26

the length of model integration. But
run_days/run_hours takes precedence over
the end times. Program real.exe uses start
and end times only.

interval_seconds 10800 time interval between incoming real data,
which will be the interval between the
lateral boundary condition file (for real
only)

input_from_file
(max_dom)

T (logical) logical; whether nested run will have input
files for domains other than 1

fine_input_stream
(max_dom)

 selected fields from nest input

 0 all fields from nest input are used

 2 only nest input specified from input
stream 2 (defined in the Registry) are used

history_interval
(max_dom)

60 history output file interval in minutes
(integer only)

history_interval_mo
(max_dom)

1 history output file interval in months
(integer); used as alternative to
history_interval

history_interval_d
(max_dom)

1 history output file interval in days
(integer); used as alternative to
history_interval

history_interval_h
(max_dom)

1 history output file interval in hours
(integer); used as alternative to
history_interval

history_interval_m
(max_dom)

1 history output file interval in minutes
(integer); used as alternative to
history_interval and is equivalent to
history_interval

history_interval_s
(max_dom)

1 history output file interval in seconds
(integer); used as alternative to
history_interval

frames_per_outfile
(max_dom)

1 output times per history output file, used
to split output files into smaller pieces

restart F (logical) whether this run is a restart run
restart_interval 1440 restart output file interval in minutes
reset_simulation_start F whether to overwrite

simulation_start_date with forecast start
time

auxinput1_inname “met_em.d<domain> input from WPS (this is the default)

MODEL

WRF-ARW V3: User’s Guide 5-27

<date>”
auxinput4_inname “wrflowinp_d<domain>” input for lower bdy file, works with

sst_update = 1
auxinput4_interval 360 file interval in minutes for lower bdy file
io_form_history 2 2 = netCDF; 102 = split netCDF files one

per processor (no supported post-
processing software for split files)

 1 binary format (no supported post-
processing software avail)

 4 PHDF5 format (no supported post-
processing software avail)

 5 GRIB 1
 10 GRIB 2
io_form_restart 2 2 = netCDF; 102 = split netCDF files one

per processor (must restart with the same
number of processors)

io_form_input 2 2 = netCDF
io_form_boundary 2 netCDF format
debug_level 0 50,100,200,300 values give increasing

prints
auxhist2_outname "rainfall_d<domain>" file name for extra output; if not specified,

auxhist2_d<domain>_<date> will be used.
Also note that to write variables in output
other than the history file requires
Registry.EM file change

auxhist2_interval 10 interval in minutes
io_form_auxhist2 2 output in netCDF
frame_per_auxhist4
(max_dom)

 output times per output file

auxinput11_interval designated for obs nudging input
auxinput11_end_h designated for obs nudging input
nocolons .false. replace : with _ in output file names
write_input t write input-formatted data as output for

3DVAR application
inputout_interval 180 interval in minutes when writing input-

formatted data
input_outname “wrf_3dvar_input_

d<domain>_<date>”
Output file name from 3DVAR

inputout_begin_y 0 beginning year to write 3DVAR data

MODEL

WRF-ARW V3: User’s Guide 5-28

inputout_begin_mo 0 beginning month to write 3DVAR data
inputout_begin_d 0 beginning day to write 3DVAR data
inputout_begin_h 3 beginning hour to write 3DVAR data
Inputout_begin_m 0 beginning minute to write 3DVAR data
inputout_begin_s 0 beginning second to write 3DVAR data
inputout_end_y 0 ending year to write 3DVAR data
inputout_end_mo 0 ending month to write 3DVAR data
inputout_end_d 0 ending day to write 3DVAR data
inputout_end_h 12 ending hour to write 3DVAR data
Inputout_end_m 0 ending minute to write 3DVAR data
inputout_end_s 0 ending second to write 3DVAR data.

 The above example shows that the input-
formatted data are output starting from
hour 3 to hour 12 in 180 min interval.

&domains domain definition: dimensions, nesting
parameters

time_step 60 time step for integration in integer seconds
(recommended 6*dx in km for a typical
case)

time_step_fract_num 0 numerator for fractional time step
time_step_fract_den 1 denominator for fractional time step

Example, if you want to use 60.3 sec as
your time step, set time_step = 60,
time_step_fract_num = 3, and
time_step_fract_den = 10

max_dom 1 number of domains - set it to > 1 if it is a
nested run

s_we (max_dom) 1 start index in x (west-east) direction (leave
as is)

e_we (max_dom) 91 end index in x (west-east) direction
(staggered dimension)

s_sn (max_dom) 1 start index in y (south-north) direction
(leave as is)

e_sn (max_dom) 82 end index in y (south-north) direction
(staggered dimension)

s_vert (max_dom) 1 start index in z (vertical) direction (leave
as is)

MODEL

WRF-ARW V3: User’s Guide 5-29

e_vert (max_dom) 28 end index in z (vertical) direction
(staggered dimension - this refers to full
levels). Most variables are on unstaggered
levels. Vertical dimensions need to be the
same for all nests.

num_metgrid_levels 40 number of vertical levels in WPS output:
type ncdump –h to find out

eta_levels 1.0, 0.99,…0.0 model eta levels from 1 to 0. If not given,
real will provide a set of levels

force_sfc_in_vinterp 1 use surface data as lower boundary when
interpolating through this many eta levels

p_top_requested 5000 p_top to use in the model; must be
available in WPS data

interp_type 1 vertical interpolation;
1: linear in pressure;
2: linear in log(pressure)

extrap_type 2 vertical extrapolation of non-temperature
variables.
1: extrapolate using the two lowest levels;
2: use lowest level as constant below
ground

t_extrap_type 2 vertical extrapolation for potential
temperature.
1: isothermal;
2: -6.5 K/km lapse rate for temperature
3: constant theta

use_levels_below_groun
d

.true. in vertical interpolation, whether to use
levels below input surface level:
true: use input isobaric levels below input
surface
false: extrapolate when WRF location is
below input surface level

use_surface .true. whether to use input surface level data in
vertical interpolation
true: use input surface data
false: do not use input surface data

lagrange_order 1 vertical interpolation order;
1: linear;
2: quadratic

lowest_lev_from_sfc .false. T = use surface values for the lowest eta
(u,v,t,q); F = use traditional interpolation

dx (max_dom) 10000 grid length in x direction, unit in meters

MODEL

WRF-ARW V3: User’s Guide 5-30

dy (max_dom) 10000 grid length in y direction, unit in meters
ztop (max_dom) 19000. height in meters; used to define model top

for idealized cases
grid_id (max_dom) 1 domain identifier
parent_id (max_dom) 0 id of the parent domain
i_parent_start
(max_dom)

1 starting LLC I-indices from the parent
domain

j_parent_start
(max_dom)

1 starting LLC J-indices from the parent
domain

parent_grid_ratio
(max_dom)

1 parent-to-nest domain grid size ratio: for
real-data cases the ratio has to be odd; for
idealized cases, the ratio can be even if
feedback is set to 0.

parent_time_step_ratio
(max_dom)

1 parent-to-nest time step ratio; it can be
different from the parent_grid_ratio

feedback 1 feedback from nest to its parent domain; 0
= no feedback

smooth_option 0 smoothing option for parent domain, used
only with feedback option on. 0: no
smoothing; 1: 1-2-1 smoothing; 2:
smoothing-desmoothing

(options for preset moving nest)
num_moves 2, total number of moves for all domains
move_id (max_moves) 2,2, a list of nest domain id's, one per move
move_interval
(max_moves)

60,120, time in minutes since the start of this
domain

move_cd_x (max_moves) 1,-1, the number of parent domain grid cells to
move in i direction

move_cd_y (max_moves) -1,1, the number of parent domain grid cells to
move in j direction (positive in increasing
i/j directions, and negative in decreasing
i/j directions. Only 1, 0 and -1 is
permitted.

(options for automatic moving nest)
vortex_interval
(max_dom)

15 how often the new vortex position is
computed

max_vortex_speed
(max_dom)

40 unit in m/sec; used to compute the search
radius for the new vortex position

corral_dist (max_dom) 8 how many coarse grid cells the moving
nest is allowed to get near the coarse grid

MODEL

WRF-ARW V3: User’s Guide 5-31

boundary

(options for adaptive time step)
use_adaptive_time_step .false. whether to use adaptive time step
step_to_output_time .true. whether to modify the time steps so that

the exact history time is reached
target_cfl 1.2 if vertical and horizontal CFL <= this

value, then time step is increased
max_step_increase_pct 5 percentage of previous time step to

increase, if the max CFL is <=
target_cfl

starting_time_step -1 flag -1 implies 6*dx is used to start the
model. Any positive integer number
specifies the time step the model will start
with. Note that when
use_adaptive_time_step is true, the
value specified for time_step is ignored.

max_time_step -1 flag -1 implies the maximum time step is
3*starting_time_step. Any positive integer
number specified the maximum time step

min_time_step -1 flag -1 implies the minimum time step is
0.5*starting_time_step. Any positive
integer number specified the minumum
time step

(options to control parallel computing)
tile_sz_x 0 number of points in tile x direction
tile_sz_y 0 number of points in tile y direction can be

determined automatically
numtiles 1 number of tiles per patch (alternative to

above two items)
nproc_x -1 number of processors in x for

decomposition
nproc_y -1 number of processors in y for

decomposition
-1: code will do automatic decomposition
>1: for both: will be used for
decomposition

&physics Physics options
mp_physics (max_dom) microphysics option

MODEL

WRF-ARW V3: User’s Guide 5-32

 0 no microphysics
 1 Kessler scheme
 2 Lin et al. scheme
 3 WSM 3-class simple ice scheme
 4 WSM 5-class scheme
 5 Ferrier (new Eta) microphysics
 6 WSM 6-class graupel scheme
 7 Goddard GCE scheme (also use

gsfcgce_hail and gsfcgce_2ice)
 8 Thompson graupel scheme
 10 Morrison 2-moment scheme
mp_zero_out For non-zero mp_physics options, this

keeps moisture variables above a
threshold value >= 0.

 0 no action taken, no adjustment to any
moisture field

 1 except for Qv, all other moisture arrays
are set to zero if they fall below a critical
value

 2 Qv >= 0 and all other moisture arrays are
set to zero if they fall below a critical
value

mp_zero_out_thresh 1.e-8 critical value for moisture variable
threshold, below which moisture arrays
(except for Qv) are set to zero (unit:
kg/kg)

gsfcgce_hail 0 0: running gsfcgce scheme with graupel
1: running gsfcgce scheme with hail

gsfcgce_2ice 0 0: running gsfcgce scheme with snow, ice
and graupel / hail
1: running gsfcgce scheme with only ice
and snow
2: running gsfcgce scheme with only ice
and graupel (used only in very extreme
situation)

no_mp_heating 0 switch to turn off latent heating from mp
0: normal
1: turn off latent heating from a
microphysics scheme

ra_lw_physics
(max_dom)

 longwave radiation option

MODEL

WRF-ARW V3: User’s Guide 5-33

 0 no longwave radiation
 1 rrtm scheme
 3 CAM scheme
 99 GFDL (Eta) longwave (semi-supported)
ra_sw_physics
(max_dom)

 shortwave radiation option

 0 no shortwave radiation
 1 Dudhia scheme
 2 Goddard short wave
 3 CAM scheme
 99 GFDL (Eta) longwave (semi-supported)
radt (max_dom) 30 minutes between radiation physics calls.

Recommend 1 minute per km of dx (e.g.
10 for 10 km grid); use the same value for
all nests

co2tf 1 CO2 transmission function flag for GFDL
radiation only. Set it to 1 for ARW, which
allows generation of CO2 function
internally

cam_abs_freq_s 21600 CAM clear sky longwave absorption
calculation frequency (recommended
minimum value to speed scheme up)

levsiz 59 for CAM radiation input ozone levels
paerlev 29 for CAM radiation input aerosol levels
cam_abs_dim1 4 for CAM absorption save array
cam_abs_dim2 same as e_vert for CAM 2nd absorption save array
sf_sfclay_physics
(max_dom)

 surface-layer option

 0 no surface-layer
 1 Monin-Obukhov scheme
 2 Monin-Obukhov (Janjic Eta) scheme
 3 NCEP GFS scheme (NMM only)
 7 Pleim-Xu (ARW only), only tested with

Pleim-Xu surface and ACM2 PBL
sf_surface_physics
(max_dom)

 land-surface option (set before running
real; also set correct num_soil_layers)

 0 no surface temp prediction
 1 thermal diffusion scheme

MODEL

WRF-ARW V3: User’s Guide 5-34

 2 unified Noah land-surface model
 3 RUC land-surface model
 7 Pleim-Xu scheme (ARW only)
bl_pbl_physics
(max_dom)

 boundary-layer option

 0 no boundary-layer
 1 YSU scheme
 2 Mellor-Yamada-Janjic (Eta) TKE scheme
 3 NCEP GFS scheme (NMM only)
 7 ACM2 (Pleim) scheme
 99 MRF scheme (to be removed)
bldt (max_dom) 0 minutes between boundary-layer physics

calls. 0 = call every time step
cu_physics (max_dom) cumulus option
 0 no cumulus
 1 Kain-Fritsch (new Eta) scheme
 2 Betts-Miller-Janjic scheme
 3 Grell-Devenyi ensemble scheme
 4 Simplied Arakawa-Schubert (NMM only)
 5 New Grell scheme (G3)
 99 previous Kain-Fritsch scheme
cudt 0 minutes between cumulus physics calls.

0 = call every time step
isfflx 1 heat and moisture fluxes from the surface

(only works for sf_sfclay_physics = 1)
1 = with fluxes from the surface
0 = no flux from the surface

ifsnow 0 snow-cover effects (only works for
sf_surface_physics = 1)
1 = with snow-cover effect
0 = without snow-cover effect

icloud 1 cloud effect to the optical depth in
radiation (only works for ra_sw_physics =
1 and ra_lw_physics = 1)
1 = with cloud effect
0 = without cloud effect

swrat_scat 1. Scattering tuning parameter (default 1 is
1.e-5 m2/kg)

surface_input_source 1,2 where landuse and soil category data

MODEL

WRF-ARW V3: User’s Guide 5-35

come from:
1 = WPS/geogrid;
2 = GRIB data from another model (only
if arrays VEGCAT/SOILCAT exist)

num_soil_layers number of soil layers in land surface
model (set in real)

 5 thermal diffusion scheme for temp only
 4 Noah land-surface model
 6 RUC land-surface model
 2 Pleim-Xu land-surface model
pxlsm_smois_init
(max_dom)

1 PX LSM soil moisture initialization option
0: from analysis
1: from LANDUSE.TBL (SLMO)

ucmcall (max_dom) 0 activate urban canopy model (in Noah
LSM only) (0=no, 1=yes)

maxiens 1 Grell-Devenyi only
maxens 3 G-D only
maxens2 3 G-D only
maxens3 16 G-D only
ensdim 144 G-D only. These are recommended

numbers. If you would like to use any
other number, consult the code, know
what you are doing.

seaice_threshold 271. tsk < seaice_threshold, if water point and
5-layer slab scheme, set to land point and
permanent ice; if water point and Noah
scheme, set to land point, permanent ice,
set temps from 3 m to surface, and set
smois and sh2o

sst_update option to use time-varying SST, seaice,
vegetation fraction, and albedo during a
model simulation (set before running real)

 0 no SST update

 1 real.exe will create wrflowinp_d01 file at
the same time interval as the available
input data. To use it in wrf.exe, add
auxinput4_inname =

"wrflowinp_d<domain>",
auxinput4_interval in namelist section
&time_control

usemonalb .false. whether to use monthly albedo map

MODEL

WRF-ARW V3: User’s Guide 5-36

instead of LANDUSE.TBL values.
Recommended for sst_update = 1

slope_rad 0 slope effects for ra_sw_physics=1 (1=on,
0=off)

topo_shading 0 neighboring-point shadow effects for
ra_sw_physics=1 (1=on, 0=off)

shadlen 25000. max shadow length in meters for
topo_shading = 1

omlcall 0 simple ocean mixed layer model. (1=on,
0=off)

oml_hml0 50. initial ocean mixed layer depth (m),
constant everywhere

oml_gamma 0.14 lapse rate in deep water for oml (K m-1)
isftcflx 0 alternative Ck, Cd for tropical storm

application. (1=on, 0=off)

&fdda for grid and obs nudging

(for grid nudging)
grid_fdda (max_dom) 1 grid-nudging on (=0 off) for each domain
gfdda_inname “wrffdda_d<domain>” Defined name in real
gfdda_interval
(max_dom)

360 Time interval (min) between analysis
times

gfdda_end_h (max_dom) 6 Time (h) to stop nudging after start of
forecast

io_form_gfdda 2 Analysis format (2 = netcdf)
fgdt (max_dom) 0 Calculation frequency (in minutes) for

analysis nudging. 0 = every time step, and
this is recommended

if_no_pbl_nudging_uv
(max_dom)

0 1= no nudging of u and v in the pbl; 0=
nudging in the pbl

if_no_pbl_nudging_t
(max_dom)

0 1= no nudging of temp in the pbl; 0=
nudging in the pbl

if_no_pbl_nudging_t
(max_dom)

0 1= no nudging of qvapor in the pbl; 0=
nudging in the pbl

if_zfac_uv (max_dom) 0 0= nudge u and v all layers, 1= limit
nudging to levels above k_zfac_uv

k_zfac_uv 10 10=model level below which nudging is
switched off for u and v

if_zfac_t (max_dom) 0

MODEL

WRF-ARW V3: User’s Guide 5-37

k_zfac_t 10 10=model level below which nudging is
switched off for temp

if_zfac_q (max_dom) 0
k_zfac_q 10 10=model level below which nudging is

switched off for water qvapor

guv (max_dom) 0.0003 nudging coefficient for u and v (sec-1)
gt (max_dom) 0.0003 nudging coefficient for temp (sec-1)
gq (max_dom) 0.0003 nudging coefficient for qvapor (sec-1)
if_ramping 0 0= nudging ends as a step function, 1=

ramping nudging down at end of period
dtramp_min 60. time (min) for ramping function,

60.0=ramping starts at last analysis time,
-60.0=ramping ends at last analysis time

(for obs nudging)
obs_nudge_opt
(max_dom)

1 obs-nudging fdda on (=0 off) for each
domain; also need to set
auxinput11_interval and
auxinput11_end_h in time_control
namelist

max_obs 150000 max number of observations used on a
domain during any given time window

fdda_start 0. obs nudging start time in minutes
fdda_end 180. obs nudging end time in minutes
obs_nudge_wind
(max_dom)

1 whether to nudge wind: (=0 off)

obs_coef_wind
(max_dom)

6.e-4 nudging coefficient for wind, unit: s-1

obs_nudge_temp
(max_dom)

1 whether to nudge temperature: (=0 off)

obs_coef_temp
(max_dom)

6.e-4 nudging coefficient for temp, unit: s-1

obs_nudge_mois
(max_dom)

1 whether to nudge water vapor mixing
ratio: (=0 off)

obs_coef_mois
(max_dom)

6.e-4 nudging coefficient for water vapor
mixing ratio, unit: s-1

obs_nudge_pstr
(max_dom)

0 whether to nudge surface pressure (not
used)

obs_coef_pstr
(max_dom)

0. nudging coefficient for surface pressure,
unit: s-1 (not used)

obs_rinxy 200. horizontal radius of influence in km

MODEL

WRF-ARW V3: User’s Guide 5-38

obs_rinsig 0.1 vertical radius of influence in eta
obs_twindo (max_dom) 0.666667 half-period time window over which an

observation will be used for nudging; the
unit is in hours

obs_npfi 10 freq in coarse grid timesteps for diag
prints

obs_ionf (max_dom) 2 freq in coarse grid timesteps for obs input
and err calc

obs_idynin 0 for dynamic initialization using a ramp-
down function to gradually turn off the
FDDA before the pure forecast (=1 on)

obs_dtramp 40. time period in minutes over which the
nudging is ramped down from one to zero.

obs_nobs_prt (max_dom) 10 number of current obs to print grid coord.
info.

obs_ipf_in4dob .true. print obs input diagnostics (=.false. off)
obs_ipf_errob .true. print obs error diagnostics (=.false. off)
obs_ipf_nudob .true. print obs nudge diagnostics (=.false. off)
obs_ipf_init .true. enable obs init warning messages

&dynamics Diffusion, damping options, advection
options

rk_ord time-integration scheme option:
 2 Runge-Kutta 2nd order

 3 Runge-Kutta 3rd order (recommended)
diff_opt turbulence and mixing option:
 0 = no turbulence or explicit spatial

numerical filters (km_opt IS IGNORED).
 1 evaluates 2nd order diffusion term on

coordinate surfaces. uses kvdif for
vertical diff unless PBL option is used.
may be used with km_opt = 1 and 4. (= 1,
recommended for real-data case)

 2 evaluates mixing terms in physical space
(stress form) (x,y,z). turbulence
parameterization is chosen by specifying
km_opt.

km_opt eddy coefficient option
 1 constant (use khdif and kvdif)

MODEL

WRF-ARW V3: User’s Guide 5-39

 2 1.5 order TKE closure (3D)
 3 Smagorinsky first order closure (3D)

Note: option 2 and 3 are not recommended
for DX > 2 km

 4 horizontal Smagorinsky first order closure
(recommended for real-data case)

diff_6th_opt (max_dom) 0 6th-order numerical diffusion
0 = no 6th-order diffusion (default)
1 = 6th-order numerical diffusion
2 = 6th-order numerical diffusion but
prohibit up-gradient diffusion

diff_6th_factor
(max_dom)

0.12 6th-order numerical diffusion non-
dimensional rate (max value 1.0
corresponds to complete removal of 2dx
wave in one timestep)

damp_opt upper level damping flag
 0 without damping
 1 with diffusive damping; maybe used for

real-data cases (dampcoef nondimensional
~ 0.01 - 0.1)

 2 with Rayleigh damping (dampcoef inverse
time scale [1/s], e.g. 0.003)

 3 with w-Rayleigh damping (dampcoef
inverse time scale [1/s] e.g. .05; for real-
data cases)

zdamp (max_dom) 5000 damping depth (m) from model top
dampcoef (max_dom) 0. damping coefficient (see damp_opt)
w_damping vertical velocity damping flag (for

operational use)
 0 without damping
 1 with damping
base_pres 100000. Base state surface pressure (Pa), real only.

Do not change.
base_temp 290. Base state sea level temperature (K), real

only.
base_lapse 50. real-data ONLY, lapse rate (K), DO NOT

CHANGE.
khdif (max_dom) 0 horizontal diffusion constant (m^2/s)
kvdif (max_dom) 0 vertical diffusion constant (m^2/s)

MODEL

WRF-ARW V3: User’s Guide 5-40

smdiv (max_dom) 0.1 divergence damping (0.1 is typical)
emdiv (max_dom) 0.01 external-mode filter coef for mass

coordinate model (0.01 is typical for real-
data cases)

epssm (max_dom) .1 time off-centering for vertical sound
waves

non_hydrostatic
(max_dom)

.true. whether running the model in hydrostatic
or non-hydro mode

pert_coriolis
(max_dom)

.false. Coriolis only acts on wind perturbation
(idealized)

top_lid (max_dom) .false. zero vertical motion at top of domain
mix_full_fields .false. used with diff_opt = 2; value of ".true." is

recommended, except for highly idealized
numerical tests; damp_opt must not be 1 if
".true." is chosen. .false. means subtract 1-
d base-state profile before mixing

mix_isotropic(max_dom) 0 0=anistropic vertical/horizontal diffusion
coeffs, 1=isotropic

mix_upper_bound(max_do
m)

0.1 non-dimensional upper limit for diffusion
coeffs

h_mom_adv_order
(max_dom)

5 horizontal momentum advection order
(5=5th, etc.)

v_mom_adv_order
(max_dom)

3 vertical momentum advection order

h_sca_adv_order
(max_dom)

5 horizontal scalar advection order

v_sca_adv_order
(max_dom)

3 vertical scalar advection order

time_step_sound
(max_dom)

4 number of sound steps per time-step (if
using a time_step much larger than 6*dx
(in km), increase number of sound steps).
= 0: the value computed automatically

pd_moist (max_dom) .false. positive define advection of moisture; set
to .true. to turn it on

pd_scalar (max_dom) .false. positive define advection of scalars
pd_tke (max_dom) .false. positive define advection of tke
pd_chem (max_dom) .false. positive define advection of chem vars
tke_drag_coefficient
(max_dom)

0 surface drag coefficient (Cd,
dimensionless) for diff_opt=2 only

tke_heat_flux
(max_dom)

0 surface thermal flux (H/rho*cp), K m/s)
for diff_opt = 2 only

MODEL

WRF-ARW V3: User’s Guide 5-41

do_coriolis (max_dom) .true. whether to do Coriolis calculations
(idealized)

do_curvature (max_dom) .true. whether to do curvature calculations
(idealized)

do_gradp (max_dom) .true. whether to do horizontal pressure gradient
calculations (idealized)

fft_filter_lat 45. the latitude above which the polar filter is
turned on for global model

&bdy_control boundary condition control
spec_bdy_width 5 total number of rows for specified

boundary value nudging
spec_zone 1 number of points in specified zone (spec

b.c. option)
relax_zone 4 number of points in relaxation zone (spec

b.c. option)
specified (max_dom) .false. specified boundary conditions (only can

be used for to domain 1)
spec_exp 0. exponential multiplier for relaxation zone

ramp for specified=.t. (0.= linear ramp
default; 0.33=~3*dx exp decay factor)

 The above 5 namelists are used for real-
data runs only

periodic_x (max_dom) .false. periodic boundary conditions in x
direction

symmetric_xs (max_dom) .false. symmetric boundary conditions at x start
(west)

symmetric_xe (max_dom) .false. symmetric boundary conditions at x end
(east)

open_xs (max_dom) .false. open boundary conditions at x start (west)
open_xe (max_dom) .false. open boundary conditions at x end (east)
periodic_y (max_dom) .false. periodic boundary conditions in y

direction
symmetric_ys (max_dom) .false. symmetric boundary conditions at y start

(south)
symmetric_ye (max_dom) .false. symmetric boundary conditions at y end

(north)
open_ys (max_dom) .false. open boundary conditions at y start

(south)

MODEL

WRF-ARW V3: User’s Guide 5-42

open_ye (max_dom) .false. open boundary conditions at y end (north)
nested (max_dom) .false.,.true.,.true., nested boundary conditions (must be set to

.true. for nests)
polar .false. polar boundary condition (v=0 at

polarward-most v-point) for global
application

&namelist_quilt Option for asynchronized I/O for MPI
applications

nio_tasks_per_group 0 default value is 0: no quilting; > 0 quilting
I/O

nio_groups 1 default 1

&grib2
background_proc_id 255 Background generating process identifier,

typically defined by the originating center
to identify the background data that was
used in creating the data. This is octet 13
of Section 4 in the grib2 message

forecast_proc_id 255 Analysis or generating forecast process
identifier, typically defined by the
originating center to identify the forecast
process that was used to generate the data.
This is octet 14 of Section 4 in the grib2
message

production_status 255 Production status of processed data in the
grib2 message. See Code Table 1.3 of the
grib2 manual. This is octet 20 of Section 1
in the grib2 record

compression 40 The compression method to encode the
output grib2 message. Only 40 for
jpeg2000 or 41 for PNG are supported

&dfi_control digital filter option control (does not yet support nesting)
dfi_opt 3 which DFI option to use

0: no digital filter initialization
1: digital filter launch (DFL)
2: diabatic DFI (DDFI)
3: twice DFI (TDFI) (recommended)

dfi_nfilter 7 digital filter type: 0 – uniform; 1-
Lanczos; 2 – Hamming; 3 – Blackman; 4

MODEL

WRF-ARW V3: User’s Guide 5-43

– Kaiser; 5 – Potter; 6 – Dolph window; 7
– Dolph (recommended); 8 – recursive
high-order

dfi_write_filtered_
input

.true. whether to write wrfinput file with filtered
model state before beginning forecast

dfi_write_dfi_history .false. whether to write wrfout files during
filtering integration

dfi_cutoff_seconds 3600 cutoff period, in seconds, for the filter.
Should not be longer than the filter
window

dfi_time_dim 1000 maximum number of time steps for
filtering period, this value can be larger
than necessary

dfi_bckstop_year 2001 four-digit year of stop time for backward
DFI integration. For a model that starts
from 2001061112, this specifies 1 hour
backward integration

dfi_bckstop_month 06 two-digit month of stop time for backward
DFI integration

dfi_bckstop_day 11 two-digit day of stop time for backward
DFI integration

dfi_bckstop_hour 11 two-digit hour of stop time for backward
DFI integration

dfi_bckstop_minute 00 two-digit minute of stop time for
backward DFI integration

dfi_bckstop_second 00 two-digit second of stop time for
backward DFI integration

dfi_fwdstop_year 2001 four-digit year of stop time for forward
DFI integration. For a model that starts at
2001061112, this specifies 30 minutes of
forward integration

dfi_fwdstop_month 06 two-digit month of stop time for forward
DFI integration

dfi_fwdstop_day 11 two-digit day of stop time for forward DFI
integration

dfi_fwdstop_hour 12 two-digit hour of stop time for forward
DFI integration

dfi_fwdstop_minute 30 two-digit minute of stop time for forward
DFI integration

dfi_fwdstop_second 00 two-digit second of stop time for forward
DFI integration

MODEL

WRF-ARW V3: User’s Guide 5-44

List of Fields in WRF Output

List of Fields

The following is an edited output from netCDF command 'ncdump'. Note that valid output
fields will depend on the model options used.

ncdump -h wrfout_d01_yyyy_mm_dd-hh:mm:ss

 netcdf wrfout_d01_2000-01-24_12:00:00 {
dimensions:
 Time= UNLIMITED ; // (1 currently)
 DateStrLen= 19 ;
 west_east= 73 ;
 south_north= 60 ;
 west_east_stag= 74 ;
 bottom_top= 27 ;
 south_north_stag= 61 ;
 bottom_top_stag= 28 ;
 soil_layers_stag= 5 ;
variables:
 charTimes(Time, DateStrLen) ;
 floatLU_INDEX(Time, south_north, west_east) ;
 LU_INDEX:description= "LAND USE CATEGORY" ;
 LU_INDEX:units= "" ;
 floatU(Time, bottom_top, south_north, west_east_stag) ;
 U:description= "x-wind component" ;
 U:units= "m s-1" ;
 floatV(Time, bottom_top, south_north_stag, west_east) ;
 V:description= "y-wind component" ;
 V:units= "m s-1" ;
 floatW(Time, bottom_top_stag, south_north, west_east) ;
 W:description= "z-wind component" ;
 W:units= "m s-1" ;
 floatPH(Time, bottom_top_stag, south_north, west_east) ;
 PH:description= "perturbation geopotential" ;
 PH:units= "m2 s-2" ;
 floatPHB(Time, bottom_top_stag, south_north, west_east) ;
 PHB:description= "base-state geopotential" ;
 PHB:units= "m2 s-2" ;
 floatT(Time, bottom_top, south_north, west_east) ;
 T:description= "perturbation potential temperature(theta-t0)" ;
 T:units= "K" ;
 floatMU(Time, south_north, west_east) ;
 MU:description= "perturbation dry air mass in column" ;
 MU:units= "Pa" ;
 floatMUB(Time, south_north, west_east) ;
 MUB:description= "base state dry air mass in column" ;
 MUB:units= "Pa" ;
 floatNEST_POS(Time, south_north, west_east) ;
 NEST_POS:description= "-" ;
 NEST_POS:units= "-" ;
 floatP(Time, bottom_top, south_north, west_east) ;
 P:description= "perturbation pressure" ;
 P:units= "Pa" ;
 floatPB(Time, bottom_top, south_north, west_east) ;
 PB:description= "BASE STATE PRESSURE" ;
 PB:units= "Pa" ;
 floatSR(Time, south_north, west_east) ;
 SR:description= "fraction of frozen precipitation" ;
 SR:units= "-" ;
 floatFNM(Time, bottom_top) ;
 FNM:description= "upper weight for vertical stretching" ;

MODEL

WRF-ARW V3: User’s Guide 5-45

 FNM:units= "" ;
 floatFNP(Time, bottom_top) ;
 FNP:description= "lower weight for vertical stretching" ;
 FNP:units= "" ;
 floatRDNW(Time, bottom_top) ;
 RDNW:description= "inverse d(eta) values between full (w)
levels" ;
 RDNW:units= "" ;
 floatRDN(Time, bottom_top) ;
 RDN:description= "inverse d(eta) values between half (mass)
levels" ;
 RDN:units= "" ;
 floatDNW(Time, bottom_top) ;
 DNW:description= "d(eta) values between full (w) levels" ;
 DNW:units= "" ;
 floatDN(Time, bottom_top) ;
 DN:description= "d(eta) values between half (mass) levels" ;
 DN:units= "" ;
 floatZNU(Time, bottom_top) ;
 ZNU:description= "eta values on half (mass) levels" ;
 ZNU:units= "" ;
 floatZNW(Time, bottom_top_stag) ;
 ZNW:description= "eta values on full (w) levels" ;
 ZNW:units= "" ;
 floatCFN(Time) ;
 CFN:description= "extrapolation constant" ;
 CFN:units= "" ;
 floatCFN1(Time) ;
 CFN1:description= "extrapolation constant" ;
 CFN1:units= "" ;
 floatQ2(Time, south_north, west_east) ;
 Q2:description= "QV at 2 M" ;
 Q2:units= "kg kg-1" ;
 floatT2(Time, south_north, west_east) ;
 T2:description= "TEMP at 2 M" ;
 T2:units= "K" ;
 floatTH2(Time, south_north, west_east) ;
 TH2:description= "POT TEMP at 2 M" ;
 TH2:units= "K" ;
 floatPSFC(Time, south_north, west_east) ;
 PSFC:description= "SFC PRESSURE" ;
 PSFC:units= "Pa" ;
 floatU10(Time, south_north, west_east) ;
 U10:description= "U at 10 M" ;
 U10:units= "m s-1" ;
 floatV10(Time, south_north, west_east) ;
 V10:description= "V at 10 M" ;
 V10:units= "m s-1" ;
 floatRDX(Time) ;
 RDX:description= "INVERSE X GRID LENGTH" ;
 RDX:units= "" ;
 floatRDY(Time) ;
 RDY:description= "INVERSE Y GRID LENGTH" ;
 RDY:units= "" ;
 floatRESM(Time) ;
 RESM:description= "TIME WEIGHT CONSTANT FOR SMALL STEPS" ;
 RESM:units= "" ;
 floatZETATOP(Time) ;
 ZETATOP:description= "ZETA AT MODEL TOP" ;
 ZETATOP:units= "" ;
 floatCF1(Time) ;
 CF1:description= "2nd order extrapolation constant" ;
 CF1:units= "" ;
 floatCF2(Time) ;
 CF2:description= "2nd order extrapolation constant" ;

MODEL

WRF-ARW V3: User’s Guide 5-46

 CF2:units= "" ;
 floatCF3(Time) ;
 CF3:description= "2nd order extrapolation constant" ;
 CF3:units= "" ;
 intITIMESTEP(Time) ;
 ITIMESTEP:description= "" ;
 ITIMESTEP:units= "" ;
 floatXTIME(Time) ;
 XTIME:description= "minutes since simulation start" ;
 XTIME:units= "" ;
 floatQVAPOR(Time, bottom_top, south_north, west_east) ;
 QVAPOR:description= "Water vapor mixing ratio" ;
 QVAPOR:units= "kg kg-1" ;
 floatQCLOUD(Time, bottom_top, south_north, west_east) ;
 QCLOUD:description= "Cloud water mixing ratio" ;
 QCLOUD:units= "kg kg-1" ;
 floatQRAIN(Time, bottom_top, south_north, west_east) ;
 QRAIN:description= "Rain water mixing ratio" ;
 QRAIN:units= "kg kg-1" ;
 floatLANDMASK(Time, south_north, west_east) ;
 LANDMASK:description= "LAND MASK (1 FOR LAND, 0 FOR WATER)" ;
 LANDMASK:units= "" ;
 floatTSLB(Time, soil_layers_stag, south_north, west_east) ;
 TSLB:description= "SOIL TEMPERATURE" ;
 TSLB:units= "K" ;
 floatZS(Time, soil_layers_stag) ;
 ZS:description= "DEPTHS OF CENTERS OF SOIL LAYERS" ;
 ZS:units= "m" ;
 floatDZS(Time, soil_layers_stag) ;
 DZS:description= "THICKNESSES OF SOIL LAYERS" ;
 DZS:units= "m" ;
 floatSMOIS(Time, soil_layers_stag, south_north, west_east) ;
 SMOIS:description= "SOIL MOISTURE" ;
 SMOIS:units= "m3 m-3" ;
 floatSH2O(Time, soil_layers_stag, south_north, west_east) ;
 SH2O:description= "SOIL LIQUID WATER" ;
 SH2O:units= "m3 m-3" ;
 floatXICE(Time, south_north, west_east) ;
 XICE:description= "SEA ICE FLAG" ;
 XICE:units= "" ;
 floatSFROFF(Time, south_north, west_east) ;
 SFROFF:description= "SURFACE RUNOFF" ;
 SFROFF:units= "mm" ;
 floatUDROFF(Time, south_north, west_east) ;
 UDROFF:description= "UNDERGROUND RUNOFF" ;
 UDROFF:units= "mm" ;
 intIVGTYP(Time, south_north, west_east) ;
 IVGTYP:description= "DOMINANT VEGETATION CATEGORY" ;
 IVGTYP:units= "" ;
 intISLTYP(Time, south_north, west_east) ;
 ISLTYP:description= "DOMINANT SOIL CATEGORY" ;
 ISLTYP:units= "" ;
 floatVEGFRA(Time, south_north, west_east) ;
 VEGFRA:description= "VEGETATION FRACTION" ;
 VEGFRA:units= "" ;
 floatGRDFLX(Time, south_north, west_east) ;
 GRDFLX:description= "GROUND HEAT FLUX" ;
 GRDFLX:units= "W m-2" ;
 floatSNOW(Time, south_north, west_east) ;
 SNOW:description= "SNOW WATER EQUIVALENT" ;
 SNOW:units= "kg m-2" ;
 floatSNOWH(Time, south_north, west_east) ;
 SNOWH:description= "PHYSICAL SNOW DEPTH" ;
 SNOWH:units= "m" ;
 floatRHOSN(Time, south_north, west_east) ;

MODEL

WRF-ARW V3: User’s Guide 5-47

 RHOSN:description= " SNOW DENSITY" ;
 RHOSN:units= "kg m-3" ;
 floatCANWAT(Time, south_north, west_east) ;
 CANWAT:description= "CANOPY WATER" ;
 CANWAT:units= "kg m-2" ;
 floatSST(Time, south_north, west_east) ;
 SST:description= "SEA SURFACE TEMPERATURE" ;
 SST:units= "K" ;
 floatQNDROPSOURCE(Time, bottom_top, south_north, west_east) ;
 QNDROPSOURCE:description= "Droplet number source" ;
 QNDROPSOURCE:units= " /kg/s" ;
 floatMAPFAC_M(Time, south_north, west_east) ;
 MAPFAC_M:description= "Map scale factor on mass grid" ;
 MAPFAC_M:units= "" ;
 floatMAPFAC_U(Time, south_north, west_east_stag) ;
 MAPFAC_U:description= "Map scale factor on u-grid" ;
 MAPFAC_U:units= "" ;
 floatMAPFAC_V(Time, south_north_stag, west_east) ;
 MAPFAC_V:description= "Map scale factor on v-grid" ;
 MAPFAC_V:units= "" ;
 floatF(Time, south_north, west_east) ;
 F:description= "Coriolis sine latitude term" ;
 F:units= "s-1" ;
 floatE(Time, south_north, west_east) ;
 E:description= "Coriolis cosine latitude term" ;
 E:units= "s-1" ;
 floatSINALPHA(Time, south_north, west_east) ;
 SINALPHA:description= "Local sine of map rotation" ;
 SINALPHA:units= "" ;
 floatCOSALPHA(Time, south_north, west_east) ;
 COSALPHA:description= "Local cosine of map rotation" ;
 COSALPHA:units= "" ;
 floatHGT(Time, south_north, west_east) ;
 HGT:description= "Terrain Height" ;
 HGT:units= "m" ;
 floatTSK(Time, south_north, west_east) ;
 TSK:description= "SURFACE SKIN TEMPERATURE" ;
 TSK:units= "K" ;
 floatP_TOP(Time) ;
 P_TOP:description= "PRESSURE TOP OF THE MODEL" ;
 P_TOP:units= "Pa" ;
 floatRAINC(Time, south_north, west_east) ;
 RAINC:description= "ACCUMULATED TOTAL CUMULUS PRECIPITATION" ;
 RAINC:units= "mm" ;
 floatRAINNC(Time, south_north, west_east) ;
 RAINNC:description= "ACCUMULATED TOTAL GRID SCALE
PRECIPITATION" ;
 RAINNC:units= "mm" ;
 floatSNOWNC(Time, south_north, west_east) ;
 SNOWNC:description="ACCUMULATED TOTAL GRIDSCALE SNOW AND ICE" ;
 SNOWNC:units= "mm" ;
 floatGRAUPELNC(Time, south_north, west_east) ;
 GRAUPELNC:description= "ACCUMULATED TOTAL GRID SCALE GRAUPEL" ;
 GRAUPELNC:units= "mm" ;
 floatSWDOWN(Time, south_north, west_east) ;
 SWDOWN:description= "DOWNWARD SHORT WAVE FLUX AT GROUND
SURFACE" ;
 SWDOWN:units= "W m-2" ;
 floatGLW(Time, south_north, west_east) ;
 GLW:description= "DOWNWARD LONG WAVE FLUX AT GROUND SURFACE" ;
 GLW:units= "W m-2" ;
 floatOLR(Time, south_north, west_east) ;
 OLR:description= "TOA OUTGOING LONG WAVE" ;
 OLR:units= "W m-2" ;
 floatXLAT(Time, south_north, west_east) ;

MODEL

WRF-ARW V3: User’s Guide 5-48

 XLAT:description= "LATITUDE, SOUTH IS NEGATIVE" ;
 XLAT:units= "degree_north" ;
 floatXLONG(Time, south_north, west_east) ;
 XLONG:description= "LONGITUDE, WEST IS NEGATIVE" ;
 XLONG:units= "degree_east" ;
 floatXLAT_U(Time, south_north, west_east_stag) ;
 XLAT_U:description= "LATITUDE, SOUTH IS NEGATIVE" ;
 XLAT_U:units= "degree_north" ;
 floatXLONG_U(Time, south_north, west_east_stag) ;
 XLONG_U:description= "LONGITUDE, WEST IS NEGATIVE" ;
 XLONG_U:units= "degree_east" ;
 floatXLAT_V(Time, south_north_stag, west_east) ;
 XLAT_V:description= "LATITUDE, SOUTH IS NEGATIVE" ;
 XLAT_V:units= "degree_north" ;
 floatXLONG_V(Time, south_north_stag, west_east) ;
 XLONG_V:description= "LONGITUDE, WEST IS NEGATIVE" ;
 XLONG_V:units= "degree_east" ;
 floatALBEDO(Time, south_north, west_east) ;
 ALBEDO:description= "ALBEDO" ;
 ALBEDO:units= "-" ;
 floatTMN(Time, south_north, west_east) ;
 TMN:description= "SOIL TEMPERATURE AT LOWER BOUNDARY" ;
 TMN:units= "K" ;
 floatXLAND(Time, south_north, west_east) ;
 XLAND:description= "LAND MASK (1 FOR LAND, 2 FOR WATER)" ;
 XLAND:units= "" ;
 floatUST(Time, south_north, west_east) ;
 UST:description= "U* IN SIMILARITY THEORY" ;
 UST:units= "m s-1" ;
 floatPBLH(Time, south_north, west_east) ;
 PBLH:description= "PBL HEIGHT" ;
 PBLH:units= "m" ;
 floatHFX(Time, south_north, west_east) ;
 HFX:description= "UPWARD HEAT FLUX AT THE SURFACE" ;
 HFX:units= "W m-2" ;
 floatQFX(Time, south_north, west_east) ;
 QFX:description= "UPWARD MOISTURE FLUX AT THE SURFACE" ;
 QFX:units= "kg m-2 s-1" ;
 floatLH(Time, south_north, west_east) ;
 LH:description= "LATENT HEAT FLUX AT THE SURFACE" ;
 LH:units= "W m-2" ;
 floatSNOWC(Time, south_north, west_east) ;
 SNOWC:description= "FLAG INDICATING SNOW COVERAGE (1 FOR SNOW
COVER)" ;
 SNOWC:units= "" ;
}

Special WRF Output Variables

WRF model outputs the state variables defined in the Registry file, and these state
variables are used in the model's prognostic equations. Some of these variables are
perturbation fields. Therefore some definition for reconstructing meteorological variables
is necessary. In particular, the definitions for the following variables are:

total geopotential PH + PHB

total geopotential height in m (PH + PHB) / 9.81

MODEL

WRF-ARW V3: User’s Guide 5-49

total potential temperature in_ K T + 300

total pressure in mb (P + PB) * 0.01

The definition for map projection options:

map_proj = 1: Lambert Conformal

map_proj = 2: Polar Stereographic

map_proj = 3: Mercator

map_proj = 10: latitude and longitude

MODEL

WRF-ARW V3: User’s Guide 5-50

List of Global Attributes

// global attributes:
 :TITLE= " OUTPUT FROM WRF V3.0 MODEL" ;
 :START_DATE= "2000-01-24_12:00:00" ;
 :SIMULATION_START_DATE= "2000-01-24_12:00:00" ;
 :WEST-EAST_GRID_DIMENSION= 74 ;
 :SOUTH-NORTH_GRID_DIMENSION= 61 ;
 :BOTTOM-TOP_GRID_DIMENSION= 28 ;
 :DX= 30000.f ;
 :DY= 30000.f ;
 :GRIDTYPE= "C" ;
 :DYN_OPT= 2 ;
 :DIFF_OPT= 1 ;
 :KM_OPT= 4 ;
 :DAMP_OPT= 0 ;
 :KHDIF= 0.f ;
 :KVDIF= 0.f ;
 :MP_PHYSICS= 3 ;
 :RA_LW_PHYSICS= 0 ;
 :RA_SW_PHYSICS= 1 ;
 :SF_SFCLAY_PHYSICS= 1 ;
 :SF_SURFACE_PHYSICS= 1 ;
 :BL_PBL_PHYSICS= 1 ;
 :CU_PHYSICS= 1 ;
 :SURFACE_INPUT_SOURCE= 1 ;
 :SST_UPDATE= 0 ;
 :GRID_FDDA= 0 ;
 :GFDDA_INTERVAL_M= 0 ;
 :GFDDA_END_H= 0 ;
 :UCMCALL= 0 ;
 :FEEDBACK= 1 ;
 :SMOOTH_OPTION= 0 ;
 :SWRAD_SCAT= 1.f ;
 :W_DAMPING= 0 ;
 :PD_MOIST= 1 ;
 :PD_SCALAR= 0 ;
 :PD_TKE= 0 ;
 :DIFF_6TH_OPT= 0 ;
 :DIFF_6TH_FACTOR= 0.12f ;
 :OBS_NUDGE_OPT= 0 ;
 :WEST-EAST_PATCH_START_UNSTAG= 1 ;
 :WEST-EAST_PATCH_END_UNSTAG= 73 ;
 :WEST-EAST_PATCH_START_STAG= 1 ;
 :WEST-EAST_PATCH_END_STAG= 74 ;
 :SOUTH-NORTH_PATCH_START_UNSTAG= 1 ;
 :SOUTH-NORTH_PATCH_END_UNSTAG= 60 ;
 :SOUTH-NORTH_PATCH_START_STAG= 1 ;
 :SOUTH-NORTH_PATCH_END_STAG= 61 ;
 :BOTTOM-TOP_PATCH_START_UNSTAG= 1 ;
 :BOTTOM-TOP_PATCH_END_UNSTAG= 27 ;
 :BOTTOM-TOP_PATCH_START_STAG= 1 ;
 :BOTTOM-TOP_PATCH_END_STAG= 28 ;
 :GRID_ID= 1 ;
 :PARENT_ID= 0 ;
 :I_PARENT_START= 0 ;
 :J_PARENT_START= 0 ;
 :PARENT_GRID_RATIO= 1 ;
 :DT= 180.f ;
 :CEN_LAT= 34.83001f ;
 :CEN_LON= -81.03f ;
 :TRUELAT1= 30.f ;

MODEL

WRF-ARW V3: User’s Guide 5-51

 :TRUELAT2= 60.f ;
 :MOAD_CEN_LAT= 34.83001f ;
 :STAND_LON= -98.f ;
 :GMT= 12.f ;
 :JULYR= 2000 ;
 :JULDAY= 24 ;
 :MAP_PROJ= 1 ;
 :MMINLU= "USGS" ;
 :ISWATER= 16 ;
 :ISICE= 24 ;
 :ISURBAN= 1 ;
 :ISOILWATER= 14 ;

MODEL

WRF-ARW V3: User’s Guide 5-52

WRF-VAR

WRF-ARW V3: User’s Guide 6-1

Chapter 6: WRF-Var

Table of Contents

• Introduction
• Goals Of This WRF-Var Tutorial
• Tutorial Schedule
• Download Test Data
• Download Source code
• WRF-Var Observation Preprocessor (OBSPROC)
• Setting up WRF-Var
• Run WRF-Var con200 Case Study
• WRF-Var Diagnostics
• Updating WRF lateral boundary conditions
• Additional WRF-Var Exercises

Introduction

Data assimilation is the technique by which observations are combined with an NWP
product (the first guess or background forecast) and their respective error statistics to
provide an improved estimate (the analysis) of the atmospheric (or oceanic, Jovian,
whatever) state. Variational (Var) data assimilation achieves this through the iterative
minimization of a prescribed cost (or penalty) function. Differences between the analysis
and observations/first guess are penalized (damped) according to their perceived error.
The difference between three-dimensional (3D-Var) and four-dimensional (4D-Var) data
assimilation is the use of a numerical forecast model in the latter.

MMM Division of NCAR supports a unified (global/regional, multi-model, 3/4D-Var)
model-space variational data assimilation system (WRF-Var) for use by NCAR staff and
collaborators, and is also freely available to the general community, together with further
documentation, test results, plans etc., from the WRF-Var web-page http://www.wrf-
model.org/development/group/WG4. The documentation you are reading is the "Users
Guide" for those interested in downloading and running the code. This text also forms the
documentation for the online tutorial. The online WRF-Var tutorial is recommended for
people who are

• Potential users of WRF-Var who want to learn how to run WRF-Var by
themselves;

http://www.wrf-model.org/development/group/WG4
http://www.wrf-model.org/development/group/WG4
http://www.wrf-model.org/development/group/WG4

WRF-VAR

WRF-ARW V3: User’s Guide 6-2

• New users who plan on coming to the NCAR WRF-Var tutorial - for you we
recommend that you try this tutorial before you come to NCAR whether you are
able or unable to register for practice sessions, and this will hopefully help you to
understand the lectures a lot better;

• Users who are looking for references to diagnostics, namelist options etc - look

for 'Miscellanies' and 'Trouble Shooting' sections on each page.

If you are a new WRF-Var user, this tutorial is designed to take you through WRF-Var-
related programs step by step. If you are familiar with 3/4D-Var systems, you may find
useful information here too as the WRF-Var implementation of 3/4D-Var contains a
number of unique capabilities (e.g. multiple background error models, WRF-framework
based parallelism/IO, direct radar reflectivity assimilation). If you do not know anything
about WRF-Var, you should first read the WRF-Var tutorial presentations available from
the WRF WRF-Var web page http://www.wrf-model.org/development/group/WG4.

Goals of this WRF-Var Tutorial

In this WRF-Var tutorial, you will learn how to run the various components of WRF-Var
system. In the online tutorial, you are supplied with a test case including the following
input data: a) observation file, b) WRF NETCDF background file (previous forecast used
as a first guess of the analysis), and c) Background error statistics (climatological
estimate of errors in the background file). In your own work, you will need to create these
input files yourselves.

Various components of the WRF-Var system are shown in blue in the sketch below,
together with their relationship with rest of the WRF system.

http://www.wrf-model.org/development/group/WG4

WRF-VAR

WRF-ARW V3: User’s Guide 6-3

Before using your own data, we suggest that you start by running through the WRF-Var
related programs at least once using the supplied test case. This serves two purposes:
First, you can learn how to run the programs with data we have tested ourselves, and
second you can test whether your computer is adequate to run the entire modeling
system. After you have done this tutorial, you can try

• Running other, more computationally intensive, case studies.

• Experimenting with some of the many namelist variables.

WARNING: It is impossible to test every code upgrade with every permutation of
computer, compiler, number of processors, case, namelist option, etc. The “namelist”
options that are supported are indicated in the “Registry.wrfvar” and these are the
default options. WRF-Var may be run with options other than the default option by
specifying its value via the “wrapper” script. Sample of “wrapper” scripts are
included in “var/scripts/wrappers” directory. For running “WRF-Var”, you may like
to adopt a suitable “wrapper” script in this directory and modify it depending on your
case.

• Running with your own domain. Hopefully, our test cases will have prepared you

(and us!) for the variety of ways in which you may wish to run WRF-Var. Please
let us know your experiences.

WRF-VAR

WRF-ARW V3: User’s Guide 6-4

As a professional courtesy, we request that you include the following reference in any
publications that makes use of any component of the community WRF-Var system:

Barker, D.M., W. Huang, Y. R. Guo, and Q. N. Xiao., 2004: A Three-Dimensional
(3DVAR)Data Assimilation System For Use With MM5: Implementation and Initial
Results. Mon. Wea. Rev., 132, 897-914.

As you are going through the online tutorial, you will download program tar files and
data to your local computer, compile and run on it. Do you know what machine you are
going to use to run WRF-Var related programs? What compilers do you have on the
machine?

Running WRF-Var requires a Fortran 90 compiler. We currently support the following
platforms: IBM, DEC, SGI, PC/Linux (with Portland Group compiler), Cray-X1, and
Apple G4/G5. Please let us know if this does not meet your requirements, and we will
attempt to add other machines to our list of supported architectures as resources allow.
Although we are interested to hear of your experiences modifying compile options, we do
not yet recommend making changes to the configure file used to compile WRF-Var.

Tutorial Schedule

We recommend you follow the online tutorial in the order of the sections listed below.
This tutorial does not cover parts of the larger WRF system, required if you wish to go
beyond the test case supplied here, e.g. the WRF Pre-processing System (WPS) and real
pre-preprocessors are needed to create your own background field.

The online tutorial is broken down into the following sections.

a) Download Test Data: This page describes how to access test data sets to run
WRF-Var.

b) Download Source Code: This page describes how to access source code.
c) WRF-Var observation pre-processor (obsproc): This page describes how to

create an observation file for subsequent use in WRF-Var, and plot observation
distributions.

d) Setting up WRF-Var: In this part of the tutorial you will compile the codes
that form the WRF-Var system.

e) Single Observation Test for WRF-Var In this part of the tutorial you will
compile the codes that form the WRF-Var system.

f) Run WRF-Var for con200 Case Study: In this section, you will learn how to
run WRF-Var for a test case.

g) WRF-Var Diagnostics: WRF-Var produces a number of diagnostics file that
contain useful information on how the assimilation has performed. This section
will introduce you to some of these files, and what to look for.

WRF-VAR

WRF-ARW V3: User’s Guide 6-5

h) Updating WRF lateral boundary conditions: Before using WRF-Var analysis
as the initial conditions for a WRF forecast, the lateral boundary file must be
modified to take account of the differences between first guess and analysis.

i) Additional WRF-Var exercises: In this section you will learn more about
WRF-Var, like how to run single observations test, response of background error
scaling & variance, minimization aspect and how to suppress a particular type of
data in WRF-Var etc

Download Test Data

This page describes how to access test datasets required to run WRF-Var. If you do not
know anything about WRF-Var, you should first read the Introduction section.

Required Data

The WRF-Var system requires three input files to run: a) A WRF first guess input format
file output from either WPS (cold-start) or WRF itself (warm-start), b) Observations
(in BUFR or ASCII little_r format), and c) A background error statistics file (containing
background error covariance currently calculated via the NMC-method), using “gen_be”
utility of WRF-Var. The use of these three data files in WRF-Var is described later in the
tutorial.

The following table summarizes the above info:

Input Data Format Created By

First Guess

NETCDF

WRF Preprocessing System
(WPS)

or

WRF

Observations

ASCII

(PREPBUFR also possible)

Observation Preprocessor
(OBSPROC)

Background Error
Statistics

Binary

WRF-Var gen_be utility

WRF-VAR

WRF-ARW V3: User’s Guide 6-6

In the online tutorial, example input files are given. In your own work after the tutorial,
you will need to create these input data sets yourselves.

Downloading Test Data

In the online tutorial, you will store data in a directory defined by the environment
variable $DAT_DIR. This directory can be at any location and it should have read access.
To run this case it is desired to have at least 100MB of memory to be made available on
your machine (maybe much more for other cases). Type

 setenv DAT_DIR dat_dir

Here, "dat_dir" is your own chosen directory where you aim to store the WRF-Var input
data. Create this directory, if it does not exist, and type

 cd $DAT_DIR

Download the tutorial test data for a “con200” case which is valid 00 UTC 02 January
2007 test case from

http://www.mmm.ucar.edu/wrf/src/data/WRFV3-Var-testdata.tar.gz

Once you have downloaded “WRFV3-Var-testdata.tar.gz” file to $DAT_DIR, then extract
it by typing

 gunzip WRFV3-Var-testdata.tar.gz

 tar -xvf WRFV3-Var-testdata.tar

You should then see a number of data files that will be used in the tutorial. To save space
type

 rm -rf WRFV3-Var-testdata.tar

What next?

Note: You may find the following three sub-directories/files under “$DAT_DIR”

 ob /2007010200/ob.little_r ### Observation data in “little_r” format

 rc /2007010200/wrfinput_d01 & wrfbdy_d01 ### First guess & lateral boundary file

 be/be.dat ### Background error file

http://www.mmm.ucar.edu/wrf/src/data/WRFV3-testdata.tar.gz

WRF-VAR

WRF-ARW V3: User’s Guide 6-7

Download Source code

http://www.mmm.ucar.edu/wrf/src/data/WRFV3-Var.tar.gz

Once you have downloaded source code file “WRFV3-Var.tar.gz”, next step is to extract
the source code by typing

 gunzip WRFV3-Var.tar.gz

 tar -xvf WRFV3-Var.tar

You should see a sub-directory "var". Place this under your WRFV3 directory (which your
 previously downloaded) The subdirectory “var” is the main sub-directory holding
source code for both WRF-Var and “obsproc”, the observation pre-processor for WRF-Var
observation data input. To save the space execute following command.

 rm -rf WRFV3-Var.tar

WRF-Var Observation Preprocessor (OBSPROC)

Having downloaded successfully the test data and the source code, first step is to process
observation input for WRF-Var by compiling and running the obs pre-processor
(OBSPROC).

Compiling OBSPROC code

WRF-Var observation preprocessor is residing under “var/obsproc” directory

 cd var/obsproc

Read instructions in “README” file to compile OBSPROC and proceed by typing

 make

Once this is complete (a minute or less on most machines), you can check for the
presence of the OBSPROC executable by issuing following command (from
“var/obsproc” directory)

 ls -l src/3dvar_obs.exe

Running OBSPROC:

OK, so now you have compiled “OBSPROC”. Before running “3dvar_obs.exe”, create
the desired namelist file namelist.3dvar_obs (see README.namelist for details);

http://www.mmm.ucar.edu/wrf/src/data/WRFV3.tar.gz

WRF-VAR

WRF-ARW V3: User’s Guide 6-8

For your reference in “var/obsproc” directory a file named “namelist_3dvar_obs.wrfvar-
tut” have already been created. Thus, proceed as follows.

 cp namelist.3dvar_obs.wrfvar-tut namelist.3dvar_obs

edit namelist.3dvar_obs

In this namelist file, all you need is to change the full path and name of the observation
file (ob.little_r) depending upon where this file is downloaded and where it finally
resides.

To run OBSPROC, type

 3dvar_obs.exe >&! 3dvar_obs.out

Looking at WRF-Var OBSPROC output.

Once 3dvar_obs.exe has completed successfully, you will see an observation data file:
obs_gts.3dvar, in “obsproc” directory. This is the input observation file to WRF-Var.
Before running WRF-Var, you may like to learn more about various types of data you are
aiming to assimilate for this case, its geographical distribution etc. This file is in ASCII
format and so you can easily view it. To have a graphical view about the content of this
file, there is a “MAP_plot” utility to look at the data distribution for each type of
observations. To exercise this, proceed as follows.

1) cd MAP_plot;

2) Modify the script Map.csh to set the time window and full path of input observation
file (obs_gts.3dvar). Precisely, the following string in this script as follows.

 TIME_WINDOW_MIN = ‘2007010121’

 TIME_ANALYSIS = ‘2007010200’

 TIME_WINDOW_MAX = ‘2007010203’

 OBSDATA = ./obs_gts.3dvar

3) Type

Map.csh

Note: the configure.user will be automatically picked up for your computer system
when you type Map.csh;

WRF-VAR

WRF-ARW V3: User’s Guide 6-9

4) When the job has completed, you will have a gmeta file gmeta.{analysis_time}
corresponding to analysis_time=2007010200. This contains plots of data distribution
for each type of observations contained in the OBS data file: obs_gts.3dvar. To view
this, type

idt gmeta.2007010200

It will display (panel by panel) geographical distribution of various types of data which
are listed in the header of “obs_gts.3dvar”. Following is the geographic distribution of
“sonde” observations for this case.

Saving necessary file for WRF-Var and clean OBSPROC

In this tutorial, we are storing data in a directory defined by the environment variable
$DAT_DIR. After creating successfully, your own observation file (obs_gts.3dvar), copy
it to $DAT_DIR using the command (from “obsproc” directory)

 mv obs_gts.3dvar $DAT_DIR/ob/2007010200/ob.ascii

Finally, to clean up the “var/obsproc” directory, type following command in the same
directory

 make clean

WRF-VAR

WRF-ARW V3: User’s Guide 6-10

Miscellanies:

1) When you run 3dvar_obs.exe, and you did not obtain the file obs_gts.3dvar,
please check 3dvar_obs.out file to see where the program aborted. Usually there is
information in this file to tell you what is wrong;

2) When you run 3dvar_obs.exe and got an error as 'Error in NAMELIST record 2'
in 3dvar_obs.out file, please check if your namelist.3dvar_obs file matches with
the Makefile settings. Either your namelist.3dvar_obs file or Makefile need to be
modified, then re-compile and re-run the job;

3) From the *.diag files, you may find which observation report caused the failure of
job.

4) In most cases, the job failure was caused by incorrect input file names, or the
specified analysis time, time window, etc. in innamelist.3dvar_obs;

5) If users still cannot figure out the troubles, please inform us and pass us your
input files including the namelist file, and printed file 3dvar_obs.out.

What next?

OK, you have now created the observation file and looked at some plots of observations,
now you are ready to move on to setting up WRF-Var.

Setting up WRF-Var

In this part of the tutorial you will compile WRF-Var code.

Compile WRF-Var code

Proceed as follows while in the main WRFV3 directory:

 setenv WRF_DA_CORE 1

 source var/build/setup.csh

 ./configure

You will then see a list of options, depending on whether you want to run single
processor, with different compilers etc. Choose proper option suiting your requirements.

In this tutorial session, you will be running WRF-Var in single processor mode.
Therefore, enter 1 (single-threaded) at the prompt. This will automatically create a file
configure.wrf in the main WRFV3 directory. Check it with the following command:

 ls -l configure.wrf

We recommend you to run WRF-Var in single processor mode first, but later if you want
you can run WRF-Var on distributed memory machines by recompiling it appropriately.

WRF-VAR

WRF-ARW V3: User’s Guide 6-11

For compilation of WRF-Var code type (from the main WRFV3 directory)

 ./compile all_wrfvar

Successful compilation of ‘all_wrfvar” will produce several executables in “var/da”
directory including “da_wrfvar.exe”. You can list these executables by issuing the
command (from the main WRFV3 directory)

 ls -l var/da/*exe

After successful compilation of WRF-Var you are ready to run WRF-Var for the test
case. The WRF-Var system is run through a suitable wrapper script, which activates
various standard scripts residing in “WRFV3/var/scripts” directory.

Thus to run any case like the tutorial test case in this tutorial exercise, user is supposed to
write a suitable wrapper script and execute this script. For example, the wrapper script for
running “con200”, the tutorial test case is located at:

WRFV3/var/scripts/wrappers/da_run_suite_wrapper_con200.ksh

You need to modify this wrapper script for various job details defined via different
environment variables in this wrapper script. The user should also be able to run WRF-
Var with namelist options other than its pre-set default values, which are defined in
WRFV3/Registry/Registry.wrfvar file. It is done by suitably defining the desired
environment variables appropriate for your own application. Examples include changing
data directory, source code location, experiment run area, east-west south-north, vertical
dimension of your domain etc. All non-default namelist options, which user wanted to set
via wrapper script will show up in the WRF-Var namelist (namelist.input) file, which is
created in the run directory ($RUN_DIR) defined via the wrapper script.

Note: As a rule any WRF-Var namelist option should always be set in wrapper script
using upper case letters preceded by “NL” string. For example for “con200” case the
grid size dimensions in x-direction is 200000 m and the corresponding WRF-Var
namelist variable name is “dx”. This is specified in wrapper script as “export
NL_DX=200000”.

WRF-Var system uses WRF framework to define and perform parallel, I/O functions.
This is fairly transparent in the WRF-Var code. At run time, WRF-Var requires one to
specify the grid dimensions at run-time. This is communicated to WRF-Var system via
the wrapper script like for this case as follows.

export NL_E_WE=45

export NL_E_SN=45

export NL_E_VERT=28\

WRF-VAR

WRF-ARW V3: User’s Guide 6-12

Thus user needs to change these parameters to run their own case.

Note: If this grid dimensions do not mach with the dimensions written in the first guess
(FG) input file, WRF-Var will abort with proper diagnostic message.

Having compiled WRF-Var and familiarized yourself with the setting of various
environment variables in wrapper script, it’s time to run your test case.

Run WRF-Var con200 case Study

In this section, you will learn how to run WRF-Var using observations and a first guess
from a low-resolution (200 km) CONUS domain (see below).

By this stage you have successfully created the three input files (first guess, observation
and background error statistics files in directory $DAT_DIR) required to run WRF-Var.
Also, you have successfully downloaded and compiled the WRF-Var code. If this is
correct, we are ready to learn how to run WRF-Var.

The Case

The data for this case is valid at 00 UTC 2nd January 2007. The first guess comes from
the NCEP global final analysis system (FNL), passed through the WRF-WPS and real
packages. The first-guess level 18 potential temperature field is shown below, illustrating
the domain:

WRF-VAR

WRF-ARW V3: User’s Guide 6-13

The intention of running this test-case is to provide a simplified, computationally cheap
application in order to train potential uses of WRF-Var (this case uses only a small
fraction of WRF-Var capabilities).

Note: In WRF-Var various NCL scripts are included under var/graphics/ncl sub-directory
to display results.

Changes required in wrapper script to run con200 case:

Following environment variables needs to be set in

WRFV3/var/scripts/wrappers/da_run_suite_wrapper_con200.ksh script depending upon
your case.

 REL_DIR - Full path of the parent code directory

WRFVAR_DIR - Full directory path of wrfvar under $REL_DIR

DAT_DIR - Full path of data input holding ob, be, rc directories

WRF-VAR

WRF-ARW V3: User’s Guide 6-14

REGION - String representing region under $DAT_DIR

OB_DIR - Full path for Observation directory

RC_DIR - Full path for “FG” directory

BE_DIR - Full path for “background error (BE)” directory

INITIAL_DATE - Initial date for running WRF-Var

FINAL_DATE - Final date for running WRF-Var

Following environment variables are optional with default values shown in bracket:

EXPT - Experiment ID (expt)

RUN_DIR - Full path for run directory ($DAT_DIR/$REGION/expt/test_$NUM_PROC)

FC_DIR - Analysis output directory ($DAT_DIR/$REGION/expt/fc)

Note: Since output is written in $RUN_DIR, user has to ensure that this directory/area
has proper write permission.

Run WRF-Var

Once you have set the necessary environment variables, in
“da_run_suite_wrapper_con200.ksh” script, you can run this case by typing

 da_run_suite_wrapper_con200.ksh

in WRFV3/var/scripts/wrappers subdirectory or from the directory where your modified
wrapper script is located.

Successful completion of job results in a number of output diagnostic files in
${RUN_DIR} directory. The final analysis file (wrfinput_d01) will appear under
$FC_DIR/2007010200 directory. Various textual diagnostics output files will be
explained in the next section (WRF-Var Diagnostics). Here, we merely wish to run WRF-
Var for this case.

In order to understand the role of various important WRF-Var options, try re-running
WRF-Var by changing different namelist options via wrapper script. For example,
making WRF-Var convergence criteria more stringent by reducing the value of “EPS” to
e.g. 0.0001 by setting "NL_EPS=0.0001" in your wrapper script. If WRF-Var has not
converged by the maximum number of iterations (NTMAX=200) then you may need to
increase the value of NTMAX variable by setting "export NL_NTMAX=500" in your

WRF-VAR

WRF-ARW V3: User’s Guide 6-15

wrapper script and may like to run the case again this case. Last section of this tutorial
deals with many such WRF-Var additional exercises.

Note: You may like to change “RUN_DIR” environment variable to store results
separately for each run. In your wrapper script by setting the option “CLEAN=true”, you
can save lot of space as this option removes contents of “working” directory.

v. What next?

Having run WRF-Var, you should now spend time looking at some of the diagnostic
output files created by WRF-Var.

WRF-Var Diagnostics

WRF-Var produces a number of diagnostic files that contain useful information on how
the data assimilation has performed. This section will introduce you to some of these
files, and what to look for.

Which are the important diagnostic files to look for?

Having run WRF-Var, it is important to check a number of output files to see if the
assimilation appears sensible. Change directory to where you ran this case:

 cd ${RUN_DIR}/2007010200/wrfvar

 ls -l

You will see something like the following:

total 10880
-rw-r--r-- 1 rizvi ncar 280 Mar 18 15:41 cost_fn
-rw-r--r-- 1 rizvi ncar 247 Mar 18 15:41 grad_fn
-rw-r--r-- 1 rizvi ncar 9048641 Mar 18 15:41 gts_omb_oma
-rw-r--r-- 1 rizvi ncar 4156 Mar 18 15:41 index.html
-rw-r--r-- 1 rizvi ncar 1942 Mar 18 15:41 namelist.input
-rw-r--r-- 1 rizvi ncar 76986 Mar 18 15:41 namelist.output
drwxr-xr-x 2 rizvi ncar 65536 Mar 18 15:41 rsl
-rw-r--r-- 1 rizvi ncar 22730 Mar 18 15:41 statistics
drwxr-xr-x 2 rizvi ncar 65536 Mar 18 15:41 trace
drwxr-xr-x 3 rizvi ncar 65536 Mar 18 15:41 working

Content of some useful diagnostic files are as follows:

cost_fn & grad_fn: These files hold (in ASCII format) WRF-Var cost & gradient
function values respectively for the first and last iterations. However, if you run with
“NL_CALCULATE_CG_COST_FN=true”, it lists these values for each iterations. For

WRF-VAR

WRF-ARW V3: User’s Guide 6-16

visualization purpose, sometimes it is good to run WRF-Var with this option, as it will
list the cost and gradient function for each iteration. Following NCL script may be used
to plot the content of “cont_fn” & “grad_fn”, if these files are generated with
“NL_CALCULATE_CG_COST_FN=true”.

“WRFV3/var/graphcs/ncl/plot_cost_grad_fn.ncl”

Note: Make sure that you removed first two records (header) in “cost_fn” & “grad_fn”.
Also you need to specify the directory name for these two files.

gts_omb_oma: It holds (in ASCII format) information of each type of observations, like
its value, quality, observation error, observation minus background (OMB) &
observation minus analysis (OMA). This information is very useful for (both analysis or
forecasts) verification purposes.

namelist.input: WRF-Var input namelist file. It displays all the non-default options
which user defined. If any of your namelist defined options did not appear in this file, you
may like to check its name and match it with the “WRFV3/Registry/Registry.wrfvar”.

namelist.output: Consolidated list of all the namelist options used.

rsl: Directory containing information of standard WRF-Var output from individual
processors. It contains host of information on number of observations, minimization,
timings etc. Additional diagnostics may be printed in these files by including various
“print” WRF-Var namelist options. TO learn more about these additional “print” options,
search “print_” string in “WRFV3/Registry/Registry.wrfvar”.

statistics: Text file containing OMB (OI), OMA (OA) statistics (minimum, maximum,
mean and standard deviation) for each observation type and variable. This information is
very useful in diagnosing how WRF-Var has used different components of the observing
system. Also contained are the analysis minus background (A-B) statistics i.e. statistics of
the analysis increments for each model variable at each model level. This information is
very useful in checking the range of analysis increment values found in the analysis, and
where they are in the WRF-model grid space.

Where is the final analysis file?

The final analysis file resides as “$FC_DIR/2007010200/wrfinput_d01”. It is in WRF
(NETCDF) format. It me be visualized using following NCL script.

“WRFV3/var/graphcs/ncl/WRF-Var_plot.ncl”

You need to specify the analsyis_file name, its full path etc. The details are listed in this
script as comments.

WRF-VAR

WRF-ARW V3: User’s Guide 6-17

As an example, if you are aiming to display U-component of the analysis at level 18,
execute following command after modifying the scrip “WRFV3/var/graphcs/ncl/WRF-
Var_plot.ncl”

 ncl WRF-Var_plot.ncl

It will display like:

You may like to change the variable name, level etc in this script to display the variable
of you’re your choice at the desired sigma level.

Take time to look through the textual output files to ensure you understand how WRF-
Var has performed. For example,

How closely has WRF-Var fitted individual observation types? . Look at the statistics
file to compare the O-B and O-A statistics.

How big are the analysis increments? Again, look in the statistics file to see
minimum/maximum values of A-B for each variable at various levels. It will give you a

WRF-VAR

WRF-ARW V3: User’s Guide 6-18

feel of the impact of input observation data you assimilated via WRF-Var by modifying
the input analysis first guess.

How long did WRF-Var take to converge? Does it really converge? You will get the
answers of all these questions by looking into rsl-files, as it indicates the number of
iterations taken by WRF-Var to converge. If this is the same as the maximum number of
iterations specified in the namelist (NTMAX) or its default value (=200) set in
WRFV3/Registry/Registry.wrfvar”, then it means that the analysis solution did not
converge. If so, so you may like to increase the value of “NTAMAX” and rerun your case
to ensure that the convergence is achieved.

Plotting WRF-Var analysis increments

A good visual way of seeing the impact of assimilation of observations is to plot the
analysis increments (i.e. analysis minus first guess difference). There are many different
graphics packages used (e.g. RIP, NCL, GRADS etc) that can do this. The plot of level
18 theta increments below was produced using the particular NCL script. This script is
located at

“WRFV3/var/graphcs/ncl/WRF-Var_plot.ncl”

You need to modify this script to fix the full path for first_guess & analysis files. You
may also like to modify the display level by setting “kl” and the name of the variable to
display by setting “var”. Further details are given in this script.

If you are aiming to display increment of potential temperature at level 18, after
modifying “WRFV3/var/graphcs/ncl/WRF-Var_plot.ncl” suitably,

When you execute the following command from “WRFV3/var/graphics/ncl”.

 ncl WRF-Var_plot.ncl

The plot created will looks as follows:

WRF-VAR

WRF-ARW V3: User’s Guide 6-19

Note: Higher the analysis increments, more is the data impact in that region.

What next?

OK, you have run WRF-Var, checked out the diagnostics and are confident things are
OK. Now you are ready to run the NWP forecasts using WRF-model.

Updating WRF lateral boundary conditions

Before running NWP forecast using WRF-model, you must modify the tendencies within
the lateral boundary condition files to make it consistent with the new WRF-Var initial
conditions (analysis). This is absolutely essential because when you initially generated
the tendencies for the lateral boundary condition (in wrfbdy_d01 file), it was consistent
but subsequently by doing WRF-Var you changed the initial value (at t=0) and so
accordingly the initial tendencies needs to be updated in this file (wrfbdy_d01) to adjust
the change at the initial time.

This is a simple procedure performed by the WRF utility called “updated_bc”.

Note: Make sure that you have “da_update_bc.exe” in “WRFV3/var/da” directory. This
executable automatically gets created when you compiled WRF-Var system,

WRF-VAR

WRF-ARW V3: User’s Guide 6-20

Running UPDATE_BC

The “update_bc.exe” is run via the same wrapper script, you ran con200 by adding
following line in your wrapper script.

 export RUN_UPDATE_BC=true

With this option standard script located at “WRFV3/var/scripts/da_run_update_bc.ksh”
will be activated to update the content of “wrfbdy_d01”. The new lateral boundary input
file will be located at the same location and with the same name. You may like to check
its date of creation by issuing the following command

ls –ltr $RC_DIR/2007010200/wrfbdy_d01

What next?

Once you are able to run all these programs successfully, and have spent some time
looking at the variety of diagnostics output that is produced, we hope that you'll have
some confidence in handling the WRF-Var system programs when you start your cases.
Following are some additional WRF-Var exercise to try and learn more about WRF-Var.

Additional WRF-Var Exercises:

(a) Single Observation response in WRF-Var:

In WRF-Var, when you activate the namelist option “pseudo=1” by defining

“export NL_NUM_PSEUDO=1”

WRF-Var generates a single observation with pre-specified innovation Observation –
First Guess) value at desired location e.g at (in terms of grid co-ordinate) 23x23, level 14
for “U” observation with error characteristics 1 mps, innovation size = 1.0 mps, include
following options in your con200 wrapper script and run it.

export NL_NUM_PSEUDO=1

export NL_PSEUDO_VAR="u" # Can be "u u t t q"

export NL_PSEUDO_X=23.0

export NL_PSEUDO_Y=23.0

export NL_PSEUDO_Z=14.0

export NL_PSEUDO_ERR=1.0 # Should be "1.0 1.0 1.0 1.0 0.001"

WRF-VAR

WRF-ARW V3: User’s Guide 6-21

export NL_PSEUDO_VAL=1.0 # Should be "1.0 1.0 1.0 1.0 0.001"

Also set “ export runplot_psot=1”

Note: You may also like to change your “RUN_DIR” to generate output in separate
directory. You may also notice that in this sample wrapper script for con200, all these
parameters are already set but they are commented. So you need to just remove the
undesired comments.

After you have run this new wrapper script successfully, look at various diagnostics files
to understand the response of one single “U” observation almost at the middle of the
domain. You can display the analysis increments as you did previously or run the same
wrapper script by setting:

 “export runplot_psot=2”

It will activate some standard NCL script residing in “WRFV3/var/graphics/ncl” and
generate following three files in your new $RUN_DIR/plotpsot directory.

xy_psot1.pdf --- XY cross-section

xz_psot1.pdf --- XZ cross-section

yz_psot1.pdf --- YZ cross-section

Note: You may like to repeat this exercise for other observations like temperature (“t”),
pressure “ps”, specific humidity etc.

(b) Response of BE length scaling parameter:

Run single observation test with following additional parameters

export NL_LEN_SCALING1=0.5 # reduce length psi-scale by 50%

 export NL_LEN_SCALING2=0.5 # reduce length chi_u-scale by 50%

export NL_LEN_SCALING3=0.5 # reduce length T-scale by 50%

export NL_LEN_SCALING4=0.5 # reduce length Q-scale by 50%

export NL_LEN_SCALING5=0.5 # reduce length ps-scale by 50%

WRF-VAR

WRF-ARW V3: User’s Guide 6-22

Note: You may like to try the response of individual variable by setting one
parameter at one time. See the spread of analysis increment.

(c) Response of changing BE variance:

Run single observation test with following additional parameters

export NL_VAR_SCALING1=0.25 # reduce psi-variance by 75%

 export NL_VAR_SCALING2=0.25 # reduce chi_u-variance by 75%

export NL_VAR_SCALING3=0.25 # reduce T-variance by 75%

export NL_VAR_SCALING4=0.25 # reduce Q-variance by 75%

export NL_VAR_SCALING5=0.25 # reduce ps-variance by 75%

Note: You may like to try the response of individual variable by setting one
parameter at one time. See the magnitude of analysis increments.

(d) Response of convergence criteria:

Run con200 case with

 export NL_EPS=0.0001

 See rsl.out.0000.html and if the solution did not converge in 200 iterations
which is the default value for minimization inner iterations loop, increase its
limit by setting

 export NL_NTMAX=1000.

You may like to compare various diagnostics with earlier run.

(e) Response of outer loop on minimization:

 Run con200 case with

 export NL_MAX_EXT_ITS=2

With this setting “outer loop” for the minimization procedure will get activated.
You may like to compare various diagnostics with earlier run.

WRF-VAR

WRF-ARW V3: User’s Guide 6-23

Note: Maximum permissible value for “MAX_EXT_ITS” is 10

(f) Response of suppressing a particular type of data in WRF-Var:

Suppose if someone wants not to include “SYNOP” type of data. One way is
that do not process it via “obsproc” by not including it in “little_r”. However,
it can be suppressed in WRF-Var through namelist option by setting

 “export NL_USE_SYNOPOBS=false”

Note: grep “use_” string in “WRFV3/Registry.wrfvar” to learn about all types
of data used in WRF-Var.

WRF-VAR

WRF-ARW V3: User’s Guide 6-24

SOFTWARE

WRF-ARW V3: User’s Guide 7-1

Chapter 7: WRF Software

Table of Contents
• Introduction
• WRF Build Mechanism
• Registry
• I/O Applications Program Interface (I/O API)
• Timekeeping
• Software Documentation
• Portability and Performance

Introduction

WRF Build Mechanism

The WRF build mechanism provides a uniform apparatus for configuring and compiling
the WRF model and pre-processors over a range of platforms with a variety of options.
This section describes the components and functioning of the build mechanism. For
information on building the WRF code, see Section 2.

Required software:

The WRF build relies on Perl version 5 or later and a number of UNIX utilities: csh and
Bourne shell, make, M4, sed, awk, and the uname command. A C compiler is needed to
compile programs and libraries in the tools and external directories. The WRF code itself
is Fortran90. For distributed-memory, MPI and related tools and libraries should be
installed.

Build Mechanism Components:

Directory structure: The directory structure of WRF consists of the top-level directory
plus directories containing files related to the WRF software framework (frame), the
WRF model (dyn_em, phys, share), configuration files (arch, Registry), helper programs
(tools), and packages that are distributed with the WRF code (external).

Scripts: The top-level directory contains three user-executable scripts: configure,
compile, and clean. The configure script relies on a Perl script in arch/Config.pl.

Programs: A significant number of WRF lines of code are automatically generated at
compile time. The program that does this is tools/registry and it is distributed as source
code with the WRF model.

SOFTWARE

WRF-ARW V3: User’s Guide 7-2

Makefiles: The main makefile (input to the UNIX make utility) is in the top-level
directory. There are also makefiles in most of the subdirectories that come with WRF.
Make is called recursively over the directory structure. Make is not used directly to
compile WRF; the compile script is provided for this purpose.

Configuration files: The configure.wrf contains compiler, linker, and other build settings,
as well as rules and macro definitions used by the make utility. Configure.wrf is included
by the Makefiles in most of the WRF source distribution (Makefiles in tools and external
directories do not include configure.wrf). The configure.wrf file in the top-level
directory is generated each time the configure script is invoked. It is also deleted by
clean -a. Thus, configure.wrf is the place to make temporary changes: optimization
levels, compiling with debugging, etc., but permanent changes should be made in
arch/configure.defaults.

The arch/configure.defaults file contains lists of compiler options for all the supported
platforms and configurations. Changes made to this file will be permanent. This file is
used by the configure script to generate a temporary configure.wrf file in the top-level
directory. The arch directory also contains the files preamble and postamble, which the
unchanging parts of the configure.wrf file that is generated by the configure script.

The Registry directory contains files that control many compile-time aspects of the WRF
code (described elsewhere). The files are named Registry.core. The configure script
copies one of these to Registry/Registry, which is the file that tools/registry will use as
input. The choice of core depends on settings to the configure script. Changes to
Registry/Registry will be lost; permanent changes should be made to Registry.core.

Environment variables: Certain aspects of the configuration and build are controlled by
environment variables: the non-standard locations of NetCDF libraries or the PERL
command, which dynamic core to compile, machine-specific options (e.g.
OBJECT_MODE on the IBM systems), etc.

In addition to WRF-related environment settings, there may also be settings specific to
particular compilers or libraries. For example, local installations may require setting a
variable like MPICH_F90 to make sure the correct instance of the Fortran 90 compiler is
used by the mpif90 command.

How the WRF build works:

There are two steps in building WRF: configuration and compilation.

Configuration: The configure script configures the model for compilation on your
system. Configure first attempts to locate needed libraries such as NetCDF or HDF and
tools such as Perl. It will check for these in normal places, or will use settings from the
user's shell environment. Configure then calls the UNIX uname command to discover
what platform you are compiling on. It then calls the Perl script in arch/Config.pl, which

SOFTWARE

WRF-ARW V3: User’s Guide 7-3

traverses the list of known machine configurations and displays a list of available options
to the user. The selected set of options is then used to create the configure.wrf file in the
top-level directory. This file may be edited but changes are temporary, since the file will
be overwritten or deleted by the configure script or clean -a.

Compilation: The compile script is used to compile the WRF code after it has been
configured using the configure script, a Csh script that performs a number of checks,
constructs an argument list, copies to Registry/Registry the correct Registry.core file for
the core being compiled, and the invokes the UNIX make command in the top-level
directory. The core to be compiled is determined from the user’s environment; if no core
is specified in the environment (by setting WRF_CORE_CORE to 1) the default core is
selected (current the Eulerian Mass core). The makefile in the top-level directory directs
the rest of the build, accomplished as a set of recursive invocations of make in the
subdirectories of WRF. Most of these makefiles include the configure.wrf file in the top-
level directory. The order of a complete build is as follows:

1. Make in frame directory

a. make in external/io_netcdf to build NetCDF implementation of I/O API

b. make in RSL or RSL_LITE directory to build communications layer
(DM_PARALLEL only)

c. make in external/esmf_time_f90 directory to build ESMF time manager
library

d. make in other external directories as specified by “external:” target in the
configure.wrf file

2. Make in the tools directory to build the program that reads the Registry/Registry
file and auto-generates files in the inc directory

3. Make in the frame directory to build the WRF framework specific modules

4. Make in the share directory to build the non-core-specific mediation layer
routines, including WRF I/O modules that call the I/O API

5. Make in the phys directory to build the WRF model layer routines for physics
(non core-specific)

6. Make in the dyn_core directory for core-specific mediation-layer and model-layer
subroutines

7. Make in the main directory to build the main program(s) for WRF and link to
create executable file(s) depending on the build case that was selected as the
argument to the compile script (e.g. compile em_real)

SOFTWARE

WRF-ARW V3: User’s Guide 7-4

8. Symbolic link executable files in the main directory to the run directory for the
specific case and to the directory named “run”

Source files (.F and, in some of the external directories, .F90) are preprocessed to
produce .f files, which are input to the compiler. As part of the preprocessing, Registry-
generated files from the inc directory may be included. Compiling the .f files results in
the creation of object (.o) files that are added to the library main/libwrflib.a. The linking
step produces the wrf.exe executable and other executables, depending on the case
argument to the compile command: real.exe (a preprocessor for real-data cases) or
ideal.exe (a preprocessor for idealized cases), and the ndown.exe program, for one-way
nesting of real-data cases.

The .o files and .f files from a compile are retained until the next invocation of the clean
script. The .f files provide the true reference for tracking down run time errors that refer
to line numbers or for sessions using interactive debugging tools such as dbx or gdb.

Registry

Tools for automatic generation of application code from user-specified tables provide
significant software productivity benefits in development and maintenance of large
applications such as WRF. Some 30-thousand lines of WRF code are automatically
generated from a user-edited table, called the Registry. The Registry provides a high-
level single-point-of-control over the fundamental structure of the model data, and thus
provides considerable utility for developers and maintainers. It contains lists describing
state data fields and their attributes: dimensionality, binding to particular solvers,
association with WRF I/O streams, communication operations, and run time
configuration options (namelist elements and their bindings to model control structures).
Adding or modifying a state variable to WRF involves modifying a single line of a single
file; this single change is then automatically propagated to scores of locations in the
source code the next time the code is compiled.

The WRF Registry has two components: the Registry file, and the Registry program.

The Registry file is located in the Registry directory and contains the entries that direct
the auto-generation of WRF code by the Registry program. There may be more than one
Registry in this directory, with filenames such as Registry.EM (for builds using the
Eulerian Mass core) and Registry.NMM (for builds using the NMM core). The WRF
Build Mechanism copies one of these to the file Registry/Registry and this file is used to
direct the Registry program. The syntax and semantics for entries in the Registry are
described in detail in “WRF Tiger Team Documentation: The Registry” on
http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/.
The Registry program is distributed as part of WRF in the tools directory. It is built
automatically (if necessary) when WRF is compiled. The executable file is tools/registry.
This program reads the contents of the Registry file, Registry/Registry, and generates
files in the inc directory. These files are included by other WRF source files when they
are compiled. Additional information on these is provided as an appendix to “WRF Tiger

http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/

SOFTWARE

WRF-ARW V3: User’s Guide 7-5

Team Documentation: The Registry (DRAFT)”. The Registry program itself is written in
C. The source files and makefile are in the tools directory.

Figure 1. When the user compiles WRF, the Registry Program reads Registry/Registry,
producing auto-generated sections of code that are stored in files in the inc directory. These
are included into WRF using the CPP preprocessor and the Fortran compiler.

In addition to the WRF model itself, the Registry/Registry file is used to build the
accompanying preprocessors such as real.exe (for real data) or ideal.exe (for ideal
simulations), and the ndown.exe program (used for one-way, off-line nesting).

I/O Applications Program Interface (I/O API)

The software that implements WRF I/O, like the software that implements the model in
general, is organized hierarchically, as a “software stack”
(http://www.mmm.ucar.edu/wrf/WG2/Tigers/IOAPI/IOStack.html) . From top (closest to
the model code itself) to bottom (closest to the external package implementing the I/O),
the I/O stack looks like this:

• Domain I/O (operations on an entire domain)
• Field I/O (operations on individual fields)
• Package-neutral I/O API

http://www.mmm.ucar.edu/wrf/WG2/Tigers/IOAPI/IOStack.html

SOFTWARE

WRF-ARW V3: User’s Guide 7-6

• Package-dependent I/O API (external package)

There is additional information on the WRF I/O software architecture on
http://www.mmm.ucar.edu/wrf/WG2/IOAPI/IO_files/v3_document.htm. The lower-
levels of the stack are described in the I/O and Model Coupling API specification
document on http://www.mmm.ucar.edu/wrf/WG2/Tigers/IOAPI/index.html.

Timekeeping

Starting times, stopping times, and time intervals in WRF are stored and manipulated as
Earth System Modeling Framework (ESMF, http://www.esmf.ucar.edu) time manager
objects. This allows exact representation of time instants and intervals as integer numbers
of years, months, hours, days, minutes, seconds, and/or fractions of a second (numerator
and denominator are specified separately as integers). All time arithmetic involving these
objects is performed exactly, without drift or rounding, even for fractions of a second.

The WRF implementation of the ESMF Time Manger is distributed with WRF in the
external/esmf_time_f90 directory. This implementation is entirely Fortran90 (as opposed
to the ESMF implementation that required C++) and it is conformant to the version of the
ESMF Time Manager API that was available in 2003 (the API has changed in later
versions of ESMF and an update will be necessary for WRF once the ESMF
specifications and software have stabilized). The WRF implementation of the ESMF
Time Manager supports exact fractional arithmetic (numerator and denominator
explicitly specified and operated on as integers), a feature needed by models operating at
WRF resolutions, but deferred in 2003 since it was not needed for models running at
more coarse resolutions.

WRF source modules and subroutines that use the ESMF routines do so by use-
association of the top-level ESMF Time Manager module, esmf_mod:

 USE esmf_mod

The code is linked to the library file libesmf_time.a in the external/esmf_time_f90
directory.

ESMF timekeeping is set up on a domain-by-domain basis in the routine
setup_timekeeping (share/set_timekeeping.F). Each domain keeps its own clocks, alarms,
etc. – since the time arithmetic is exact there is no problem with clocks getting out of
synchronization.

Software Documentation

Detailed and comprehensive documentation aimed at WRF software is available at
http://www.mmm.ucar.edu/wrf/WG2/software_2.0.

http://www.mmm.ucar.edu/wrf/WG2/IOAPI/IO_files/v3_document.htm
http://www.mmm.ucar.edu/wrf/WG2/Tigers/IOAPI/index.html
http://www.esmf.ucar.edu
http://www.mmm.ucar.edu/wrf/WG2/software_2.0

SOFTWARE

WRF-ARW V3: User’s Guide 7-7

Portability and Performance

WRF is supported on the following platforms:

Ports are in progress to other systems. Contact wrfhelp@ucar.edu for additional
information.

Benchmark information is available at http://www.mmm.ucar.edu/wrf/bench

Vendor Hardware OS Compiler

Apple (*) G5 MacOS IBM

Cray Inc. X1 UNICOS Cray

Alpha Tru64 Compaq

Linux Intel

HPUX HP

IBM SP Power-3/4 AIX IBM

Itanium-2 Linux Intel

MIPS IRIX SGI

Sun (*) UltraSPARC Solaris Sun

Xeon and Athlon

Itanium-2 and Opteron
Linux Intel and Portland Group

HP/Compaq

SGI

various

Itanium-2

mailto:wrfhelp@ucar.edu
http://www.mmm.ucar.edu/wrf/bench

SOFTWARE

WRF-ARW V3: User’s Guide 7-8

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-1

Chapter 8: Post-Processing Utilities

Table of Contents
• Introduction
• NCL
• RIP4
• ARWpost
• WPP
• VAPOR
• Utility: read_wrf_nc
• Utility: iowrf
• Utility: p_interp
• Tools

Introduction

There are a number of visualization tools available to display WRF-ARW (http://wrf-
model.org/) model data. Model data in netCDF format, can essentially be displayed using
any tool capable of displaying this data format.

Currently the following post-processing utilities are supported, NCL, RIP4, ARWpost
(converter to GrADS and Vis5D), WPP, and VAPOR.

NCL, RIP4 and VAPOR can currently only read data in netCDF format, while ARWpost
can read data in netCDF and GRIB1 format, and WPP can read data in netCDF and
binary format.

Required software

The only library that is always required is the netCDF package from Unidata
(http://www.unidata.ucar.edu/: login > Downloads > NetCDF - registration login
required).

netCDF stands for Network Common Data Form. This format is platform independent,
i.e., data files can be read on both big-endian and little-endian computers, regardless of
where the file was created. To use the netCDF libraries, ensure that the paths to these
libraries are set correct in your login scripts as well as all Makefiles.

http://wrf-model.org/
http://wrf-model.org/
http://wrf-model.org/
http://www.unidata.ucar.edu/:login

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-2

Additional libraries required by each of the supported post-processing packages:

• NCL (http://www.ncl.ucar.edu)
• GrADS (http://grads.iges.org/home.html)
• Vis5D (http://www.ssec.wisc.edu/~billh/vis5d.html)
• GEMPAK (http://my.unidata.ucar.edu/content/software/gempak/index.html)
• VAPOR (http://www.vapor.ucar.edu)

http://www.ncl.ucar.edu
http://grads.iges.org/home.html
http://www.ssec.wisc.edu/~billh/vis5d.html
http://my.unidata.ucar.edu/content/software/gempak/index.html
http://www.vapor.ucar.edu

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-3

NCL

With the use of NCL Libraries (http://www.ncl.ucar.edu), WRF-ARW data can easily
be displayed.

The information on these pages has been put together to help users generate NCL scripts
to display their WRF-ARW model data.

Some example scripts are available online
(http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/NCL_examples.htm), but
in order to fully utilize the functionality of the NCL Libraries, users should adapt these
for their own needs, or write their own scripts.

NCL can process WRF ARW static, input and output files, as well as WRF-Var output
data. Both single and double precision data can be processed.

What is NEW?

In July 2007, the WRF-NCL processing scripts have been incorporated into the NCL
Libraries, thus only the NCL Libraries, are now needed. NCL version 4.3.1 or higher is
required. (NOTE: Since the release of NCL version 4.3.1, the WRFUserARW.ncl script
incorporated in the NCL libraries has been updated significantly, and users should get a
new version of this script from the WRF-ARW web site -
http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/Examples/WRFUserARW.
ncl).

With the NCL version 4.3.1 release all WRF related functions / procedures needed to
plot WRF-ARW are now located in
"$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUsersARW.ncl".

All the FORTRAN subroutines used for diagnostics and interpolation (previously
located in wrf_user_fortran_util_0.f) has been re-coded into NCL in-line functions. This
means users no longer need to compile these routines.

What is NCL

The NCAR Command Language (NCL) is a free interpreted language designed
specifically for scientific data processing and visualization. NCL has robust file input and
output. It can read in netCDF, HDF4, HDF4-EOS, GRIB, binary and ASCII data. The
graphics are world class and highly customizable.

http://www.ncl.ucar.edu
http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/NCL_examples.htm
http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/Examples/WRFUserARW

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-4

It runs on many different operating systems including Solaris, AIX, IRIX, Linux,
MacOSX, Dec Alpha, and Cygwin/X running on Windows. The NCL binaries are freely
available at: http://www.ncl.ucar.edu/Download/

To read more about NCL, visit: http://www.ncl.ucar.edu/overview.shtml

Necessary software

NCL libraries, version 4.3.1 or higher. Version 5.0.0 is recommended.

Environment Variable

Set the environment variable NCARG_ROOT to the location where you installed the
NCL libraries. Typically (for cshrc shell):

setenv NCARG_ROOT /usr/local/ncl

.hluresfile

Create a file called .hluresfile in your $HOME directory. This file controls the color /
background / fonts and basic size of your plot. For more information regarding this file,
see: http://www.ncl.ucar.edu/Document/Graphics/hlures.shtml.

NOTE: This file must reside in your $HOME directory and not where you plan on
running NCL.

Below is the .hluresfile used in the example scripts posted on the web (scripts are
available at: http://www.mmm.ucar.edu/wrf/users/graphics/NCL/NCL.htm). If a different
color table is used, the plots will appear different. Copy the following to your
~/.hluresfile. (A copy of this file is available at:
http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/.hluresfile)

*wkColorMap : BlAqGrYeOrReVi200
*wkBackgroundColor : white
*wkForegroundColor : black
*FuncCode : ~
*TextFuncCode : ~
*Font : helvetica
*wkWidth : 900
*wkHeight : 900

http://www.ncl.ucar.edu/Download/
http://www.ncl.ucar.edu/overview.shtml
http://www.ncl.ucar.edu/Document/Graphics/hlures.shtml
http://www.mmm.ucar.edu/wrf/users/graphics/NCL/NCL.htm
http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/.hluresfile
http://www.mmm.ucar.edu/wrf/users/graphics/NCL/NCL.htm

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-5

NOTE:
If your image has a black background with white lettering, your .hluresfile has
not been created correctly, or it is in the wrong location.

wkColorMap, as set in your .hluresfile can be overwritten in any NCL script with
the use of the function “gsn_define_colormap”, so you do not need to change
your .hluresfile if you just want to change the color map for a single plot.

Create NCL scripts

The basic outline of any NCL script will look as follows:

load external functions and procedures

begin

; Open input file(s)
; Open graphical output
; Read variables
; Set up plot resources & Create plots
; Output graphics

end

For example, let’s create a script to plot Surface Temperature, Sea Level Pressure and
Wind as shown in the picture below.

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-6

; load functions and procedures
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"

begin

; WRF ARW input file
a = addfile("../wrfout_d01_2000-01-24_12:00:00.nc","r")

; Output on screen. Output will be called "plt_Surface1"
type = "x11"
wks = gsn_open_wks(type,"plt_Surface1")

; Set basic resources
res = True
res@MainTitle = "REAL-TIME WRF" ; Give plot a main title
res@Footer = False ; Set Footers off
pltres = True ; Plotting resources
mpres = True ; Map resources

;---
times = wrf_user_list_times(a) ; get times in the file
it = 0 ; only interested in first time
res@TimeLabel = times(it) ; keep some time information

;---
; Get variables

slp = wrf_user_getvar(a,"slp",it) Get slp
 wrf_smooth_2d(slp, 3) ; Smooth slp

t2 = wrf_user_getvar(a,"T2",it) ; Get T2 (deg K)
 tc2 = t2-273.16 ; Convert to deg C
 tf2 = 1.8*tc2+32. ; Convert to deg F
 tf2@description = "Surface Temperature"
 tf2@units = "F"

u10 = wrf_user_getvar(a,"U10",it) ; Get U10
v10 = wrf_user_getvar(a,"V10",it) ; Get V10
 u10 = u10*1.94386 ; Convert to knots
 v10 = v10*1.94386
 u10@units = "kts"
 v10@units = "kts"

;---

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-7

; Plotting options for T
opts = res ; Add basic resources
opts@cnFillOn = True ; Shaded plot
opts@ContourParameters = (/ -20., 90., 5./) ; Contour intervals
opts@gsnSpreadColorEnd = -3
contour_tc = wrf_contour(a,wks,tf2,opts) ; Create plot
delete(opts)

; Plotting options for SLP
opts = res ; Add basic resources
opts@cnLineColor = "Blue" ; Set line color
opts@cnHighLabelsOn = True ; Set labels
opts@cnLowLabelsOn = True
opts@ContourParameters = (/ 900.,1100.,4./) ; Contour intervals
contour_psl = wrf_contour(a,wks,slp,opts) ; Create plot
delete(opts)

; Plotting options for Wind Vectors
opts = res ; Add basic resources
opts@FieldTitle = "Winds" ; Overwrite the field title
opts@NumVectors = 47 ; Density of wind barbs
vector = wrf_vector(a,wks,u10,v10,opts) ; Create plot
delete(opts)

; MAKE PLOTS
plot = wrf_map_overlays(a,wks, \
 (/contour_tc,contour_psl,vector/),pltres,mpres)

;---

end

Extra sample scripts are available at,
http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/NCL_examples.htm

Run NCL scripts

1. Ensure NCL is successfully installed on your computer.

2. Ensure that the environment variable NCARG_ROOT is set to the location where

NCL is installed on your computer. Typically (for cshrc shell), the command will
look as follows:

setenv NCARG_ROOT /usr/local/ncl

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/NCL_examples.htm

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-8

3. Create an NCL plotting script.

4. Run the NCL script you created:

ncl NCL_script

The output type created with this command is controlled by the line:

wks = gsn_open_wk (type,"Output") ; inside the NCL script
where type can be x11, pdf, ncgm, ps, or eps

For high quality images, create pdf / ps or eps images directly via the ncl scripts (type =
pdf / ps / eps)

See the Tools section at the end of this chapter for more information concerning other
types of graphical formats and conversions between graphical formats.

Functions / Procedures under "$NCARG_ROOT/lib/ncarg/nclscripts/wrf/"
(WRFUserARW.ncl)

function wrf_user_getvar (nc_file, fld, it)
Usage: ter = wrf_user_getvar (a, “HGT”, 0)

Get fields from netCDF file for any given time.
Currently only a single time can be extracted with each call to wrf_user_getvar.

Any field available in the netCDF file can be extracted.
fld is case sensitive. The policy adapted during development was to set all diagnostic
variables calculated by NCL to lower-case to distinguish them from fields directly
available from the netCDF files.

List of available diagnostics (currently most of these only work of wrfout files):
th – Potential Temperature (K)
tk – Temperature (K)
tc – Temperature (C)
td – Dewpoint Temperature (C)
td2 – 2m Dewpoint Temperature (C)
rh – Relative Humidity (%)
slp – Sea Level Pressure (hPa)
pressure – Full model pressure (hPa)
z - Geopotential Height (m)
ua - U-component of the wind on mass points (un-staggered)
va - V-component of the wind on mass points (un-staggered)
wa - W-component of the wind on mass points (un-staggered)

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-9

uvmet – winds rotated to earth coordinates. Used specifically for sounding and to
compare model winds to observations. This diagnostics is unique as it returns a 4D field,
where uvmet(0,:,:,:) contains the U-component and uvmet(1,:,:,:) contains the V-
component of the wind (un-staggered).

function wrf_user_list_times (nc_file)
Usage: times = wrf_user_list_times (a)

Obtain a list of times available in the input file. The function returns a 1D array
containing the times (type: character) in the input file.

function wrf_contour (nc_file, wks, data, res)
Usage: contour = wrf_contour (a, wks, ter, opts)

Returns a graphic (contour), of the data to be contoured. This graphic is only created, but
not plotted to a wks. This enables a user to generate many such graphics and overlay
them before plotting the resulting picture to a wks.

The returned graphic (contour) does not contain map information, and can therefore be
used for both real and idealized data cases.

This function can plot both line contours and shaded contours. Default is line contours.

Many resources are set for a user, of which most can be overwritten. Below is a list of
resources you may want to consider changing before generating your own graphics:

opts@MainTitle : Controls main title on the plot.
opts@MainTitlePos : Main title position – Left/Right/Center. Default is Left.
opts@NoHeaderFooter : Switch off all Headers and Footers.
opts@Footer : Add some model information to the plot as a footer. Default is True.
opts@InitTime : Plot initial time on graphic. Default is True. If True, the initial time will

be extracted from the input file.
opts@ValidTime : Plot valid time on graphic. Default is True. A user must set

opts@TimeLabel to the correct time.
opts@TimeLabel : Time to plot as valid time.
opts@TimePos : Time position – Left/Right. Default is “Right”.
opts@cnFillOn : Set to True for shaded plots. Default is False.
opts@ContourParameters : A single value is treated as an interval. Three values

represent: Start, End, and Interval.
opts@cnLineColor : Color of line plot.
opts@FieldTitle : Overwrite the field title.
opts@lbTitleOn : Set to False to switch the title on the label bar off. Default is True.

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-10

optr@cnLevelSelectionMode ; opts @cnLevels ; opts@cnFillColors ;
optr@cnConstFLabelOn : Can be used to set contour levels and colors manually.

function wrf_vector (nc_file, wks, data_u, data_v, res)
Usage: vector = wrf_vector (a, wks, ua, va, opts)

Returns a graphic (vector) of the data. This graphic is only created, but not plotted to a
wks. This enables a user to generate many graphics and overlay them before plotting the
resulting picture to a wks.

The returned graphic (vector) does not contain map information, and can therefore be
used for both real and idealized data cases.

Many resources are set for a user, of which most can be overwritten. Below is a list of
resources you may want to consider changing before generating your own graphics:

opts@MainTitle ; opts@MainTitlePos ; opts@NoHeaderFooter ; opts@Footer ;

opts@InitTime ; opts@ValidTime ; opts@TimeLabel ; opts@TimePos ;
opts@FieldTitle : Applies and are the same as described for wrf_contour.

opts@NumVectors : Density of wind vectors.
opts@vcGlyphStyle : Wind style. “WindBarb” is default.

function wrf_map_overlays (nc_file, wks, (/graphics/), pltres, mpres)
Usage: plot = wrf_map_overlays (a, wks, (/contour,vector/), pltres, mpres)

Overlay contour and vector plots generated with wrf_contour and wrf_vector. Can
overlay any number of graphics. Overlays will be done in order give, so always list
shaded plots before line or vector plots, to ensure the lines and vectors are visible and not
hidden behind the shaded plot.

A map background will automatically be added to the plot. Map details are controlled
with the mpres resource. Common map resources you may want to set are:
mpres@mpGeophysicalLineColor ; mpres@mpNationalLineColor ;

mpres@mpUSStateLineColor ; mpres@mpGridLineColor ;
mpres@mpLimbLineColor ; mpres@mpPerimLineColor

If you want to zoom into the plot, set mpres@ZoomIn to True, and mpres@Xstart,

mpres@Xend, mpres@Ystart, mpres@Yend, to the corner x/y positions of the
zoomed plot.

pltres@NoTitles : Set to True to remove all field titles on a plot.

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-11

pltres@CommonTitle : Overwrite field titles with a common title for the overlaid plots.
Must set pltres@PlotTitle to desired new plot title.

If you want to generate images for a panel plot, set pltres@PanelPot to True.

If you want to add text/lines to the plot before advancing the frame, set
pltres@FramePlot to False. Add your text/lines directly after the call to the
wrf_map_overlays function. Once you are done adding text/lines, advance the frame with
the command “frame(wks)”.

function wrf_overlays (nc_file, wks, (/graphics/), pltres)
Usage: plot = wrf_overlays (a, wks, (/contour,vector/), pltres)

Overlay contour and vector plots generated with wrf_contour and wrf_vector. Can
overlay any number of graphics. Overlays will be done in order give, so always list
shaded plots before line or vector plots, to ensure the lines and vectors are visible and not
hidden behind the shaded plot.

Typically used for idealized data or cross-sections, which does not have map background
information.

pltres@NoTitles : Set to True to remove all field titles on a plot.
pltres@CommonTitle : Overwrite field titles with a common title for the overlaid plots.

Must set pltres@PlotTitle to desired new plot title.

If you want to generate images for a panel plot, set pltres@PanelPot to True.

If you want to add text/lines to the plot before advancing the frame, set
pltres@FramePlot to False. Add your text/lines directly after the call to the wrf_overlays
function. Once you are done adding text/lines, advance the frame with the command
“frame(wks)”.

function wrf_map (nc_file, wks, res)
Usage: map = wrf_map (a, wks, opts)

Create a map background.
As maps are added to plots automatically via the wrf_map_overlays function, this
function is seldom needed as a stand-alone.

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-12

function wrf_user_intrp3d (var3d, H, plot_type, loc_param, angle, res)

This function is used for both horizontal and vertical interpolation.

var3d: The variable to interpolate.
H: The field to interpolate to. Either pressure or z.
plot_type: “h” for horizontally and “v” for vertically interpolated plots.
loc_param: Can be a scalar, or an array holding either 2 or 4 values.

For plot_type = “h”, this is a scalar representing the level to interpolate too, i.e.,
500 to interpolate to 500 hPa; or 2000 to interpolate to 2 km.
For plot_type = “v”: This can be a pivot point though which a line is drawn – in
this case a single x/y point (2 values) is required. Or this can be a set of x/y points
(4 values), indicating start x/y and end x/y locations for the cross-section.

angle: Set to 0., for plot_type = “h”, or for plot_type = “v” when start and end locations
of cross-section were supplied in loc_param.
If a single pivot point was supplied in loc_param, angle is the angle of the line
that will pass through the pivot point. Where: 0. is SN, and 90. is WE.

res: Set to False for plot_type = “h”, or for plot_type = “v” when a single pivot point is
supplied. Set to True if start and end locations is supplied.

function wrf_user_intrp2d (var2d, loc_param, angle, res)

This function interpolates a 2D field along a given line.

var2d: Is the 2D field to interpolate.

loc_param: Is an array holding either 2 or 4 values.

This can be a pivot point though which a line is drawn – in this case a single x/y
point (2 values) is required. Or this can be a set of x/y points (4 values), indicating
start x/y and end x/y locations for the cross-section.

angle: Set to 0 when start and end locations of the line were supplied in loc_param.
If a single pivot point was supplied in loc_param, angle is the angle of the line
that will pass through the pivot point. Where: 0. is SN, and 90. is WE.

res: Set to False when a single pivot point is supplied. Set to True if start and end
locations is supplied.

function wrf_user_latlon_to_ij (nc_file, lats, lons)
Usage: loc = wrf_user_latlon_to_ij (a, 40., 100.)
Usage: loc = wrf_user_latlon_to_ij (a, (/40., 50./), (/100., 120./))

Convert a lon/lat location to the nearest x/y location. Note: no interpolation is done, only
the closest grid point will be returned.

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-13

lats/lons can be scalars or arrays.
loc(:,0) is the y (SN) location, and loc(:,1) the x (WE) location.

Adding diagnostics using FORTRAN code

It is possible to link your favorite FORTRAN diagnostics routines to NCL. It is easier to
use FORTRAN 77 code, but NCL does recognize basic FORTRAN 90 code.

Let’s use a routine that calculated temperature (K) from theta and pressure.

FORTRAN 90 routine called myTK.f90
subroutine compute_tk (tk, pressure, theta, nx, ny, nz)
implicit none

!! Variables
 integer :: nx, ny, nz
 real, dimension (nx,ny,nz) :: tk, pressure, theta

!! Local Variables
 integer :: i, j, k
 real, dimension (nx,ny,nz):: pi

 pi(:,:,:) = (pressure(:,:,:) / 1000.)**(287./1004.)
 tk(:,:,:) = pi(:,:,:)*theta(:,:,:)

return
end subroutine compute_tk

For simple routines like this, it is easiest to re-write the routine into a FORTRAN 77
routine.

FORTRAN 77 routine called myTK.f
 subroutine compute_tk (tk, pressure, theta, nx, ny, nz)
 implicit none

C Variables
 integer nx, ny, nz
 real tk(nx,ny,nz) , pressure(nx,ny,nz), theta(nx,ny,nz)

C Local Variables
 integer i, j, k
 real pi

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-14

 DO k=1,nz
 DO j=1,ny
 DO i=1,nx
 pi=(pressure(i,j,k) / 1000.)**(287./1004.)
 tk(i,j,k) = pi*theta(i,j,k)
 ENDDO
 ENDDO
 ENDDO

 return
 end

Add the markers NCLFORTSTART and NCLEND to the subroutine as indicated
below. Note, that local variables are outside these block markers.

FORTRAN 77 routine called myTK.f, with NCL markers added
C NCLFORTSTART
 subroutine compute_tk (tk, pressure, theta, nx, ny, nz)
 implicit none

C Variables
 integer nx, ny, nz
 real tk(nx,ny,nz) , pressure(nx,ny,nz), theta(nx,ny,nz)

C NCLEND

C Local Variables
 integer i, j, k
 real pi

 DO k=1,nz
 DO j=1,ny
 DO i=1,nx
 pi=(pressure(i,j,k) / 1000.)**(287./1004.)
 tk(i,j,k) = pi*theta(i,j,k)
 ENDDO
 ENDDO
 ENDDO

 return
 end

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-15

Now compile this code using the NCL script WRAPIT.

WRAPIT myTK.f

NOTE: If WRAPIT cannot be found, make sure the environment variable
NCARG_ROOT has been set correctly.

If the subroutine compiles successfully, a new library will be created, called myTK.so.
This library can be linked to an NCL script to calculate TK. See how this is done in the
example below:

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”
external myTK "./myTK.so"

begin

 t = wrf_user_getvar (a,”T”,5)
 theta = t + 300
 p = wrf_user_getvar (a,”pressure”,5)

 dim = dimsizes(t)
 tk = new((/ dim(0), dim(1), dim(2) /), float)

 myTK :: compute_tk (tk, p, theta, dim(2), dim(1), dim(0))

end

Want to use the FORTRAN 90 program? It is possible to do so by providing an interface
block for your FORTRAN 90 program. Your FORTRAN 90 program may also not
contain any of the following features:

− pointers or structures as arguments,
− missing/optional arguments,
− keyword arguments, or
− if the procedure is recursive.

Interface block for FORTRAN 90 code, called myTK90.stub
C NCLFORTSTART
 subroutine compute_tk (tk, pressure, theta, nx, ny, nz)

 integer nx, ny, nz
 real tk(nx,ny,nz) , pressure(nx,ny,nz), theta(nx,ny,nz)

C NCLEND

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-16

Now compile this code using the NCL script WRAPIT.

WRAPIT myTK90.stub myTK.f90

NOTE: You may need to copy the WRAPIT script to a locate location and edit it to point
to a FORTRAN 90 compiler.

If the subroutine compiles successfully, a new library will be created, called myTK90.so
(note the change in name from the FORTRAN 77 library). This library can similarly be
linked to an NCL script to calculate TK. See how this is done in the example below:

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”
external myTK90 "./myTK90.so"

begin

 t = wrf_user_getvar (a,”T”,5)
 theta = t + 300
 p = wrf_user_getvar (a,”pressure”,5)

 dim = dimsizes(t)
 tk = new((/ dim(0), dim(1), dim(2) /), float)

 myTK90 :: compute_tk (tk, p, theta, dim(2), dim(1), dim(0))

end

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-17

RIP4

RIP (which stands for Read/Interpolate/Plot) is a Fortran program that invokes NCAR
Graphics routines for the purpose of visualizing output from gridded meteorological data
sets, primarily from mesoscale numerical models. It was originally designed for sigma-
coordinate-level output from the PSU/NCAR Mesoscale Model (MM4/MM5), but was
generalized in April 2003 to handle data sets with any vertical coordinate, and in
particular, output from the Weather Research and Forecast (WRF) modeling system. It
can also be used to visualize model input or analyses on model grids. It has been under
continuous development since 1991, primarily by Mark Stoelinga at both NCAR and the
University of Washington.

The RIP users' guide (http://www.mmm.ucar.edu/wrf/users/docs/ripug.htm) is essential
reading.

Code history

Version 4.0: reads WRF-ARW real output files
Version 4.1: reads idealized WRF-ARW datasets
Version 4.2: reads all the files produced by WPS
Version 4.3: reads files produced by WRF-NMM model
(This document will only concentrate on running RIP4 for WRF-ARW. For details on
running RIP4 for WRF-NMM, see the WRF-NMM User’s Guide:
http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/WPS/index.php)

Necessary software

RIP4 only requires low level NCAR Graphics libraries. These libraries have been merged
with the NCL libraries since the release of NCL version 5 (http://www.ncl.ucar.edu/), so
if you don’t already have NCAR Graphics installed on your computer, install NCL
version 5.

Obtain the code from the WRF-ARW user’s web site:
http://www.mmm.ucar.edu/wrf/users/download/get_source.html

Unzip and untar the RIP4 tar file. The tar file contains the following directories and files:

• CHANGES, a text file that logs changes to the RIP tar file.
• Doc/, a directory that contains documentation of RIP, most notably the Users'

Guide (ripug).
• Makefile, the top-level make file used to compile and link RIP.
• README, a text file containing basic information on running RIP.

http://www.mmm.ucar.edu/wrf/users/docs/ripug.htm
http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/WPS/index.php
http://www.ncl.ucar.edu/
http://www.mmm.ucar.edu/wrf/users/download/get_source.html

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-18

• color.tbl, a file that contains a table defining the colors you want to have available
for RIP plots.

• eta_micro_lookup.dat, a file that contains "look-up" table data for the Ferrier
microphysics scheme.

• psadilookup.dat, a file that contains "look-up" table data for obtaining
temperature on a pseudoadiabat.

• sample_infiles/, a directory that contains sample user input files for RIP and
related programs.

• src/, a directory that contains all of the source code files for RIP, RIPDP, and
several other utility programs.

• stationlist, a file containing observing station location information.

Environment Variables

An important environment variable for the RIP system is RIP_ROOT.
RIP_ROOT should be assigned the path name of the directory where all your RIP
program and utility files (color.tbl, stationlist, lookup tables, etc.) reside.
Typically (for cshrc shell):

setenv RIP_ROOT /my-path/RIP4

The RIP_ROOT environment variable can also be overwritten with the variable rip_root
in the RIP user input file (UIF).

A second environment variable you need to set is NCARG_ROOT.
Typically (for cshrc shell):

setenv NCARG_ROOT /usr/local/ncarg ! for NCARG V4
setenv NCARG_ROOT /usr/local/ncl ! for NCL V5

Compiling RIP and associated programs

Typing "make" will produce a list of available compile options (the list shown below is
just a sample of what is available):

make dec
make linux
make intel
make sun
make sgi
make ibm
make cray
make clean
make clobber

To Run on DEC_ALPHA
To Run on LINUX with PGI compiler
To Run on LINUX with INTEL compiler
To Run on SUN
To Run on SGI
To Run on IBM SP2
To Run on NCAR's Cray
to remove object files
to remove object files and executables

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-19

Pick the compiler option for the machine you are working on and type:
"make machine"

e.g. make linux

will compile the code for a Linux computer running PGI compiler.

After a successful compilation, the following new files should be created.

rip RIP post-processing program.
Before using this program, first convert the input data to the correct
format expected by this program, using the program ripdp

ripcomp This program reads in two rip data files and compares their contents.
ripdp_mm5 RIP Data Preparation program for MM5 data
ripdp_wrfarw
ripdp_wrfnmm

RIP Data Preparation program for WRF data

ripinterp This program reads in model output (in rip-format files) from a
coarse domain and from a fine domain, and creates a new file which
has the data from the coarse domain file interpolated (bi-linearly) to
the fine domain. The header and data dimensions of the new file
will be that of the fine domain, and the case name used in the file
name will be the same as that of the fine domain file that was read
in.

ripshow This program reads in a rip data file and prints out the contents of
the header record.

showtraj Sometimes, you may want to examine the contents of a trajectory
position file. Since it is a binary file, the trajectory position file
cannot simply be printed out. showtraj, reads the trajectory position
file and prints out its contents in a readable form. When you run
showtraj, it prompts you for the name of the trajectory position file
to be printed out.

tabdiag If fields are specified in the plot specification table for a trajectory
calculation run, then RIP produces a .diag file that contains values of
those fields along the trajectories. This file is an unformatted Fortran
file; so another program is required to view the diagnostics. tabdiag
serves this purpose.

upscale This program reads in model output (in rip-format files) from a
coarse domain and from a fine domain, and replaces the coarse data
with fine data at overlapping points. Any refinement ratio is allowed,
and the fine domain borders do not have to coincide with coarse
domain grid points.

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-20

Preparing data with RIPDP

RIP does not ingest model output files directly. First, a preprocessing step must be
executed that converts the model output data files to RIP-format data files. The primary
difference between these two types of files is that model output data files typically
contain all times and all variables in a single file (or a few files), whereas RIP data has
each variable at each time in a separate file. The preprocessing step involves use of the
program RIPDP (which stands for RIP Data Preparation). RIPDP reads in a model output
file (or files), and separates out each variable at each time.

Running RIPDP

The program has the following usage:

ripdp_XXX [-n namelist_file] model-data-set-name [basic|all]
data_file_1 data_file_2 data_file_3 ...

In the above, the "XXX" refers to "mm5", "wrfarw", or "wrfnmm".
The argument model-data-set-name can be any string you choose, that uniquely defines
this model output data set

The use of the namelist file is optional. The most important information in the namelist,
is the times you want to process.

As this step will create a large number of extra files, creating a new directory to place
these files in, will enable you to manage the files easier (mkdir RIPDP).

e.g. ripdp_wrfarw RIPDP/arw all wrfout_d01_*

The RIP user input file

Once the RIP data has been created with RIPDP, the next step is to prepare the user input
file (UIF) for RIP (see Chapter 4 of the RIP users’ guide for details). This file is a text
file, which tells RIP what plots you want and how they should be plotted. A sample UIF,
called rip_sample.in, is provided in the RIP tar file. This sample can serve as a template
for the many UIFs that you will eventually create.

A UIF is divided into two main sections. The first section specifies various general
parameters about the set up of RIP, in a namelist format (userin - which control the
general input specifications; and trajcalc - which control the creation of trajectories).
The second section is the plot specification section, which is used to specify which plots
will be generated.

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-21

namelist: userin

Variable Value Description
idotitle 1 Control first part of title.
title ‘auto’ Define your own title, or allow RIP to generate

one.
titlecolor ‘def.foreground’ Control color of the title.
iinittime 1 Print initial date and time (in UTC) on plot.
ifcsttime 1 Print forecast lead-time (in hours) on plot.
ivalidtime 1 Print valid date and time (in both UTC and local

time) on plot.
inearesth 0 This allows you to have the hour portion of the

initial and valid time be specified with two digits,
rounded to the nearest hour, rather than the
standard 4-digit HHMM specification.

timezone -7.0 Specifies the offset from Greenwich time.
iusdaylightrule 1 Flag to determine if US daylight saving should be

applied.
ptimes 9.0E+09 Times to process.

This can be a string of times (e.g. 0,3,6,9,12,)
or a series in the form of A,-B,C, which means
"times from hour A, to hour B, every C hours"
(e.g. 0,-12,3,). Either ptimes or iptimes can be
used, but not both. You can plot all available
times, by omitting both ptimes and iptimes from
the namelist, or by setting the first value negative.

ptimeunits ‘h’ Time units. This can be ‘h’ (hours), ‘m’
(minutes), or ‘s’ (seconds). Only valid with
ptimes.

iptimes 99999999 Times to process.
This is an integer array that specifies desired
times for RIP to plot, but in the form of 8-digit
"mdate" times (i.e. YYMMDDHH). Either ptimes
or iptimes can be used, but not both. You can plot
all available times, by omitting both ptimes and
iptimes from the namelist, or by setting the first
value negative.

tacc 1.0 Time tolerance in seconds.
Any time in the model output that is within tacc
seconds of the time specified in ptimes/iptimes
will be processed.

flmin, flmax,
fbmin, ftmax

.05, .95,

.10, .90
Left, right,
bottom and top frame limit

ntextq 0 Text quality specifier (0=high; 1=medium;
2=low).

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-22

ntextcd 0 Text font specifier [0=complex (Times);
1=duplex (Helvetica)].

fcoffset 0.0 This is an optional parameter you can use to "tell"
RIP that you consider the start of the forecast to
be different from what is indicated by the forecast
time recorded in the model output. Examples:
fcoffset=12 means you consider hour 12 in the
model output to be the beginning of the true
forecast.

idotser 0 Generate time series output files (no plots) only
an ASCII file that can be used as input to a
plotting program.

idescriptive 1 Use more descriptive plot titles.
icgmsplit 0 Split metacode into several files.
maxfld 10 Reserve memory for RIP.
ittrajcalc 0 Generate trajectory output files (use namelist

trajcalc when this is set).
imakev5d 0 Generate output for Vis5D
ncarg_type ‘cgm’ Output type required. Options are ‘cgm’ (default),

‘ps’, ‘pdf’, ‘pdfL’, ‘x11’. Where ‘pdf’ is portrait
and ‘pdfL’ is landscape.

istopmiss 1 This switch determines the behavior for RIP when
a user-requested field is not available. The default
is to stop. Setting the switch to 0 tells RIP to
ignore the missing field and to continue plotting.

rip_root ‘/dev/null’ Overwrite the environment variable RIP_ROOT.

Plot Specification Table

The second part of the RIP UIF consists of the Plot Specification Table. The PST
provides all of the user control over particular aspects of individual frames and overlays.

The basic structure of the PST is as follows:

• The first line of the PST is a line of consecutive equal signs. This line as well as
the next two lines is ignored by RIP, it is simply a banner that says this is the start
of the PST section.

• After that there are several groups of one or more lines separated by a full line of
equal signs. Each group of lines is a frame specification group (FSG), and it
describes what will be plotted in a single frame of metacode. Each FSG must end
with a full line of equal signs, so that RIP can determine where individual frames
starts and ends.

• Each line within a FGS is referred to as a plot specification line (PSL). A FSG
that consists of three PSL lines will result in a single metacode frame with three
overlaid plots.

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-23

Example of a frame specification groups (FSG's):
 ==
 feld=tmc; ptyp=hc; vcor=p; levs=850; >
 cint=2; cmth=fill; cosq=-32,light.violet,-24,
 violet,-16,blue,-8,green,0,yellow,8,red,>
 16,orange,24,brown,32,light.gray
 feld=ght; ptyp=hc; cint=30; linw=2
 feld=uuu,vvv; ptyp=hv; vcmx=-1; colr=white; intv=5
 feld=map; ptyp=hb
 feld=tic; ptyp=hb
_===

This FSG will generate 5 frames to create a single plot (as shown below):

• Temperature in degrees C (feld=tmc). This will be plotted as a horizontal contour
plot (ptyp=hc), on pressure levels (vcor=p). The data will be interpolated to 850
hPa. The contour intervals are set to 2 (cint=2), and shaded plots (cmth=fill) will
be generated with a color range from light violet to light gray.

• Geopotential heights (feld=ght) will also be plotted as a horizontal contour plot.
This time the contour intervals will be 30 (cint=30), and contour lines, with a line
width of 2 (linw=2) will be used.

• Wind vectors (feld=uuu,vvv), plotted as barbs (vcmax=-1).
• A map background will be displayed (feld=map), and
• Tic marks will be placed on the plot (feld=tic).

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-24

Running RIP

Each execution of RIP requires three basic things: a RIP executable, a model data set and
a user input file (UIF). The syntax for the executable, rip, is as follows:

rip [-f] model-data-set-name rip-execution-name

In the above, model-data-set-name is the same model-data-set-name that was used in
creating the RIP data set with the program ripdp.

rip-execution-name is the unique name for this RIP execution, and it also defines the
name of the UIF that RIP will look for.

The –f option causes the standard output (i.e., the textual print out) from RIP to be
written to a file called rip-execution-name.out. Without the –f option, the standard output
is sent to the screen.

e.g. rip -f RIPDP/arw rip_sample

If this is successful, the following files will be created:

rip_sample.TYPE - metacode file with requested plots
rip_sample.out - log file (if –f used) ; view this file if a problem occurred

The default output TYPE is ‘cgm’, metacode file. To view these, use the command ‘idt’.

e.g. idt rip_sample.cgm

For high quality images, create pdf or ps images directly (ncarg_type = pdf / ps).

See the Tools section at the end of this chapter for more information concerning other
types of graphical formats and conversions between graphical formats.

Examples of plots created for both idealized and real cases are available from:
http://www.mmm.ucar.edu/wrf/users/graphics/RIP4/RIP4.htm

http://www.mmm.ucar.edu/wrf/users/graphics/RIP4/RIP4.htm

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-25

ARWpost

The ARWpost package reads in WRF-ARW model data and creates output in either
GrADS or Vis5D format.

The converter can read in WPS geogrid and metgrid data, and WRF-ARW input and
output files.

The package makes use of the WRF IO API. The netCDF format has been tested
extensively. GRIB1 format has been tested, but not as extensively. BINARY data cannot
be read at the moment.

Necessary software

GrADS software - you can download and install GrADS from
http://grads/iges.org/grads. The GrADS software is not needed to compile and run
ARWpost.

Vis5D software (http://www.ssec.wisc.edu/~billh/vis5d.html)
Vis5D libraries must be installed to compile and run the ARWpost code, when creating
Vis5D input data. If Vis5D files are not being created, these libraries are NOT needed to
compile and run ARWpost.

Obtain the ARWpost TAR file from the WRF Download page
(http://www.mmm.ucar.edu/wrf/users/download/get_source.html)
WRFV3 must be installed and available somewhere, as ARWpost makes use of the
common IO API libraries from WRFV3.

Unzip and untar the ARWpost tar file.

The tar file contains the following directories and files:

• README, a text file containing basic information on running ARWpost.
• arch/, directory containing configure and compilation control.
• clean, a script to clean compiled code.
• compile, a script to compile the code.
• configure, a script to configure the compilation for your system.
• namelist.ARWpost, namelist to control the running of the code.
• src/, directory containing all source code.
• scripts/, directory containing some grads sample scripts.
• gribinfo.txt & gribmap.txt, files needed to process GRIB1 data. Do not edit these

files.
• util/, a directory containing some utilities.

http://grads/iges.org/grads
http://www.ssec.wisc.edu/~billh/vis5d.html
http://www.mmm.ucar.edu/wrf/users/download/get_source.html

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-26

Environment Variables

Set the environment variable NETCDF to the location where your netCDF libraries are
installed. Typically (for cshrc shell):

setenv NETCDF /usr/local/netcdf

Configure ARWpost

WRFV3 must be compiled and available on your system.

Type:

./configure

You will see a list of options for your computer (below is an example for a Linux
machine):

Will use NETCDF in dir: /usr/local/netcdf-pgi

Please select from among the following supported platforms.
1. PC Linux i486 i586 i686, PGI compiler (no vis5d)
2. PC Linux i486 i586 i686, PGI compiler (vis5d)
3. PC Linux i486 i586 i686, Intel compiler (no vis5d)
4. PC Linux i486 i586 i686, Intel compiler (vis5d)

Enter selection [1-4]

Make sure the netCDF path is correct.
Pick compile options for your machine (if you do not have Vis5D, or if you do not plan
on using it, pick an option without Vis5D libraries).

Compile ARWpost

If your WRFV3 code is NOT compiled under ../WRFV3, edit configure.arwp, and set
"WRF_DIR" to the correct location of your WRFV3 code.
 Type:

./compile

If successful, the executable ARWpost.exe will be created.

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-27

Edit the namelist.ARWpost file

Set input and output file names and fields to process (&io)

Variable Value Description

&datetime
start_date;
end_date

- Start and end dates to process.
Format: YYYY-MM-DD_HH:00:00

interval_seconds 0 Interval in seconds between data to process. If data is
available every hour, and this is set to every 3 hours,
the code will skip past data not required.

tacc 0 Time tolerance in seconds.
Any time in the model output that is within tacc
seconds of the time specified will be processed.

debug_level 0 Set higher to debugging is required.

&io
io_form_input

- 2=netCDF, 5=GRIB1

input_root_name ./ Path and root name of files to use as input. All files
starting with the root name will be processed. Wild
characters are allowed.

output_root_name ./ Output root name. When converting data to GrADS,
output_root_name.ctl and output_root_name.dat will
be created. For Vis5D, output_root_name.v5d will be
created.

output_title Title as
in WRF
file

Use to overwrite title used in GrADS .ctl file.

mercator_defs .False. Set to true if mercator plots are distorted.
output_type ‘grads’ Options are ‘grads’ or ‘v5d’
split_output .False. Use if you want to split our GrADS output files into a

number of smaller files (a common .ctl file will be
used for all .dat files).

frames_per_outfile 1 If split_output is .True., how many time periods are
required per output (.dat) file.

plot ‘all’ Which fields to process.
‘all’ – all fields in WRF file
‘list’ – only fields as listed in the ‘fields’ variable.
‘all_list’ – all fields in WRF file and all fields listed in
the ‘fields’ variable.

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-28

Order has no effect, i.e., ‘all_list’ and ‘list_all’ are
similar.

If ‘list’ is used, a list of variables must be supplied
under ‘fields’. Use ‘list’ to calculate diagnostics.

fields - Fields to plot. Only used if ‘list’ was used in the ‘plot’
variable.

&interp
interp_method 0 0 - sigma levels,

-1 - code defined "nice" height levels,
 1 - user defined height or pressure levels

interp_levels - Only used if interp_method=1

Supply levels to interpolate to, in hPa (pressure) or km
(height). Supply levels bottom to top.

Available diagnostics:

cape - 3d cape
cin - 3d cin
mcape - maximum cape
mcin - maximum cin
clfr - low/middle and high cloud fraction
dbz - 3d reflectivity
max_dbz - maximum reflectivity
height - model height in km
lcl - lifting condensation level
lfc - level of free convection
pressure - full model pressure in hPa
rh - relative humidity
rh2 - 2m relative humidity
theta - potential temperature
tc - temperature in degrees C
tk - temperature in degrees K
td - dew point temperature in degrees C
td2 - 2m dew point temperature in degrees C
slp - sea level pressure
umet and vmet - winds rotated to earth coordinates
u10m and v10m - 10m winds rotated to earth coordinates
wdir - wind direction
wspd - wind speed coordinates
wd10 - 10m wind direction
ws10 - 10m wind speed

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-29

Run ARWpost

Type:

./ARWpost.exe

This will create output_root_name.dat and output_root_name.ctl files if creating GrADS
input, and output_root_name.v5d, if creating Vis5D input.

NOW YOU ARE READY TO VIEW THE OUTPUT

GrADS

For general information about working with GrADS, view the GrADS home
page: http://grads.iges.org/grads/

To help users get started a number of GrADS scripts have been provided:

• The scripts are all available in the scripts/ directory.
• The scripts provided are only examples of the type of plots one can generate with

GrADS data.
• The user will need to modify these scripts to suit their data (e.g., if you did not

specify 0.25 km and 2 km as levels to interpolate to when you run the "bwave"
data through the converter, the "bwave.gs" script will not display any plots, since
it will specifically look for these to levels).

• Scripts must be copied to the location of the input data.

GENERAL SCRIPTS

cbar.gs Plot color bar on shaded plots (from GrADS home page)
rgbset.gs Some extra colors (Users can add/change colors from color number 20

to 99)
skew.gs Program to plot a skewT

TO RUN TYPE: run skew.gs (needs pressure level TC,TD,U,V as input)
User will be prompted if a hardcopy of the plot must be create - 1 for yes
and 0 for no.
If 1 is entered, a GIF image will be created.
Need to enter lon/lat of point you are interested in
Need to enter time you are interested in
Can overlay 2 different times

http://grads.iges.org/grads/

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-30

plot_all.gs Once you have opened a GrADS window, all one needs to do is run this
script.
It will automatically find all .ctl files in the current directory and list them
so one can pick which file to open.
Then the script will loop through all available fields and plot the ones a
user requests.

SCRIPTS FOR REAL DATA

real_surf.gs Plot some surface data

Need input data on model levels
plevels.gs Plot some pressure level fields

Need model output on pressure levels
rain.gs Plot total rainfall

Need a model output data set (any vertical coordinate), that contain fields
"RAINC" and "RAINNC"

cross_z.gs Need z level data as input
Will plot a NS and EW cross section of RH and T (C)
Plots will run through middle of the domain

zlevels.gs Plot some height level fields
Need input data on height levels
Will plot data on 2, 5, 10 and 16km levels

input.gs Need WRF INPUT data on height levels

SCRIPTS FOR IDEALIZED DATA

bwave.gs Need height level data as input

Will look for 0.25 and 2 km data to plot
grav2d.gs Need normal model level data
hill2d.gs Need normal model level data
qss.gs Need height level data as input.

Will look for heights 0.75, 1.5, 4 and 8 km to plot
sqx.gs Need normal model level data a input
sqy.gs Need normal model level data a input

Examples of plots created for both idealized and real cases are available from:
http://www.mmm.ucar.edu/wrf/users/graphics/ARWpost/ARWpost.htm

http://www.mmm.ucar.edu/wrf/users/graphics/ARWpost/ARWpost.htm

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-31

Trouble Shooting

The code executes correctly, but you get "NaN" or "Undefined Grid" for all fields
when displaying the data.

Look in the .ctl file.

a) If the second line is:

options byteswapped

Remove this line from your .ctl file and try to display the data again.
If this SOLVES the problem, you need to remove the -Dbytesw option from
configure.arwp

b) If the line below does NOT appear in your .ctl file:

options byteswapped

ADD this line as the second line in the .ctl file.
Try to display the data again.
If this SOLVES the problem, you need to ADD the -Dbytesw option for
configure.arwp

The line "options byteswapped" is often needed on some computers (DEC alpha as an
example). It is also often needed if you run the converter on one computer and use
another to display the data.

Vis5D

For general information about working with Vis5D, view the Vis5D home
page: http://www.ssec.wisc.edu/~billh/vis5d.html

http://www.ssec.wisc.edu/~billh/vis5d.html

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-32

WPP

The NCEP WRF Postprocessor was designed to interpolate both WRF-ARW and WRF-
NMM output from their native grids to National Weather Service (NWS) standard levels
(pressure, height, etc.) and standard output grids (AWIPS, Lambert Conformal, polar-
stereographic, etc.) in NWS and World Meteorological Organization (WMO) GRIB1
format. This package also provides an option to output fields on the model’s native
vertical levels.

The adaptation of the original WRF Postprocessor package and User’s Guide (by Mike
Baldwin of NSSL/CIMMS and Hui-Ya Chuang of NCEP/EMC) was done by Lígia
Bernardet (NOAA/ESRL/DTC) in collaboration with Dusan Jovic (NCEP/EMC), Robert
Rozumalski (COMET), Wesley Ebisuzaki (NWS/HQTR), and Louisa Nance
(NCAR/DTC). Upgrades to WRF Postprocessor versions 2.2 and higher were performed
by Hui-Ya Chuang and Dusan Jovic (NCEP/EMC).

This document will mainly deal with running the WPP package for the WRF-ARW
modeling system. For details on running the package for the WRF-NMM system, please
refer to the WRF-NMM User’s Guide (http://www.dtcenter.org/wrf-
nmm/users/docs/user_guide/WPS/index.php).

Necessary software

The WRF Postprocessor requires the same Fortran and C compilers used to build the
WRF model. In addition to the netCDF library, the WRF I/O API libraries, which are
included in the WRF model tar file, are also required.

The WRF Postprocessor has some visualization scripts included to create graphics using
either GrADS (http://grads.iges.org/home.html) or GEMPAK
(http://my.unidata.ucar.edu/content/software/gempak/index.html). These packages are
not part of the WPP installation and would need to be installed.

The WRF Postprocessor package can be downloaded from: http://www.dtcenter.org/wrf-
nmm/users/downloads/

Once the tar file is obtained, gunzip and untar the file.

tar –xvf wrfpostproc_v3.0.tar.gz

This command will create a directory called WPPV3. Under the main directory, there are
five subdirectories:

• sorc/, contains source codes for wrfpost, ndate, and copygb.

http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/WPS/index.php
http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/WPS/index.php
http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/WPS/index.php
http://grads.iges.org/home.html
http://my.unidata.ucar.edu/content/software/gempak/index.html
http://www.dtcenter.org/wrf-nmm/users/downloads/
http://www.dtcenter.org/wrf-nmm/users/downloads/
http://www.dtcenter.org/wrf-nmm/users/downloads/

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-33

• scripts/, contains sample running scripts
run_wrfpost: run wrfpost and copygb.
run_wrfpostandgempak: run wrfpost, copygb, and GEMPAK to plot various
fields.
run_wrfpostandgrads: run wrfpost, copygb, and GrADS to plot various
fields.
run_wrfpost_frames: run wrfpost and copygb on a single wrfout file
containing multiple forecast times.

• lib/, contains source code subdirectories for the WRF Postprocessor libraries and
is the directory where the WRF Postprocessor compiled libraries will reside.

w3lib: Library for coding and decoding data in GRIB format. (Note: The
version of this library included in this package is Endian independent and can
be used on LINUX and IBM systems.)
iplib: General interpolation library (see lib/iplib/iplib.doc)
splib: Spectral transform library (see lib/splib/splib.doc)
wrfmpi_stubs: Contains some C and FORTRAN codes to generate the
libmpi.a library. It supports MPI implementation for LINUX applications.

• parm/, contains the parameter files, which can be modified by the user to control
how the post processing is performed.

• exec/, location of executables after compilation.

Building the WPP Code

Type configure, and provide the required info. For example:

./configure

Please select from the following supported platforms.
1. LINUX (PC)
2. AIX (IBM)

Enter selection [1-2]: 1
Enter your NETCDF path: /usr/local/netcdf-pgi
Enter your WRF model source code path: /home/user/WRFV3

"YOU HAVE SELECTED YOUR PLATFORM TO BE:" LINUX

To modify the default compiler options, edit the appropriate platform specific makefile
(i.e. makefile_linux or makefile_ibm) and repeat the configure process.

From the WPPV3 directory, type:

make >& compile_wpp.log &

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-34

This command should create four WRF Postprocessor libraries in lib/ (libmpi.a, libsp.a,
libip.a, and libw3.a) and three WRF Postprocessor executables in exec/ (wrfpost.exe,
ndate.exe, and copygb.exe).

Note: The makefile included in the tar file currently only contains the setup for single
processor compilation of wrfpost for LINUX. Those users wanting to implement the
parallel capability of this portion of the package will need to modify the compile options
for wrfpost in the makefile.

WPP Functionalities

The WRF Postprocessor v3.0,

• is compatible with WRF version 2.2 and higher.
• can be used to post-process both WRF-ARW and WRF-NMM forecasts.
• can ingest WRF history files (wrfout*) in two formats: netCDF and binary.

The WRF Postprocessor is divided into two parts, wrfpost and copygb:

wrfpost

• Interpolates the forecasts from the model’s native vertical coordinate to NWS
standard output levels (pressure, height, etc.) and computes mean sea level
pressure. If the requested field is on a model’s native level, then no vertical
interpolation is performed.

• Computes diagnostic output quantities.
A list of available fields is shown in Table 1.

• Outputs the results in NWS and WMO standard GRIB1 format (for GRIB
documentation, see http://www.nco.ncep.noaa.gov/pmb/docs/).

• De-staggers the WRF-ARW forecasts from a C-grid to an A-grid.
• Outputs two navigation files, copygb_nav.txt and copygb_hwrf.txt (these are

ONLY used for WRF-NMM).

copygb

• Since wrfpost de-staggers WRF-ARW from a C-grid to an A-grid, WRF-ARW
data can be displayed directly without going through copygb.

• No de-staggering is applied when posting WRF-NMM forecasts. Therefore, the
posted WRF-NMM output is still on the staggered native E-grid and must go
through copygb to be interpolated to a regular non-staggered grid.

• copygb is mainly used by WRF-NMM - see the WRF-NMM User’s Guide
(http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/WPS/index.php).

An additional utility called ndate is distributed with the WRF Postprocessor tar-file. This
utility is used to format the dates of the forecasts to be posted for ingestion by the codes.

http://www.nco.ncep.noaa.gov/pmb/docs/
http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/WPS/index.php
http://www.nco.ncep.noaa.gov/pmb/docs/

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-35

Computational Aspects and Supported Platforms

The WRF Postprocessor v3.0 has been tested on IBM and LINUX platforms. For
LINUX, the Portland Group (PG) compiler has been used.

Only wrfpost has been parallelized, because it requires several 3-dimensional arrays for
the computations. When running wrfpost on more than one processor, the last processor
will be designated as an I/O node, while the rest of the processors are designated as
computational nodes.

Setting up the WRF model to interface with the WRF Postprocessor

The wrfpost program is currently set up to read a large number of fields from the WRF
model history (wrfout) files. This configuration stems from NCEP's need to generate all
of its required operational products. The program is configured such that is will run
successfully if an expected input field is missing from the WRF history file as long as this
field is not required to produce a requested output field. If the pre-requisites for a
requested output field are missing from the WRF history file, wrfpost will abort at run
time.

Take care not to remove fields from the wrfout files, which may be needed for
diagnostical purposes by the WPP package. For example, if fields on isobaric surfaces are
requested, but the pressure fields on model surfaces (PB and P) are not available in the
history file, wrfpost will abort at run time. In general the default fields available in the
wrfout files are sufficient to run WPP.

Note: For WRF-ARW, the accumulated precipitation fields (RAINC and RAINNC) are

run total accumulations, whereas the WRF-NMM accumulated precipitation fields
(CUPREC and ACPREC) are zeroed every 6 hours.

Control File Overview

The user interacts with wrfpost through the control file, parm/wrf_cntrl.parm. The
control file is composed of a header and a body. The header specifies the output file
information. The body allows the user to select which fields and levels to process.

The header of the wrf_cntrl.parm file contains the following variables:

• KGTYPE: defines output grid type, which should always be 255.
• IMDLTY: identifies the process ID for AWIPS.
• DATSET: defines the prefix used for the output file name. Currently set to

“WRFPRS”.

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-36

The body of the wrf_cntrl.parm file is composed of a series of line pairs, for example:

(PRESS ON MDL SFCS) SCAL=(3.0)
L=(11000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000)

where,

• The first line specifies the field (e.g. PRESS) to process, the level type a user is
interested in (e.g. ON MDL SFCS), and the degree of accuracy to be retained in
the GRIB output (SCAL=3.0).
A list of all possible output fields for wrfpost is provided in Table 1. This table
provides the full name of the variable in the first column and an abbreviated name
in the second column. The abbreviated names are used in the control file. Note
that the variable names also contain the type of level on which they are output.
For instance, temperature is available on “model surface” and “pressure surface”.

• The second line specifies the levels on which the variable is to be processed.

Controlling which fields wrfpost outputs

To output a field, the body of the control file needs to contain an entry for the appropriate
field and output for this field must be turned on for at least one level (see “Controlling
which levels wrfpost outputs”). If an entry for a particular field is not yet available in the
control file, two lines may be added to the control file with the appropriate entries for that
field.

Controlling which levels wrfpost outputs

The second line of each pair determines which levels wrfpost will output. Output on a
given level is turned off by a “0” or turned on by a “1”.

• For isobaric output, 47 levels are possible, from 2 to 1013 hPa (8 levels above 75
mb and then every 25 mb from 75 to 1000mb). The complete list of levels is
specified in sorc/wrfpost/POSTDATA.f

• For model-level output, all model levels are possible, from the highest to the
lowest.

• When using the Noah LSM the soil layers are 0-10 cm, 10-40 cm, 40-100 cm, and
100-200 cm.
When using the RUC LSM the soil levels are 0 cm, 5 cm, 20 cm, 40 cm, 160 cm
and 300 cm. For the RUC LSM it is also necessary to turn on two additional
output levels in wrf_cntrl.param so that 6 output levels are processed.

• For PBL layer averages, the levels correspond to 6 layers with a thickness of 30
hPa each.

• For flight level, the levels are 914 m, 1524 m, 1829 m, 2134 m, 2743 m, 3658 m,
and 6000 m.

• For AGL RADAR Reflectivity, the levels are 4000 and 1000 m.

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-37

• For surface or shelter-level output, only the first position of the line can be turned
on.

For example, the sample control file parm/wrf_cntrl.parm has the following entry for
surface dew point temperature:

(SURFACE DEWPOINT) SCAL=(-4.0)
L=(00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000)

Based on this entry, surface dew point temperature will not be output by wrfpost. To add
this field to the output, modify the entry to read:

(SURFACE DEWPOINT) SCAL=(-4.0)
L=(10000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000)

Running WPP

Four scripts for running the WRF Postprocessor package are included in the tar file:

run_wrfpost
run_wrfpostandgrads
run_wrfpostandgempak
run_wrfpost_frames

Before running any of the above listed scripts, perform the following instructions:

1. cd to your DOMAINPATH directory.

2. Make the following directories. The first will hold the WRF Postprocessor results. The

second is where you will place your copy of the wrf_cntrl.parm file.

mkdir postprd
mkdir parm

3. Copy the default WPPV3/parm/wrf_cntrl.parm to your working. Edit the
wrf_cntrl.parm file to reflect the fields and levels you want wrfpost to output.

4. Copy the script (WPPV3/scripts/run_wrfpost*) of your choice to the postprd/.

5. Edit the run script as outlined below.

Once these directories are set up and the edits outlined above are completed, the scripts
can be run interactively from the postprd directory by simply typing the script name on
the command line.

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-38

Overview of the WPP run scripts

Note: It is recommended that the user refer to the script while reading this overview.

1. Set up environmental variables:

TOP_DIR: top level directory for source codes (WPPV3 and WRFV3)
DOMAINPATH: top level directory of WRF model run

Note: The scripts are configured such that wrfpost expects the WRF history files
(wrfout* files) to be in subdirectory wrfprd, the wrf_cntrl.parm file to be in the
subdirectory parm and the postprocessor working directory to be a subdirectory called
postprd under DOMAINPATH.

2. Specify dynamic core being run (“NMM” or “ARW”)

3. Specify the forecast cycles to be post-processed:

startdate: YYYYMMDDHH of forecast cycle
fhr: first forecast hour
lastfhr: last forecast hour
incrementhr: increment (in hours) between forecast files

4. Define the location of the post-processor executables.

5. Link the microphysical table ${WRFPATH}/run/ETAMP_DATA and the control file
../parm/wrf_control.parm to the working directory.

6. Set up how many domains will be post-processed:

For runs with a single domain, use “for domain d01”.
For runs with multiple domains, use “for domain d01 d02 .. dnn”

7. Create namelist itag that will be read in by wrfpost.exe from stdin (unit 5). This
namelist contains 4 lines:

i. Name of the WRF output file to be posted.
ii. Format of WRF model output (netCDF or binary).
iii. Forecast valid time (not model start time) in WRF format.
iv. Model name (NMM or ARW).

8. Run wrfpost and check for errors. The execution command in the distributed scripts is

for a single processor wrfpost.exe < itag > outpost. To run wrfpost on multiple
processors, the command line should be:

mpirun -np N wrfpost.exe < itag > outpost (for LINUX-MPI systems)

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-39

mpirun.lsf wrfpost.exe < itag > outpost (for IBM)

If scripts run_wrfpostandgrads or run_wrfpostandgempak are used, additional steps are
taken to create image files (see Visualization section below).

Upon a successful run, wrfpost will generate the output file WRFPRS_dnn.hh (linked to
wrfpr_dnn.hh), in the post-processor working directory, where “nn” is the domain ID
and “hh” the forecast hour. In addition, the script run_wrfpostandgrads will produce a
suite of gif images named variablehh_dnn_GrADS.gif, and the script
run_wrfpostandgempak will produce a suite of gif images named variable_dnn_hh.gif.

If the run did not complete successfully, a log file in the post-processor working directory
called wrfpost_dnn.hh.out, where “nn” is the domain ID and “hh” is the forecast hour,
may be consulted for further information.

Visualization

GEMPAK

The GEMPAK utility nagrib is able to decode GRIB files whose navigation is on any
non-staggered grid. Hence, GEMPAK is able to decode GRIB files generated by WPP
and plot horizontal fields or vertical cross sections.

A sample script named run_wrfpostandgempak, which is included in the scripts directory
of the tar file, can be used to run wrfpost and plot the following fields using GEMPAK:

_ Sfcmap_dnn_hh.gif: mean SLP and 6 hourly precipitation
_ PrecipType_dnn_hh.gif: precipitation type (just snow and rain)
_ 850mbRH_dnn_hh.gif: 850 mb relative humidity
_ 850mbTempandWind_dnn_hh.gif: 850 mb temperature and wind vectors
_ 500mbHandVort_dnn_hh.gif: 500 mb geopotential height and vorticity
_ 250mbWindandH_dnn_hh.gif: 250 mb wind speed isotacs and geopotential

height

This script can be modified to customize fields for output. GEMPAK has an online users
guide at http://my.unidata.ucar.edu/content/software/gempak/index.html

In order to use the script run_wrfpostandgempak, it is necessary to set the environment
variable GEMEXEC to the path of the GEMPAK executables. For example,

setenv GEMEXEC /usr/local/gempak/bin

http://my.unidata.ucar.edu/content/software/gempak/index.html

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-40

GrADS

The GrADS utilities grib2ctl.pl and gribmap are able to decode GRIB files whose
navigation is on any non-staggered grid. These utilities and instructions on how to use
them to generate GrADS control files are available from:
http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html.

The GrADS package is available from: http://grads.iges.org/grads/grads.html.
GrADS has an online Users’ Guide at: http://grads.iges.org/grads/gadoc/.
A list of basic commands for GrADS can be found at:
http://grads.iges.org/grads/gadoc/reference_card.pdf.

A sample script named run_wrfpostandgrads, which is included in the scripts directory
of WPP, can be used to run wrfpost and plot the following fields using GrADS:

_ Sfcmaphh_dnn_GRADS.gif: mean SLP and 6-hour accumulated precipitation.
_ 850mbRHhh_dnn_GRADS.gif: 850 mb relative humidity
_ 850mbTempandWindhh_dnn_GRADS.gif: 850 mb temperature and wind vectors
_ 500mbHandVorthh_dnn_GRADS.gif: 500 mb geopotential heights and absolute

vorticity
_ 250mbWindandHhh_dnn_GRADS.gif: 250 mb wind speed isotacs and

geopotential heights

In order to use the script run_wrfpostandgrads, it is necessary to:

0. Set environmental variable GADDIR to the path of the GrADS fonts and auxiliary

files. For example,

setenv GADDIR /usr/local/grads/data

1. Add the location of the GrADS executables to the PATH. For example,

setenv PATH /usr/local/grads/bin:$PATH

2. Link script cbar.gs to the post-processor working directory. (This script is provided in
WPP, and the run_wrfpostandgrads script makes a link from scripts/ to postprd/.) To
generate the above plots, GrADS script cbar.gs is invoked. This script can also be
obtained from the GrADS library of scripts at:
http://grads.iges.org/grads/gadoc/library.html

Fields produced by the WRF Postprocessor

Table 1 lists basic and derived fields that are currently produced by wrfpost. The
abbreviated names listed in the second column describe how the fields should be entered
in the control file (wrf_cntrl.parm).

http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html
http://grads.iges.org/grads/grads.html
http://grads.iges.org/grads/gadoc/
http://grads.iges.org/grads/gadoc/reference_card.pdf
http://grads.iges.org/grads/gadoc/library.html

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-41

Table 1: Fields produced by wrfpost (column 1), abbreviated names used in wrfpost control
file (column 2), corresponding GRIB identification number for the field (column 3), and
corresponding GRIB identification number for the vertical coordinate (column 4).

Field name Name in control file Grib

ID
Vertical

level
Radar reflectivity on model surface RADAR REFL MDL SFCS 211 109
Pressure on model surface PRESS ON MDL SFCS 1 109
Height on model surface HEIGHT ON MDL SFCS 7 109
Temperature on model surface TEMP ON MDL SFCS 11 109
Potential temperature on model surface POT TEMP ON MDL SFCS 13 109
Dew point temperature on model surface DWPT TEMP ON MDL SFC 17 109
Specific humidity on model surface SPEC HUM ON MDL SFCS 51 109
Relative humidity on model surface REL HUM ON MDL SFCS 52 109
Moisture convergence on model surface MST CNVG ON MDL SFCS 135 109
U component wind on model surface U WIND ON MDL SFCS 33 109
V component wind on model surface V WIND ON MDL SFCS 34 109
Cloud water on model surface CLD WTR ON MDL SFCS 153 109
Cloud ice on model surface CLD ICE ON MDL SFCS 58 109
Rain on model surface RAIN ON MDL SFCS 170 109
Snow on model surface SNOW ON MDL SFCS 171 109
Cloud fraction on model surface CLD FRAC ON MDL SFCS 71 109
Omega on model surface OMEGA ON MDL SFCS 39 109
Absolute vorticity on model surface ABS VORT ON MDL SFCS 41 109
Geostrophic streamfunction on model surface STRMFUNC ON MDL SFCS 35 109
Turbulent kinetic energy on model surface TRBLNT KE ON MDL SFC 158 109
Richardson number on model surface RCHDSN NO ON MDL SFC 254 109
Master length scale on model surface MASTER LENGTH SCALE 226 109
Asymptotic length scale on model surface ASYMPT MSTR LEN SCL 227 109
Radar reflectivity on pressure surface RADAR REFL ON P SFCS 211 100
Height on pressure surface HEIGHT OF PRESS SFCS 7 100
Temperature on pressure surface TEMP ON PRESS SFCS 11 100
Potential temperature on pressure surface POT TEMP ON P SFCS 13 100
Dew point temperature on pressure surface DWPT TEMP ON P SFCS 17 100
Specific humidity on pressure surface SPEC HUM ON P SFCS 51 100
Relative humidity on pressure surface REL HUMID ON P SFCS 52 100
Moisture convergence on pressure surface MST CNVG ON P SFCS 135 100
U component wind on pressure surface U WIND ON PRESS SFCS 33 100
V component wind on pressure surface V WIND ON PRESS SFCS 34 100
Omega on pressure surface OMEGA ON PRESS SFCS 39 100
Absolute vorticity on pressure surface ABS VORT ON P SFCS 41 100
Geostrophic streamfunction on pressure surface STRMFUNC ON P SFCS 35 100
Turbulent kinetic energy on pressure surface TRBLNT KE ON P SFCS 158 100
Cloud water on pressure surface CLOUD WATR ON P SFCS 153 100
Cloud ice on pressure surface CLOUD ICE ON P SFCS 58 100
Rain on pressure surface RAIN ON P SFCS 170 100
Snow water on pressure surface SNOW ON P SFCS 171 100
Total condensate on pressure surface CONDENSATE ON P SFCS 135 100
Mesinger (Membrane) sea level pressure MESINGER MEAN SLP 130 102
Shuell sea level pressure SHUELL MEAN SLP 2 102
2 M pressure SHELTER PRESSURE 1 105
2 M temperature SHELTER TEMPERATURE 11 105
2 M specific humidity SHELTER SPEC HUMID 51 105

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-42

2 M dew point temperature SHELTER DEWPOINT 17 105
2 M RH SHELTER REL HUMID 52 105
10 M u component wind U WIND AT ANEMOM HT 33 105
10 M v component wind V WIND AT ANEMOM HT 34 105
10 M potential temperature POT TEMP AT 10 M 13 105
10 M specific humidity SPEC HUM AT 10 M 51 105
Surface pressure SURFACE PRESSURE 1 1
Terrain height SURFACE HEIGHT 7 1
Skin potential temperature SURFACE POT TEMP 13 1
Skin specific humidity SURFACE SPEC HUMID 51 1
Skin dew point temperature SURFACE DEWPOINT 17 1
Skin Relative humidity SURFACE REL HUMID 52 1
Skin temperature SFC (SKIN) TEMPRATUR 11 1
Soil temperature at the bottom of soil layers BOTTOM SOIL TEMP 85 111
Soil temperature in between each of soil layers SOIL TEMPERATURE 85 112
Soil moisture in between each of soil layers SOIL MOISTURE 144 112
Snow water equivalent SNOW WATER EQUIVALNT 65 1
Snow cover in percentage PERCENT SNOW COVER 238 1
Heat exchange coeff at surface SFC EXCHANGE COEF 208 1
Vegetation cover GREEN VEG COVER 87 1
Soil moisture availability SOIL MOISTURE AVAIL 207 112
Ground heat flux - instantaneous INST GROUND HEAT FLX 155 1
Lifted index—surface based LIFTED INDEX—SURFCE 131 101
Lifted index—best LIFTED INDEX—BEST 132 116
Lifted index—from boundary layer LIFTED INDEX—BNDLYR 24 116
CAPE CNVCT AVBL POT ENRGY 157 1
CIN CNVCT INHIBITION 156 1
Column integrated precipitable water PRECIPITABLE WATER 54 200
Column integrated cloud water TOTAL COLUMN CLD WTR 136 200
Column integrated cloud ice TOTAL COLUMN CLD ICE 137 200
Column integrated rain TOTAL COLUMN RAIN 138 200
Column integrated snow TOTAL COLUMN SNOW 139 200
Column integrated total condensate TOTAL COL CONDENSATE 140 200
Helicity STORM REL HELICITY 190 106
U component storm motion U COMP STORM MOTION 196 106
V component storm motion V COMP STORM MOTION 197 106
Accumulated total precipitation ACM TOTAL PRECIP 61 1
Accumulated convective precipitation ACM CONVCTIVE PRECIP 63 1
Accumulated grid-scale precipitation ACM GRD SCALE PRECIP 62 1
Accumulated snowfall ACM SNOWFALL 65 1
Accumulated total snow melt ACM SNOW TOTAL MELT 99 1
Precipitation type (4 types) - instantaneous INSTANT PRECIP TYPE 140 1
Precipitation rate - instantaneous INSTANT PRECIP RATE 59 1
Composite radar reflectivity COMPOSITE RADAR REFL 212 200
Low level cloud fraction LOW CLOUD FRACTION 73 214
Mid level cloud fraction MID CLOUD FRACTION 74 224
High level cloud fraction HIGH CLOUD FRACTION 75 234
Total cloud fraction TOTAL CLD FRACTION 71 200
Time-averaged total cloud fraction AVG TOTAL CLD FRAC 71 200
Time-averaged stratospheric cloud fraction AVG STRAT CLD FRAC 213 200
Time-averaged convective cloud fraction AVG CNVCT CLD FRAC 72 200
Cloud bottom pressure CLOUD BOT PRESSURE 1 2
Cloud top pressure CLOUD TOP PRESSURE 1 3

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-43

Cloud bottom height (above MSL) CLOUD BOTTOM HEIGHT 7 2
Cloud top height (above MSL) CLOUD TOP HEIGHT 7 3
Convective cloud bottom pressure CONV CLOUD BOT PRESS 1 242
Convective cloud top pressure CONV CLOUD TOP PRESS 1 243
Shallow convective cloud bottom pressure SHAL CU CLD BOT PRES 1 248
Shallow convective cloud top pressure SHAL CU CLD TOP PRES 1 249
Deep convective cloud bottom pressure DEEP CU CLD BOT PRES 1 251
Deep convective cloud top pressure DEEP CU CLD TOP PRES 1 252
Grid scale cloud bottom pressure GRID CLOUD BOT PRESS 1 206
Grid scale cloud top pressure GRID CLOUD TOP PRESS 1 207
Convective cloud fraction CONV CLOUD FRACTION 72 200
Convective cloud efficiency CU CLOUD EFFICIENCY 134 200
Above-ground height of LCL LCL AGL HEIGHT 7 5
Pressure of LCL LCL PRESSURE 1 5
Cloud top temperature CLOUD TOP TEMPS 11 3
Temperature tendency from radiative fluxes RADFLX CNVG TMP TNDY 216 109
Temperature tendency from shortwave radiative flux SW RAD TEMP TNDY 250 109
Temperature tendency from longwave radiative flux LW RAD TEMP TNDY 251 109
Outgoing surface shortwave radiation - instantaneous INSTN OUT SFC SW RAD 211 1
Outgoing surface longwave radiation - instantaneous INSTN OUT SFC LW RAD 212 1
Incoming surface shortwave radiation - time-averaged AVE INCMG SFC SW RAD 204 1
Incoming surface longwave radiation - time-averaged AVE INCMG SFC LW RAD 205 1
Outgoing surface shortwave radiation - time-averaged AVE OUTGO SFC SW RAD 211 1
Outgoing surface longwave radiation - time-averaged AVE OUTGO SFC LW RAD 212 1
Outgoing model top shortwave radiation - time-averaged AVE OUTGO TOA SW RAD 211 8
Outgoing model top longwave radiation - time-averaged AVE OUTGO TOA LW RAD 212 8
Incoming surface shortwave radiation - instantaneous INSTN INC SFC SW RAD 204 1
Incoming surface longwave radiation - instantaneous INSTN INC SFC LW RAD 205 1
Roughness length ROUGHNESS LENGTH 83 1
Friction velocity FRICTION VELOCITY 253 1
Surface drag coefficient SFC DRAG COEFFICIENT 252 1
Surface u wind stress SFC U WIND STRESS 124 1
Surface v wind stress SFC V WIND STRESS 125 1
Surface sensible heat flux - time-averaged AVE SFC SENHEAT FX 122 1
Ground heat flux - time-averaged AVE GROUND HEAT FX 155 1
Surface latent heat flux - time-averaged AVE SFC LATHEAT FX 121 1
Surface momentum flux - time-averaged AVE SFC MOMENTUM FX 172 1
Accumulated surface evaporation ACC SFC EVAPORATION 57 1
Surface sensible heat flux - instantaneous INST SFC SENHEAT FX 122 1
Surface latent heat flux -_ instantaneous INST SFC LATHEAT FX 121 1
Latitude LATITUDE 176 1
Longitude LONGITUDE 177 1
Land sea mask (land=1, sea=0) LAND SEA MASK 81 1
Sea ice mask SEA ICE MASK 91 1
Surface midday albedo SFC MIDDAY ALBEDO 84 1
Sea surface temperature SEA SFC TEMPERATURE 80 1
Press at tropopause PRESS AT TROPOPAUSE 1 7
Temperature at tropopause TEMP AT TROPOPAUSE 11 7
Potential temperature at tropopause POTENTL TEMP AT TROP 13 7
U wind at tropopause U WIND AT TROPOPAUSE 33 7
V wind at tropopause V WIND AT TROPOPAUSE 34 7
Wind shear at tropopause SHEAR AT TROPOPAUSE 136 7
Height at tropopause HEIGHT AT TROPOPAUSE 7 7

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-44

Temperature at flight levels TEMP AT FD HEIGHTS 11 103
U wind at flight levels U WIND AT FD HEIGHTS 33 103
V wind at flight levels V WIND AT FD HEIGHTS 34 103
Freezing level height (above mean sea level) HEIGHT OF FRZ LVL 7 4
Freezing level RH REL HUMID AT FRZ LVL 52 4
Highest freezing level height HIGHEST FREEZE LVL 7 204
Pressure in boundary layer (30 mb mean) PRESS IN BNDRY LYR 1 116
Temperature in boundary layer (30 mb mean) TEMP IN BNDRY LYR 11 116
Potential temperature in boundary layers (30 mb mean) POT TMP IN BNDRY LYR 13 116
Dew point temperature in boundary layer (30 mb mean) DWPT IN BNDRY LYR 17 116
Specific humidity in boundary layer (30 mb mean) SPC HUM IN BNDRY LYR 51 116
RH in boundary layer (30 mb mean) REL HUM IN BNDRY LYR 52 116
Moisture convergence in boundary layer (30 mb mean) MST CNV IN BNDRY LYR 135 116
Precipitable water in boundary layer (30 mb mean) P WATER IN BNDRY LYR 54 116
U wind in boundary layer (30 mb mean) U WIND IN BNDRY LYR 33 116
V wind in boundary layer (30 mb mean)

V WIND IN BNDRY
LYR________ 34 116

Omega in boundary layer (30 mb mean) OMEGA IN BNDRY LYR 39 116
Visibility VISIBILITY 20 1
Vegetation type VEGETATION TYPE 225 1
Soil type SOIL TYPE 224 1
Canopy conductance CANOPY CONDUCTANCE 181 1
PBL height PBL HEIGHT 221 1
Slope type SLOPE TYPE 222 1
Snow depth SNOW DEPTH 66 1
Liquid soil moisture LIQUID SOIL MOISTURE 160 112
Snow free albedo SNOW FREE ALBEDO 170 1
Maximum snow albedo MAXIMUM SNOW ALBEDO 159 1
Canopy water evaporation CANOPY WATER EVAP 200 1
Direct soil evaporation DIRECT SOIL EVAP 199 1
Plant transpiration PLANT TRANSPIRATION 210 1
Snow sublimation SNOW SUBLIMATION 198 1
Air dry soil moisture AIR DRY SOIL MOIST 231 1
Soil moist porosity SOIL MOIST POROSITY 240 1
Minimum stomatal resistance MIN STOMATAL RESIST 203 1
Number of root layers NO OF ROOT LAYERS 171 1
Soil moist wilting point SOIL MOIST WILT PT 219 1
Soil moist reference SOIL MOIST REFERENCE 230 1
Canopy conductance - solar component CANOPY COND SOLAR 246 1
Canopy conductance - temperature component CANOPY COND TEMP 247 1
Canopy conductance - humidity component CANOPY COND HUMID 248 1
Canopy conductance - soil component CANOPY COND SOILM 249 1
Potential evaporation POTENTIAL EVAP 145 1
Heat diffusivity on sigma surface DIFFUSION H RATE S S 182 107
Surface wind gust SFC WIND GUST 180 1
Convective precipitation rate CONV PRECIP RATE 214 1
Radar reflectivity at certain above ground heights RADAR REFL AGL 211 105

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-45

VAPOR

VAPOR is the Visualization and Analysis Platform for Ocean, Atmosphere, and Solar
Researchers. VAPOR was developed at NCAR to provide interactive visualization and
analysis of numerically simulated fluid dynamics. With the latest (1.2) version, VAPOR
now supports visualization of WRF-ARW simulation output.

Basic capabilities of VAPOR with WRF-ARW output

• Direct Volume rendering (DVR)
Any 3D variable in the WRF data can be viewed as a density. Users control
transparency and color to view temperature, water vapor, clouds, etc. in 3D.

• Flow
- Draw 2D and 3D streamlines and flow arrows, showing the wind motion and
direction, and how wind changes in time.
- Path tracing (unsteady flow) enables visualization of trajectories that particles
take over time. Users control when and where the particles are released.

• Isosurfaces
The isosurfaces of variables are displayed interactively. Users can control iso-
values, color and transparency of the isosurfaces.

• Contour planes and Probes
3D variables can be intersected with arbitrarily oriented planes. Contour planes
can be interactively positioned. Users can interactively pinpoint the values of a
variable and establish seed points for flow integration.

• Animation
Control the time-stepping of the data, for interactive replaying and for recording
animated sequences.

• Terrain rendering
The ground surface can be represented as a colored surface or can display a
terrain image for geo-referencing.

VAPOR requirements

VAPOR is supported on Linux, Mac, Irix, and Windows. VAPOR works best with a
recent graphics card (say 1-2 years old). The advanced features of VAPOR perform best
with nVidia or ATI graphics accelerators.

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-46

VAPOR is installed on NCAR visualization systems. Users with UCAR accounts can
connect their (windows or Linux) desktops to the NCAR visualization systems using
NCAR’s remote graphics service, and run VAPOR remotely. Instructions for using this
are at: http://www.cisl.ucar.edu/hss/dasg/services/docs/VAPOR.shtml. Contact
dasg@ucar.edu for assistance.

VAPOR support resources

The VAPOR website: http://www.vapor.ucar.edu includes software, documentation,
example data, and links to other resources.

The VAPOR sourceforge website (http://sourceforge.net/projects/vapor) enables users to
post bugs, request features, download software, etc.

Users of VAPOR on NCAR visualization systems should contact dasg@ucar.edu for
support.

Questions, problems, bugs etc. should be reported to vapor@ucar.edu.

VAPOR development priorities are established by the VAPOR steering committee, a
group of turbulence researchers who are interested in improving the ability to analyze and
visualize time-varying simulation results. Post a feature request to the VAPOR
sourceforge website, or e-mail vapor@ucar.edu if you have requests or suggestions about
improving VAPOR capabilities.

How to use VAPOR with WRF-ARW data

1. Install VAPOR

VAPOR installers for Windows, Macintosh and Linux are available on the VAPOR
download page, http://www.vapor.ucar.edu/download. You will be asked to agree to
the terms of a BSD open source license. For most users, a binary installation is fine.
Installation instructions are provided at the top of the VAPOR documentation page,
http://www.vapor.ucar.edu/doc.

After VAPOR is installed, it is necessary to perform user environment setup on Unix
or Mac, before executing any VAPOR software. These setup instructions are
provided on the VAPOR binary install documentation page,
http://www.vapor.ucar.edu/doc/binary-install/index.shtml.

2. Convert WRF output data to VAPOR

VAPOR datasets consist of (1) a metadata file (file type .vdf) that describes an entire
VAPOR data collection, and (2) a directory of multi-resolution data files where the

http://www.cisl.ucar.edu/hss/dasg/services/docs/VAPOR.shtml
mailto:dasg@ucar.edu
http://www.vapor.ucar.edu
http://sourceforge.net/projects/vapor
mailto:dasg@ucar.edu
mailto:vapor@ucar.edu
mailto:vapor@ucar.edu
http://www.vapor.ucar.edu/download
http://www.vapor.ucar.edu/doc
http://www.vapor.ucar.edu/doc/binary-install/index.shtml

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-47

actual data is stored. The metadata file is created by the command wrfvdfcreate, and
the multi-resolution data files are written by the command wrf2vdf. The simplest way
to create a VAPOR data collection is as follows:

First issue the command:

wrfvdfcreate wrf_files metadata_file.vdf

where: wrf_files is a list of one or more wrf output files that you want to use.
metadata_file.vdf is the name that you will use for your metadata file.

For example:

wrfvdfcreate wrfout_d02_2006-10-25_18_00_00 wrfout.vdf

Then issue the command:

wrf2vdf metadata_file.vdf wrf_files

using the same arguments (in reversed order) as you used with wrfvdfcreate. Note
that wrf2vdf does most of the work, and may take a few minutes to convert a large
WRF dataset.

After issuing the above commands, all of the 3D variables in the specified WRF
output files will be converted, for all the time steps in the files. If you desire more
control over the conversion process, there are many additional options that you can
provide to wrfvdfcreate and wrf2vdf. Type the command with the argument “-help”
to get a short-listing of the command usage. All data conversion options are detailed
in section 1 of http://www.vapor.ucar.edu/doc/WRFsupport.pdf. Some of the options
include:

- Calculation of derived variables such as vertical vorticity, temperature in Kelvin,
normalized pressure, wind velocity.
- Overriding default volume dimensions and/or spatial extents.
- Converting only a subset of the WRF output time steps
- Converting a specific collection of variables.

3. Visualize the WRF data

From the command line, issue the command “vaporgui”, or double-click the VAPOR
desktop icon (on Windows or Mac). This will launch the VAPOR user interface.
From the Data menu, choose “Load a dataset into default session”, and select the
metadata file that you associated with your converted WRF data.

http://www.vapor.ucar.edu/doc/WRFsupport.pdf

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-48

To visualize the data, select a renderer tab (DVR, Iso, Flow, or Probe), and then, at
the top of that tab, check the box labeled “Instance:1”, to enable that renderer. For
example, the above image combines volume, flow and isosurface visualization with a
terrain image.

There are many capabilities in VAPOR to support visualization of WRF data.
Several resources are available to help users quickly get the information they need to
obtain the most useful visualizations:

 -The Georgia Weather Case Study
(http://www.vapor.ucar.edu/doc/GeorgiaCaseStudy.pdf) provides a step-by-step
tutorial, showing how to use most of the VAPOR features that are useful in WRF
visualization.

- To understand the meaning or function of an element in the VAPOR user
interface:

Tool tips: Place the cursor over a widget for a couple of seconds and a one-
sentence description is provided.
Context-sensitive help: From the Help menu, click on “?Explain This”, and
then click with the left mouse button on a widget, to get a longer technical
explanation of the functionality.

http://www.vapor.ucar.edu/doc/GeorgiaCaseStudy.pdf

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-49

- Complete documentation of all capabilities of the VAPOR user interface is
provided in the VAPOR User Interface Reference Manual
(http://www.vapor.ucar.edu/doc/ReferenceManual.pdf).

- The VAPOR Quick Start Guide
(http://www.vapor.ucar.edu/doc/QuickstartGuide.pdf) provides a step-by-step
tutorial for using VAPOR on turbulence data. The Quick Start Guide does not
discuss the WRF-specific capabilities of VAPOR.

- The WRF-specific features of VAPOR are described in detail in section 2 of the
document “Vapor Support for converting and visualizing WRF datasets”
(http://www.vapor.ucar.edu/doc/WRFsupport.pdf).

http://www.vapor.ucar.edu/doc/ReferenceManual.pdf
http://www.vapor.ucar.edu/doc/QuickstartGuide.pdf
http://www.vapor.ucar.edu/doc/WRFsupport.pdf
http://www.vapor.ucar.edu/doc/ReferenceManual.pdf
http://www.vapor.ucar.edu/doc/WRFsupport.pdf

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-50

Utility: read_wrf_nc

This utility allows a user to look at a WRF netCDF file at a glance.

What is the difference between this utility and the netCDF utility ncdump?

• This utility has a large number of options, to allow a user to look at the specific
part of the netCDF file in question.

• The utility is written in Fortran 90, which will allow users to add options.
•

This utility can be used for both WRF-ARW and WRF-NMM cores.
It can be used for geogrid, metgrid and wrf input / output files.
Only 3 basic diagnostics are available, pressure / height / tk, these can be activated with
the -diag option (these are only available for wrfout files)

Obtain the read_wrf_nc utility from the WRF Download page
(http://www.mmm.ucar.edu/wrf/users/download/get_source.html)

Compile

The code should run on any machine with a netCDF library (If you port the code to a
different machine, please forward the compile flags to wrfhelp@ucar.edu)

To compile the code, use the compile flags at the top of the utility.

e.g., for a LINUX machine you need to type:

pgf90 read_wrf_nc.f -L/usr/local/netcdf/lib
 -lnetcdf -lm -I/usr/local/netcdf/include
 -Mfree -o read_wrf_nc

If successful, this will create the executable: read_wrf_nc

Run
./read_wrf_nc wrf_data_file_name [-options]

options : [-h / help] [-att] [-m] [-M z] [-s]

[-S x y z] [-v VAR] [-V VAR] [-w VAR]
[-t t1 [t2]] [-times]
[-ts xy X Y VAR VAR]
[-ts ll lat lon VAR VAR]
[-lev z] [-rot] [-diag]
[-EditData VAR]

http://www.mmm.ucar.edu/wrf/users/download/get_source.html
mailto:wrfhelp@ucar.edu

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-51

Options: (Note: options [-att] ; [-t] and [-diag] can be used with other

options)
-h / help Print help information.
-att Print global attributes.
-m Print list of fields available for each time, plus the min and max

values for each field.
-M z Print list of fields available for each time, plus the min and max

values for each field.
The min and max values of 3d fields will be for the z level of the
field.

-s Print list of fields available for each time, plus a sample value for
each field.
Sample value is taken from the middle of model domain.

-S x y z Print list of fields available for each time, plus a sample value for
each field.
Sample value is at point x y z in the model domain.

-t t1 [t2] Apply options only to times t1 to t2.
t2 is optional. If not set, options will only apply to t1.

-times Print only the times in the file.
-ts Generate time series output. A full vertical profile for each

variable will be created.
-ts xy X Y VAR VAR …..

will generate time series output for all VAR’s at location X/Y
-ts ll lat lon VAR VAR …..

will generate time series output for all VAR’s at x/y location
nearest to lat/lon

-lev z Work only with option –ts
Will only create a time series for level z

-rot Work only with option –ts
Will rotate winds to earth coordinates

-diag Add if you want to see output for the diagnostics temperature
(K), full model pressure and model height (tk, pressure, height)

-v VAR Print basic information about field VAR.
-V VAR Print basic information about field VAR, and dump the full field

out to the screen.
-w VAR Write the full field out to a file VAR.out

 Default Options are [-att –s]

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-52

SPECIAL option: -EditData VAR

This option allows a user to read a WRF netCDF file, change a specific field
and write it BACK into the WRF netCDF file.
This option will CHANGE your CURRENT WRF netCDF file so TAKE CARE
when using this option.
ONLY one field at a time can be changed. So if you need 3 fields changed, you
will need to run this program 3 times, each with a different "VAR"
IF you have multiple times in your WRF netCDF file – by default ALL times
for variable "VAR" WILL be changed. If you only want to change one time
period, also use the “-t” option.

HOW TO USE THIS OPTION:

Make a COPY of your WRF netCDF file before using this option

EDIT the subroutine USER_CODE

ADD an IF-statement block for the variable you want to change. This is
to prevent a variable getting overwritten by mistake.

For REAL data arrays, work with array "data_real" and for INTEGER
data arrays, work with the array "data_int".

Example 1:
If you want to change all (all time periods too) values of U to a constant
10.0 m/s, you would add the following IF-statement:
 else if (var == 'U') then
 data_real = 10.0

Example 2:
If you want to change a section of the LANDMASK data to SEA points:
 else if (var == 'LANDMASK') then
 data_real(10:15,20:25,1) = 0

Example 3:
Change all ISLTYP category 3 values into category 7 values (NOTE this
is an INTEGER field):
 else if (var == 'ISLTYP') then
 where (data_int == 3)
 data_int = 7
 end where

Compile and run program
You will be prompted if this is really what you want to do
ONLY the answer "yes" will allow the change to take effect

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-53

Utility: iowrf

This utility allows a user to do some basic manipulation on WRF-ARW netCDF files.

• The utility allows a user to thin the data; de-stagger the data; or extract a box from
the data file.

Obtain the iowrf utility from the WRF Download page
(http://www.mmm.ucar.edu/wrf/users/download/get_source.html)

Compile

The code should run on any machine with a netCDF library (If you port the code to a
different machine, please forward the compile flags to wrfhelp@ucar.edu)

To compile the code, use the compile flags at the top of the utility.

e.g., for a LINUX machine you need to type:

pgf90 iowrf.f -L/usr/local/netcdf/lib -lnetcdf -lm
-I/usr/local/netcdf/include -Mfree -o iowrf

If successful, this will create the executable: iowrf

Run

./iowrf wrf_data_file_name [-options]

options : [-h / help] [-thina X] [-thin X] [-box {}]
[-A] [-64bit]

-thina X Thin the data with a ratio of 1:X

Data will be averaged before being fed back
-thin X Thin the data with a ratio of 1:X

No averaging will be done
-box {} Extract a box from the data file. X/Y/Z can be controlled

independently. e.g.,
-box x 10 30 y 10 30 z 5 15
-box x 10 30 z 5 15
-box y 10 30
-box z 5 15

-A De-stagger the data – no thinning will take place
-64bit Allow large files (> 2GB) to be read / write

http://www.mmm.ucar.edu/wrf/users/download/get_source.html
mailto:wrfhelp@ucar.edu

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-54

Utility: p_interp

This utility interpolates WRF-ARW netCDF output files to user specified pressure levels.

Obtain the p_interp utility from the WRF Download page
(http://www.mmm.ucar.edu/wrf/users/download/get_source.html)

Compile

The code should run on any machine with a netCDF library (If you port the code to a
different machine, please forward the compile flags to wrfhelp@ucar.edu)

To compile the code, use the compile flags at the top of the utility.

e.g., for a LINUX machine you need to type:

pgf90 p_interp.F90 -L/usr/local/netcdf/lib
-lnetcdf -lm -I/usr/local/netcdf/include
-Mfree -o p_interp

If successful, this will create the executable: p_interp

Run

Edit the associated namelist.pinterp file (see namelist options below), and run

./p_interp

&io
input_root_name Path and file name(s) of wrfout files.

Use wild character if more than one file is processed.

Output will be written to input_root_name_PLEV.

process Indicate which fields to process.
‘all’ fields in wrfout file (diagnostics PRES, TT & GEOPT will
automatically be calculated);
‘list’ of fields as indicated in ‘fields’

fields List of fields to process.
debug Switch debug more on/off.
-64bit Allow large files (> 2GB) to be read / write.

http://www.mmm.ucar.edu/wrf/users/download/get_source.html
mailto:wrfhelp@ucar.edu

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-55

&interp_in
interp_levels List of pressure levels to interpolate data to
extrapolate 0 - set values below ground and above model top to missing values

(default)
1 - extrapolate below ground, and set above model top to model top
values

interp_method 1 - linear in p interpolation (default)
2 - linear in log p interpolation

unstagger_grid Set to .True. so unstagger the data on output

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-56

Tools

Below is a list of tools that are freely available that can be used very successfully to
manipulate model data (both WRF model data as well as other GRIB and netCDF
datasets).

Converting Graphics

ImageMagick

ImageMagick is a software suite to create, edit, and compose bitmap images. It
can read, convert and write images in a variety of formats (over 100) including
DPX, EXR, GIF, JPEG, JPEG-2000, PDF, PhotoCD, PNG, Postscript, SVG, and
TIFF. Use ImageMagick to translate, flip, mirror, rotate, scale, shear and
transform images, adjust image colors, apply various special effects, or draw text,
lines, polygons, ellipses and B_zier curves.

The software package is freely available from, http://www.imagemagick.org.
Download and installation instructions are also available from this site.

Examples of converting data with ImageMagick software:

convert file.pdf file.png
convert file.png file.bmp
convert file.pdf file.gif
convert file.ras file.png

ImageMagick cannot convert ncgm (NCAR Graphics) file format to other file
formats.

Converting ncgm (NCAR Graphics) file format

NCAR Graphics has tools to convert ncgm files to raster file formats. Once files
are in raster file format, ImageMagick can be used to translate the files into other
formats.

For ncgm files containing a single frame, use ctrans.

ctrans -d sun file.ncgm file.ras

For ncgm files containing multiple frames, first use med (metafile frame editor)
and then ctrans. med will create multiple single frame files called medxxx.ncgm

med -e '1,$ split $' file.ncgm
ctrans -d sun_ med001.ncgm > med001.ras

http://www.imagemagick.org

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-57

Design WRF model domains

WPS/util/plotgrids.exe, can be used to display model domains before
WPS/geogrid.exe is run.

This utility reads the domain setup from namelist.wps and creates an ncgm file
that can be viewed with the NCAR Graphics command “idt”, e.g.,

idt gmeta

Read more about this utility in Chapter 3 of this Users Guide.

Display ungrib (intermediate) files

WPS/util/plotfmt.exe, can be used to display intermediate files created by
WPS/ungrib.exe.

If you have created intermediate files manually, it is a very good practice to use
this utility to display the data in your files first before running WPS/metgrid/exe.
Note: If you plan on manually creating intermediate files, refer to
http://www.mmm.ucar.edu/wrf/OnLineTutorial/WPS/IM_files.htm for detailed
information about the file formats and sample programs.

This utility reads intermediate files and creates an ncgm file that can be viewed
with the NCAR Graphics command “idt”, e.g.,

idt gmeta

Read more about this utility in Chapter 3 of this Users Guide.

netCDF data

netCDF stands for network Common Data Form.
Most of the information below can be used for WRF netCDF data as well as other
netCDF datasets.
netCDF is one of the current supported data formats chosen for WRF I/O API.

Advantages of using netCDF?
Most graphical packages support netCDF file formats
netCDF files are platform-independent (big-endian / little-endian)
A lot of software already exists which can be used to process/manipulate netCDF
data

http://www.mmm.ucar.edu/wrf/OnLineTutorial/WPS/IM_files.htm

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-58

Documentation:
http://www.unidata.ucar.edu/ (General netCDF documentation)
http://www.unidata.ucar.edu/software/netcdf/fguide.pdf (NETCDF User’s Guide
for FORTRAN)

Utilities:
ncdump
Part of the netCDF libraries. Reads a netCDF file and prints information about the
dataset. e.g.

ncdump –h file (print header information)
ncdump –v VAR file (print header information and the

full field VAR)
ncdump –v Times file (a handy way to see how many

times are available in a WRF output file)

ncview
Display netCDF data graphically. No overlays, no maps and no manipulation of
data possible.
http://meteora.ucsd.edu/~pierce/ncview_home_page.html

ncBrowse
Display netCDF data graphically. Some overlays, maps and manipulation of data
are possible.
http://www.epic.noaa.gov/java/ncBrowse/

read_wrf_nc
A utility to display basic information about WRF netCDF files.

iowrf
A utility to do some basic file manipulation on WRF-ARW netCDF files.

p_interp
A utility to interpolate WRF-ARW netCDF output files to user specified pressure
levels.

netCDF operators
http://nco.sourceforge.net/
Stand alone programs to, which can be used to manipulate data (performing grid
point averaging / file differencing / file ‘appending’). Examples of the available
operators are ncdiff, ncrcat, ncra, and ncks.

ncdiff
Difference two file, e.g.
ncdiff input1.nc input2.nc output.nc

http://www.unidata.ucar.edu/
http://www.unidata.ucar.edu/software/netcdf/fguide.pdf
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
http://www.epic.noaa.gov/java/ncBrowse/
http://nco.sourceforge.net/

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-59

ncrcat
Write specified variables / times to a new file, e.g.
ncrcat -v RAINNC wrfout* RAINNC.nc
ncrcat -d Time,0,231 –v RAINNC wrfout* RAINNC.nc

ncra
Average variables and write to a new file, e.g.
ncra -v OLR wrfout* OLR.nc

ncks (nc kitchen sink)
Combination of NCO tools all in one (handy: one tool for multiple operations).

GRIB data

Documentation
http://dss.ucar.edu/docs/formats/grib/gribdoc/ (Guide to GRIB 1)
http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_doc.shtml (Guide to
GRIB2)
http://www.nco.ncep.noaa.gov/pmb/docs/grib2/GRIB2_parmeter_conversion_tabl
e.html (GRIB2 - GRIB1 parameter conversion table)

GRIB codes

It is important to understand the GRIB codes to know which fields are available in
your dataset. For instance, NCEP uses the GRIB1 code 33 for the U-component
of the wind, and 34 for the V-component. Other centers may use different codes,
so always obtain the GRIB codes from the center you get your data from.

GRIB2 uses 3 codes for each field - product, category and parameter.
We would most often be interested in product 0 (Meteorological products).
Category refers to the type of field, e.g., category 0 is temperature, category 1 is
moisture and category 2 is momentum. Parameter is the field number.
So whereas GRIB1 only uses code 33 for the U-component of the wind, GRIB2
will use 0,2,2, for the U-component, and 0,2,3 for the V-component.

Display GRIB header/field information

GRIB1 data
WPS/util/g1print.exe
wgrib (http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html)

http://dss.ucar.edu/docs/formats/grib/gribdoc/
http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_doc.shtml
http://www.nco.ncep.noaa.gov/pmb/docs/grib2/GRIB2_parmeter_conversion_tabl
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html

POST-PROCESSING

WRF-ARW V3: User’s Guide 8-60

GRIB2 data
WPS/util/g2print.exe
wgrib2 (http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/)

Convert GRIB1 data to netCDF format
ncl_grib2nc (http://www.ncl.ucar.edu/Document/Tools)

Model Verification

MET is designed to be a highly configurable, state-of-the-art suite of verification
tools. It was developed using output from the Weather Research and Forecasting
(WRF) modeling system but may be applied to the output of other modeling systems
as well.

MET provides a variety of verification techniques, including:
• Standard verification scores comparing gridded model data to point-based

observations
• Standard verification scores comparing gridded model data to gridded

observations
• Object-based verification method comparing gridded model data to gridded

observations

http://www.dtcenter.org/met/users/index.php

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
http://www.ncl.ucar.edu/Document/Tools
http://www.dtcenter.org/met/users/index.php

	WRF-ARW V3: Users' Guide
	Foreword
	Contents
	Chapter 1: Overview
	Table of Contents
	Introduction
	WRF-ARW Components

	Chapter 2: Software Installation
	Introduction
	Required Compilers
	Required Libraries
	Post-Processing
	UNIX Settings
	Build WRF
	Build WPS
	Build WRF-Var

	Chapter 3: WPS
	Introduction
	Functions of each WPS Program
	Installing WPS
	Running WPS
	Creating nested domains
	Using multiple meteorological data sources
	Parallelism in WPS
	Checking WPS Output
	WPS Utility Programs
	Intermediate File Format
	Vtables
	Writing Static data to the Geogrid Binary Format
	Namelist Variables
	GEOGRID.TBL
	Index Options
	METGRID.TBL
	Interpolation Options
	LandUse and Soil Categories

	Chapter 4:WRF Initialization
	Introduction
	Ideal Data Cases
	Real Data Cases

	Chapter 5: WRF Model
	Introduction
	Installing WRF
	Running WRF
	Check Output
	Trooble Shooting
	Physical and Dynamics Option
	Namelist Variables
	WRF Output

	Chapter 6: WRF-Var
	Introduction
	Goals
	Tutorial Schedule
	Test Data
	Source Code
	OBSPROC
	Setting up WRF-Var
	Run Case Study
	Updating BC
	Additional Exercises

	Chapter 7: WRF Software
	Introduction
	WRF Build Mechanism
	Registry
	I/O
	Timekeeping
	Documentation
	Portability and Performance

	Chapter 8: Post-Processing
	Introduction
	NCL
	RIP4
	ARWpost
	WPP
	VAPOR
	read_wrf_nc
	iowrf
	p_interp
	Tools

