

Foreword

This User’s Guide describes the Advanced Research WRF (ARW) Version 2.1 modeling
system, released in August 2005. As the ARW is developed further, this document will
be continuously enhanced and updated. For the latest version of this document, please
visit the ARW User’s Web site at http://www.mmm.ucar.edu/wrf/users/.

Please send feedbacks to wrfhelp@ucar.edu.

Contributors to this guide:
Wei Wang
Dale Barker
Cindy Bruyère
Jimy Dudhia
Dave Gill
John Michalakes

User’s Guide for Advanced Research WRF (ARW)
Modeling System Version 2.1

1. Overview
− Introduction .. 1-1
− The WRF Modeling System Program Components 1-2

2. Software Installation
− Introduction ... 2-1
− Required Compilers and Scripting Languages 2-2
− Required/Optional Libraries to Download.................................... 2-2
− Post-Processing Utilities.. 2-3
− Unix Environment Settings .. 2-4
− Building the WRF Code... 2-4
− Building the WRF 3DVAR Code.. 2-5
− Building the WRFSI Code ... 2-5

3. WRF Standard Initialization - Preparing Input Data
− Introduction ... 3-1
− Function of Each SI Program .. 3-2
− How to Install WRFSI? .. 3-5
− How to Run WRFSI?... 3-8
− WRFSI GUI ... 3-12
− Using WRFSI for Nesting .. 3-12
− Using Multiple Data Sources ... 3-14
− Checking WRFSI Output ... 3-15
− Description of Namelist Variables ... 3-16
− List of Fields in WRFSI Output .. 3-21

4. WRF Initialization
− Introduction ... 4-1
− Initialization for Ideal Data Cases.. 4-2
− Initialization for Real Data Cases .. 4-4

5. WRF Model

− Introduction .. 5-1
− Software Requirement .. 5-2
− Before You Start ... 5-2
− How to Compile WRF? ... 5-3
− How to Run WRF? ... 5-6
− Physics and Diffusion Options... 5-18
− Description of Namelist Variables ... 5-21
− List of Fields in WRF Output ... 5-33

6. WRF_VAR
− Introduction ... 6-1

7. WRF Software
− Introduction ... 7-1
− WRF Build Mechanism.. 7-1
− Registry ... 7-4
− I/O Applications Program Interface (I/O API)............................... 7-5
− Timekeeping.. 7-6
− Software Documentation ... 7-7
− Portability and Performance .. 7-7

8. Post-Processing Programs
− Introduction ... 8-1
− NCL.. .. 8-2
− RIP4 . .. 8-4
− WRF2GrADS... 8-9
− WRF2Vis5D .. 8-15
− read_wrf_nc utility ... 8-17

 ARW Tutorial 1-1

User’s Guide for Advanced Research WRF (ARW)
Modeling System Version 2

Chapter 1: Overview

Table of Contents

• Introduction
• The WRF ARW Modeling System Program Components

Introduction

The Advanced Research WRF (ARW) modeling system has been in development for the
past few years. The current release is Version 2. The ARW is designed to be a flexible,
state-of-the-art atmospheric simulation system that is portable and efficient on available
parallel computing platforms. The ARW is suitable for use in a broad range of
applications across scales ranging from meters to thousands of kilometers, including:

• Idealized simulations (e.g. LES, convection, baroclinic waves)
• Parameterization research
• Data assimilation research
• Forecast research
• Real-time NWP
• Coupled-model applications
• Teaching

The Mesoscale and Microscale Meteorology Division of NCAR is currently maintaining
and supporting a subset of the overall WRF code (Version 2) that includes:

• WRF Software Framework (WSF)
• Advanced Research WRF (ARW) dynamic solver, including one-way, two-way

nesting and moving nest.
• Standard Initialization package (SI)
• WRF Variational Data Assimilation (WRF-Var) system which currently supports

3DVAR capability
• Numerous physics packages contributed by WRF partners and the research

community
• Several graphics programs and conversion programs for other graphics tools

And these are the subjects of this document.

 ARW Tutorial 1-2

Other components of the WRF system will be supported for community use in the future,
depending on interest and available resources.

The WRF modeling system software is in the public domain and is freely available for
community use.

The WRF Modeling System Program Components

The following figure shows the flowchart for the WRF Modeling System Version 2.

As shown in the diagram, the WRF Modeling System consists of these major programs:

• WRF Standard Initialization (WRFSI)
• WRF 3DVAR
• ARW solver
• Post-processing graphics tools

 ARW Tutorial 1-3

WRFSI

This program is used primarily for real-data simulations. Its functions include 1) defining
simulation domains; 2) interpolating terrestrial data (such as terrain, landuse, and soil
types) to the simulation domain; and 3) degribbing and interpolating meteorological data
from another model to this simulation domain and to the model vertical coordinate.

WRF 3DVAR

This program is optional, but can be used to ingest observations into the interpolated
analyses created by WRFSI. It can also be used to update WRF model's initial condition
when WRF model is run in cycling mode.

ARW Solver

This is the key component of the modeling system, which is composed of several
initialization programs for idealized, and real-data simulations, and the numerical
integration pragram. It also includes a program to do one-way nesting. The key feature of
the WRF model includes:

• fully compressible nonhydrostatic equations with hydrostatic option
• complete coriolis and curvature terms
• two-way nesting with multiple nests and nest levels
• one-way nesting
• moving nests
• mass-based terrain following coordinate (note that the height-based dynamic core

is no longer supported)
• vertical grid-spacing can vary with height
• map-scale factors for conformal projections:

o polar stereographic
o Lambert-conformal
o Mercator

• Arakawa C-grid staggering
• Runge-Kutta 2nd and 3rd order timestep options
• scalar-conserving flux form for prognostic variables
• 2nd to 6th order advection options (horizontal and vertical)
• time-split small step for acoustic and gravity-wave modes:

o small step horizontally explicit, vertically implicit
o divergence damping option and vertical time off-centering
o external-mode filtering option

• lateral boundary conditions
o idealized cases: periodic, symmetric, and open radiative
o real cases: specified with relaxation zone

• full physics options for land-surface, PBL, radiation, microphysics and cumulus
parameterization

 ARW Tutorial 1-4

Graphics Tools

Several programs are supported, including RIP4 (based on NCAR Graphics), NCAR
Graphics Command Language (NCL), and conversion programs for other readily
available graphics packages: GrADS and Vis5D.

The details of these programs are described more in the chapters in this user's guide.

ARW Tutorial 2-1

User’s Guide for Advanced Research WRF (ARW)
Modeling System Version 2

Chapter 2: Software Installation

Table of Contents

• Introduction
• Required Compilers and Scripting Languages
• Required/Optional Libraries to Download
• Post-Processing Utilities
• UNIX Environment Settings
• Building the WRF Code
• Building the WRF 3DVAR Code
• Building the WRFSI Code

Introduction

The WRF modeling system software installation is fairly straightforward on the ported
platforms. The package is mostly self-contained, meaning that WRF requires no external
libraries (such as for FFTs or various linear algebra solvers). The one external package it
does require is the netCDF library, which is one of the supported I/O API packages. The
netCDF libraries or source code are available from the Unidata homepage at
http://www.unidata.ucar.edu (select DOWNLOADS, registration required).

The WRF model has been successfully ported to a number of Unix-based machines. We
do not have access to all of them and must rely on outside users and vendors to supply the
required configuration information for the compiler and loader options. Below is a list of
the supported combinations of hardware and software for WRF.

Vendor Hardware OS Compiler

Cray X1 UniCOS vendor

HP/Compaq alpha Tru64 vendor

HP/Compaq IA64 (Intel) Linux vendor

HP/Compaq IA64 HPUX vendor

IBM Power Series AIX vendor

ARW Tutorial 2-2

SGI IA64 Linux Intel

SGI MIPS Irix vendor

Sun UltraSPARC SunOS vendor

COTS* IA32/AMD
32 Linux Intel / PGI

COTS IA64/Opteron Linux Intel / PGI

Mac G5 Darwin xlf

* Commercial off the shelf systems

The WRF code runs on single processor machines, shared-memory machines (that use
the OpenMP API), distributed memory machines (with the appropriate MPI libraries),
and on distributed clusters (utilizing both OpenMP and MPI). The WRF 3DVAR code
runs on most systems listed above too. The porting to systems that use the Intel compiler
is currently under development. The Mac architecture is only supported as a serial build.

The WRFSI code also runs on most systems list above. Sun and Intel compiles are not yet
supported.

Required Compilers and Scripting Languages

The WRF model (and WRF 3DVAR) is written in Fortran (what many refer to as Fortran
90). The software layer, RSL and now RSL_LITE, which sits between WRF and the MPI
interface is written in C. There are also ancillary programs that are written in C to
perform file parsing and file construction, both of which are required for default building
of the WRF modeling code. Additionally, the WRF build mechanism uses several
scripting languages: including perl (to handle various tasks such as the code browser
designed by Brian Fiedler), Cshell and Bourne shell. The traditional UNIX text/file
processing utilities are used: make, M4, sed, and awk. See Chapter 7: WRF Software
(Required Software) for a more detailed listing of the necessary pieces for the WRF
build.

The WRFSI is mostly written in Fortran 77 and Fortran 90 with a few C routines. Perl
scripts are used to run the programs, and Perl/Tk is used for GUI.

Unix make is used in building all executables.

Required/Optional Libraries to Download

The only library that is almost always required is the netCDF package from Unidata
(login > Downloads > NetCDF). Some of the WRF post-processing packages assume that

ARW Tutorial 2-3

the data from the WRF model is using the netCDF libraries. One may also need to add
/path-to-netcdf/netcdf/bin to your path so that one may execute netcdf command, such as
ncdump and ncgen.

Hint: If one wants to compile WRF codes on a Linux system using PGI (Intel) compiler,
make sure the netCDF library is installed using PGI (Intel) compiler, too.

There are optional external libraries that may be used within the WRF system: ESMF and
PHDF. Neither the ESMF nor the PHDF libraries are required for standard builds of the
WRF system.

If you are going to be running distributed memory WRF jobs, you need a version of MPI.
You can pick up a version of mpich, but you might want your system group to install the
code. A working installation of MPI is required prior to a build of WRF using distributed
memory. Do you already have an MPI lying around? Try

 which mpif90
 which mpicc
 which mpirun

If these are all defined executables, you are probably OK. Make sure your paths are set
up to point to the MPI lib, include, and bin directories.

Note that for GriB1 data processing, Todd Hutchinson (WSI) has provided a complete
source library that is included with the software release.

Post-Processing Utilities

The more widely used (and therefore supported) WRF post-processing utilites are:

• NCL (homepage and WRF download)
o NCAR Command Language written by NCAR Scientific Computing

Division
o NCL scripts written and maintained by WRF support
o many template scripts are provided that are tailored for specific real-data

and ideal-data cases
o raw WRF output can be input with the NCL scripts
o interactive or command-file driven

• Vis5D (homepage and WRF download)
o download Vis5D executable, build format converter
o programs are available to convert the WRF output into an input format

suitable for Vis5D
o GUI interface, 3D movie loops, transparency

• GrADS (homepage and WRF download)
o download GrADS executable, build format converter
o programs are available to convert the WRF output into an input format

suitable for GrADS

ARW Tutorial 2-4

o interpolates to regular lat/lon grid
o simple to generate publication quality

• RIP (homepage and WRF download)
o RIP4 written and maintained by Mark Stoelinga, UW
o interpolation to various surfaces, trajectories, hundreds of diagnostic

calculations
o Fortran source provided
o based on the NCAR Graphics package
o pre-processor converts WRF data to RIP input format
o table driven

UNIX Environment Settings

There are only a few environmental settings that are WRF related. Most of these are not
required, but when things start acting badly, test some out. In c-shell syntax:

• setenv WRF_EM_CORE 1

explicitly defines which model core to build

• unset limits
o especially if you are on a small system

• setenv MP_STACK_SIZE 64000000
o OpenMP blows through the stack size, set it large

• setenv NETCDF /usr/local/netcdf (or where ever you have it stuck)
o WRF wants both the lib and the include directories

• setenv MPICH_F90 f90 (or whatever your Fortran compiler may be called)
o WRF needs the bin, lib, and include directories

• setenv OMP_NUM_THREADS n (where n is the number of procs to use)
o if you have OpenMP on your system, this is how to specify the number of

threads

Building the WRF Code

The WRF code has a fairly complicated build mechanism. It tries to determine the
architecture that you are on, and then present you with options to allow you to select the
preferred build method. For example, if you are on a Linux machine, it determines
whether this is a 32 or 64 bit machine, and then prompts you for the desired usage of
processors (such as serial, shared memory, or distributed memory).

• Get the WRF zipped tar file
o WRF v2 from http://www.mmm.ucar.edu/wrf/users/get_source.html
o always get the latest version if you are not trying to continue a long project

• unzip and untar the file
o gzip -cd WRFV2.1.TAR.gz | tar -xf -

ARW Tutorial 2-5

o again, if there is a later version of the code grab it, 2.1 is just used as an
example

• cd WRFV2
• ./configure

o choose one of the options
o usually, option "1" is for a serial build, that is the best for an initial test

• ./compile em_real (or any of the directory names in ./WRFV2/test)
• ls -ls main/*.exe

o if you built a real-data case, you should see ndown.exe, real.exe, and
wrf.exe

o if you built an ideal-data case, you should see ideal.exe and wrf.exe

Building the WRF 3DVAR Code

See details in Chapter 6.

Building the WRFSI Code

The simpliest build for SI code is to use all default directories. Several configure files are
provided in ./wrfsi/src/include/ directory for various computers. A perl script,
install_wrfsi.pl in the top directory is used to install the software.

• Get the latest WRFSI zipped tar file
o wrfsi_v2.1.tar.gz

• unzip and untar the file
o gzip -cd wrfsi_v2.1.tar.gz | tar -xf -

• cd wrfsi
• set the following environment variable to define where netCDF library and

include directories are
o setenv NETCDF /path-to-netcdf

• issue the following command to install - you may be prompted to answer whether
you'd like to install the GUI:

o perl install_wrfsi.pl
o output from running the install script can be found in make_install.log

• ls -l bin (if environment variable INSTALLROOT is not set) or (if the
environment variable INSTALLROOT is set, type) ls -l $INSTALLROOT/bin

More details can be found in Chapter 3.

ARW Tutorial 2-6

 ARW Tutorial 3-1

User’s Guide for Advanced Research WRF (ARW)
Modeling System Version 2

Chapter 3: WRF Standard Initialization - Preparing
Input Data

Table of Contents

• Introduction
• Function of Each SI Program
• How to Install WRFSI?
• How to Run WRFSI?
• WRFSI GUI
• Using WRFSI For Nesting
• Using Multiple Data Sources
• Checking WRFSI Output
• Description of Namelist Variables
• List of Fields in WRFSI Output

Introduction

The WRF Standard Initialization (WRFSI) is the first step to set up the model for real-
data simulations. The software is a collection of four programs that together provides the
input data required by the WRF model to start a real-data simulation. The following
figure illustrates the program components and data flow in WRFSI:

 ARW Tutorial 3-2

The WRFSI program takes a user's definition of a domain (or domains for a nested run),
together with various terrestrial datasets for terrain, landuse, soil type, annual deep soil
temperature, monthly vegetation fraction, maximum snow albedo, monthly albedo, slope
data, and meteorological data from another model (in GriB format) to create mesoscale
domain, and interpolate the above data to this domain. The output from WRFSI is in
netCDF format and it is conforming to WRF I/O API.

The WRFSI program has been successfully ported to a number of Unix-based machines.
These include Compaq Alpha, IBM, Linux (using both PGI and Intel compiler), SGI
Altix, AMD Opteron (PGI compiler only). Makefiles are also available for Sun and SGI,
but limited tests have been performed.

The WRFSI code runs on single processor machines only. The code is memory efficient.

Function of Each SI Program

The WRFSI program consists of four major independent programs: grib_prep,
gridgen_model, hinterp and vinterp. It also has a few utility programs, siscan, staticpost,
and plotfmt.

 ARW Tutorial 3-3

Program gridgen_model

The function of the program gridgen_model is to define a simulation domain, and read
and interpolate various terrestrial datasets from latitude/longitude grid to the projection
grid. The simulation domain is defined based on information specified by the user in SI's
namelist file, section 'hgridspec' in wrfsi.nl. The terrestrial inputs that gridgen_model
uses include terrrain, landuse, soil type, annual deep soil temperature, monthly vegetation
fraction, maximum snow albedo, monthly albedo, and slope data. These data are privided
from WRF Users' Web site: http://www.mmm.ucar.edu/wrf/users/. WRFSI supports three
projection types: Lambert-Conformal, Polar stereographic, and Mercator.

Program grib_prep

The function of the program grib_prep is to read GriB files, degrib the data, and write the
data out in a simple format, which is referred to as the intermediate format. The GriB
files contain time-varying meteorological fields and are typically from another regional,
or global model, such as NCEP's NAM (or Eta), and GFS models. SI supports the GriB
format Edition 1 on many platforms, but only supports GriB 2 on 32-bit Linux at this
time.

Each GriB dataset may contain data more than we need to initialize WRF model. To limit
the data we require from the GriB files, Vtables are employed by which GriB code, and
level codes are used to identify a particular field. Different GriB files may have different
codes for the same variable, hence different Vtables are prepared for commonly available
GriB files.

The provided Vtables are available for NAM/Eta 104, 212 grids, NAM/Eta data in AWIP
format, GFS (or AVN), NCEP/NCAR Reanalysis archived at NCAR, RUC (pressure
level data and hybrid coordinate data), and AFWA's AGRMET land surface model
output.

If you have a GriB dataset that you would like to use to start the model, follow the Vtable
examples given in the SI tar file under directory extdata/static/ and create one for
your dataset.

You can also take advantage of the intermediate format to ingest any data you may have
as long as they are on pressure levels (data on other coordinate will require code
modifications). A description of the intermediate format can be found on
http://wrfwi.noaa.gov/, or README file in the SI program tar file (section 3.2.1).

Program hinterp

The function of the program hinterp is to horizontally interpolate meteorological data
degribbed by the grib_prep program onto the simulation domain created by
gridgen_model. The methods of horizontal interpolation may be controlled by namelist
variables

 ARW Tutorial 3-4

Program vinterp

The function of the program vinterp is to vertically interpolate meteorological data from
pressure (or hybrid data in the case of RUC) levels to WRF's eta coordinate, which is
defined by the user in the SI's namelist section 'interp_control' in wrfsi.nl.

Utility Program siscan

Program siscan is a utility program which may be used to read hinterp output (file name
begins with hinterp.d01.*).

 siscan hinterp.d01.2000-01-24_12:00:00

 Scanning hinterp.d01.2000-01-24_12:00:00
 Domain Metadata Information

Domain Number 1
Parent ID -1
Dynamic Init. Source .. SI
Static Init. Source ... SI
Valid Date (YYYDDD) ... 2000024
Valid Time (sec UTC) .. 43200.0
Origin X in Parent -1
Origin Y in Parent -1
Nest Ratio to Parent .. -1
Delta X 30000.0
Delta Y 30000.0
Top Level 5000.0
Origin Z in Parent -1
X dimension 74
Y dimension 61
Z dimension 27

 Variables found:
 NAME S D NX NY NZ UNITS DESCRIPTION MINVAL MAXVAL AVGVAL
 ------- - - ----- ----- --- ------------ ---------------- -------- -------- --------
PRESSURE 0 1 27 0 0 Pa Pressure levels 5000. 200100. 59078.
T 4 3 74 61 27 K Temperature 204.627 296.902 249.544
U 4 3 74 61 27 m s-1 U -11.2302 57.4033 14.6849
V 4 3 74 61 27 m s-1 V -52.7882 66.4211 5.9056
RH 4 3 74 61 27 % Relative Humidit 1.000 117.639 52.779
SPECHUMD 4 3 74 61 27 kg kg-1 Specific Humidit 0.000000 0.016359 0.002082
HGT 4 3 74 61 27 m Height 0. 20601. 6206.
PMSL 4 2 74 61 0 Pa Sea-level Pressu 100689. 102797. 101645.
PSFC 4 2 74 61 0 Pa Surface Pressure 89520. 102235. 100210.
SNOW 1 2 74 61 0 kg m-2 Water Equivalent 0.000 184.144 5.537
SKINTEMP 1 2 74 61 0 K Sea-Surface Temp 243.144 297.855 279.444
ST000010 1 2 74 61 0 K T of 0-10 cm gro 0.000 291.070 143.554
ST010040 1 2 74 61 0 K T of 10-40 cm gr 0.000 291.646 145.186
ST040100 1 2 74 61 0 K T of 40-100 cm g 0.000 292.658 146.741
ST100200 1 2 74 61 0 K T of 100-200 cm 0.000 294.566 148.923
SM000010 1 2 74 61 0 Soil Moisture of 0.000000 0.788069 0.162016
SM010040 1 2 74 61 0 Soil Moisture of 0.000000 0.787242 0.160085
SM040100 1 2 74 61 0 Soil Moisture of 0.000000 0.785682 0.156359
SM100200 1 2 74 61 0 Soil Moisture of 0.000000 0.782386 0.153110
SEAICE 1 2 74 61 0 Ice flag 0.000000 0.350000 0.000902
CANWAT 1 2 74 61 0 kg m-2 Plant Canopy Sur 0.000000 0.500000 0.194222
SOILHGT 1 2 74 61 1 m Terrain height o -9999.00 1035.11 -4621.44
 End of file reached.

 ARW Tutorial 3-5

Utility Program staticpost

Utility program staticpost turns static.wrfsi.d0X files to WRF I/O API-conforming
netCDF files, wrfstatic_d0X. This program is executed when running perl script
window_domain_rt.pl (which also executes program gridgen_model). The
wrfstatic_d0X files are not yet used by WRF model, but they will be used later for a
simplier way to run two-way and one-way nesting.

Utility Program plotfmt

Utility program plotfmt can be used to make simple graphics from the intermediate files.
It plots every field in the intermediate formatted data file. This utility is not automatically
built when SI is installed. To compile this program, cd to src/grib_prep/util directory and
type:

 make plotfmt.exe

To run it, type

 plotfmt intermediate-file-name

How to Install WRFSI?

The WRFSI program may be downloaded from http://wrfsi.noaa.gov/ page. There is a
'Installation README' file posted on the site. In this section, a summary of the
installation procedure is provided.

Required Compilers, Scripting Language and Libraries

WRFSI code is written mostly in Fortran 77 and Fortran 90. A few utility programs are
written in c. Hence, a Fortran 90 compiler, and C compiler (gcc is recommended) are
required. These are the same requirement for WRF model. Perl scripts are used to run the
SI program, and perl/Tk is required to run the GUI. WRFSI writes output in both binary
(from grib_prep and hinterp) and netCDF (from gridgen_model and vinterp). A pre-
installed netCDF library is required (again this is the same requirement as for WRF
model).

Hint: Using PGI or Intel compiler on a Linux computer requires that the netCDF library
is also installed using the same compiler.

 ARW Tutorial 3-6

Installation Steps

• Download the program tar file, type 'gunzip wrfsi_v2.1.tar.gz' to unzip the
file, and 'tar -xf wrfsi_v2.1.tar' to untar the file. This will create a directory
called wrfsi/.This will be the SOURCE_ROOT directory. If you do a 'ls -l' in this
directory, you will see

CHANGES: description of changes
HOW_TO_RUN.txt: useful if you run SI not using the GUI
INSTALL: instructions on how to install SI
README: documentation of SI
README.wrfsi.nl: description of namelist variables
Makefile: top-level makefile
extdata/: where you might want to place the degribbed data
files
data/: where the default directory and namelist file reside
src/: the source code directory
graphics/: directory where NCL scripts reside - may be use
to make plots of gridgen_model output (static.wrfsi.d0X file)
gui/: source directory for the GUI
util/:

• Decide where you would like to place the executables and perl scripts that run
various SI programs. This directory will be the INSTALLROOT. Also decide

o where you would like to place the terrestrial datasets (terrain, landuse,
etc.): GEOG_DATAROOT. Download the data from
http://www.mmm.ucar.edu/wrf/users/download/get_source.html into this
directory.

o where you would place the intermediate formatted data files:
EXT_DATAROOT

o where you would like to run your case: DATAROOT and
MOAD_DATAROOT. DATAROOT can be the top directory which
contains multiple subdirectories, each of which is a MOAD_DATAROOT
directory. If there is only one MOAD_DATAROOT, then
MOAD_DATAROOT can also be the same as the DATAROOT directory.

o where you would like the template directory to be. This directory will
contain the SI namelist file that you would want to modify to create you
own case. This is only relevant if you run SI not using the GUI.

• Once you have decided these, set the following environment variables:

setenv SOURCE_ROOT the-source-root-directory
setenv INSATLLROOT the-install-root-directory
setenv GEOG_DATAROOT where-terrestrial-data-are
setenv EXT_DATAROOT where-degribbed-files-are

 ARW Tutorial 3-7

setenv DATAROOT where-all-case-directory-is
setenv MOAD_DATAROOT where-one-case-directory-is
setenv TEMPLATES where-the-template-directory-is

Settng the environment variables can help one understand where
things are. Note that the directory where the input GriB files reside
are not defined through the environment variable. It is defined in
the namelist file that grib_prep program uses. If you don't set these
environment variables, the default environment variables are:
setenv SOURCE_ROOT ./wrfsi
setenv INSTALLROOT ./wrfsi
setenv GEOG_DATAROOT $INSTALLROOT/extdata
setenv EXT_DATAROOT $INSTALLROOT/extdata
setenv DATAROOT $INSTALLROOT/domains
setenv TEMPLATES $INSTALLROOT/templates

Whether you define these environment variables or use the default,
you can find them in file, config_paths, in the $INSTALLROOT
for later reference.
Hint: Do not use wrfsi/data/ directory for $DATAROOT.
Hint: Setting these environment variables correctly is critical every
time you run the SI program. The run scripts and source code key
on these environment variables to access data.

• The other environment variable to set is the location of the netCDF library:

setenv NETCDF /usr/local/netcdf

Once these environment variables are set, you are ready to run the install script:
install_wrfsi.pl which resides in the top-directory of wrfsi. Type

perl install_wrfsi.pl

You will be prompted to answer whether you would like to install the GUI.

If all the system utilities are in the right place and in your path (defined in your system
resource file), the compiler, cpp, and so on, this should be an easy process. If not, cd to
src/include directory, find the makefile_machine-type.inc.in that is closest to the
machine you have, and start editting.

If all goes well, you should see the following executables built in the
$INSTALLROOT/bin directory:

gridgen_model.exe
grib_prep.exe
hinterp.exe
vinterp.exe
siscan
staticpost.exe

 ARW Tutorial 3-8

All of the perl scripts for running the SI job are in $INSTALLROOT/etc:

window_domain_rt.pl
grib_prep.pl
wrfprep.pl

The install script also builds the EXT_DATAROOT, and DATAROOT directories
depending on the environment variables set. Under EXT_DATAROOT, five subdirectories
are created: extprd, static, work, log and GEOG (can ignored if GEOG_DATAROOT
is defined). It will create DATAROOT directory.

When one is ready to run a different case, one will not need to reinstall SI. Instead, reset
this environment variable:

setenv MOAD_DATAROOT your-new-case-directory

If you have chosen to build the GUI, the executable will be $INSTALLROOT/wrf_tools.

How to Run WRFSI?

The GUI is recommended to run the WRFSI program. For a detailed instruction on how
to use the GUI, visit http://wrfsi.noaa.gov/. One of the advantages of using the GUI is
that it has graphics to help you locate a domain. However, going through the following
precess may be helpful to understand how the various programs/scripts do and what they
may produce. It may also be helpful in case you need to find out why something didn't
quite work.

Here instructions are provided if you would like to run WRFSI manually.

Step 1: Localize the simulation domain and create static fields -
window_domain_rt.pl

Set the environment variable for MOAD_DATAROOT, if it is different from the one you set
when you install SI.

cd to $TEMPLATES/ directory, make a copy of the default/ to your case directory:

cp -r default my-case

Then you need to remove file/directory protection for the directory and files in it:

chmod -R u+w my-case

cd to my-case/, and edit wrfsi.nl. If you have set GEOG_DATAROOT, EXT_DATAROOT,
you'd find that these are incooperated in the wrfsi.nl file. The important namelist
variables to edit at this time are those in 'hgridspec' section as shown below:

 ARW Tutorial 3-9

&hgridspec
NUM_DOMAINS = 1
XDIM = 74
YDIM = 61
PARENT_ID = 1,
RATIO_TO_PARENT = 1,
DOMAIN_ORIGIN_LLI = 1,
DOMAIN_ORIGIN_LLJ = 1,
DOMAIN_ORIGIN_URI = 1,
DOMAIN_ORIGIN_URJ = 1,
MAP_PROJ_NAME = 'lambert',
MOAD_KNOWN_LAT = 34.726,
MOAD_KNOWN_LON = -81.226,
MOAD_STAND_LATS = 30.0, 60.0,
MOAD_STAND_LONS = -98.0
MOAD_DELTA_X = 30000.
MOAD_DELTA_Y = 30000.
SILAVWT_PARM_WRF = 0.
TOPTWVL_PARM_WRF = 2.

Once you have edited this portion of the namelist, you are ready to run. A typical run
command looks like this:

setenv MOAD_DATAROOT $INSTALLROOT/domains/my_case

$INSTALLROOT/etc/window_domain_rt.pl -w wrfsi -t $TEMPLATES/my-case

Other options are available for this perl script. Type the following to see them all:

$INSTALLROOT/etc/window_domain_rt.pl -h

The perl script makes use of the wrfsi.nl file you editted in the $TEMPLATES/my-case/
directory to create netCDF control file and a working wrfsi.nl in
$MOAD_DATAROOT/static/ directory, and executes gridgen_model.exe. The perl script
also creates directory siprd under MOAD_DATAROOT for running wrfprep.pl (see Step 3).

If it is successful, you should find a few directories created under $MOAD_DATAROOT:
static/, cdl/ and siprd/ and log/. Check the static/ directory and see if a file
named 'static.wrfsi.d01' is created. If so, you are done here. If not, check the
localization_domain.log.date file in the log/ directory, and try to identify errors.
The files in cdl/ directory are the control files for netCDF output. The directory siprd/
will be used to store SI output. Another file created by running this script is
wrfstatic_d01, which is similar to the file 'static.wrfsi.d01', but it conforms to
WRF I/O API, and will be used when static-file-input option becomes available in WRF
model for two-way and one-way nesting.

If you need to start over again, add option '-c' at the end of the above run command. It
cleans the MOAD_DATAROOT directory:

$INSTALLROOT/etc/window_domain_rt.pl -w wrfsi -t $TEMPLATES/my-case -c

 ARW Tutorial 3-10

Step 2: Degrib GriB files - grib_prep.pl

It will be user's responsibility to find meteorological dataset to run WRF simulations.
Once you have those files, place them in a unique directory for each case you work on.
There are a number of sites you may be able to find data. See, for example,
http://www.mmm.ucar.edu/wrf/users/downloads.html.

cd to $EXT_DATAROOT/static/ directory, and edit grib_prep.nl. This is the namelist file
for running grib_prep.exe. The critical ones to modify are the first rows of SRCNAME
and SRCVTAB, and first line of SRCPATH:

SRCNAME = 'AWIP',
SRCVTAB = 'AWIP',
SRCPATH = '/public/data/40km_eta212_isobaric',

where SRCPATH is the directory name where your input GriB files are. A typical run
command looks like this:

$INSTALLROOT/etc/grib_prep.pl -s 2000012412 -l 12 -t 6 AWIP

This run starts 2000012412, processes data for a 12 h forecast at 6 hour interval, and the
data is from NAM/Eta in AWIP format which corresponds to Vtable.AWIP. As shown,
the time information can be provided via the command line. If not, the values in the
namelist will be used.

Hint: use the time interval between the available data only - there is practically no
advantage to interpolate data to a time interval that is smaller than they are provided.

Other options on the comand line are available. Type the following to see them all:

grib_prep.pl -h

The perl script makes use of the namelist options in grib_prep.nl, and options on the
command line to execute grib_prep.exe. The output from running this script should
reside in $EXP_DATAROOT/extprd/ directory, with file names beginning with AWIP:

AWIP:2004-06-30_00
AWIP:2004-06-30_06
AWIP:2004-06-30_12

If these files are not created, check $EXT_DATAROOT/log/gp_AWIP.2004063000.log to
find clues.

Hint: grib_prep.exe runs the best when only the files relevant to this particular run are
placed in one directory, defined in SRCPATH.

 ARW Tutorial 3-11

Step 3: Interpolating meterological data - wrfprep.pl

After you have successfully executed above two programs, you should be ready to do the
final step in WRFSI: interpolating meteorological data to WRF grid. The wrfprep.pl
script executes both hinterp and vinterp executables.

First, take another look at the namelist file, and make sure everything is correctly
specified in section 'interp_control':

&interp_control
NUM_ACTIVE_SUBNESTS = 0,
ACTIVE_SUBNESTS = 2,3,4,
PTOP_PA = 5000,
HINTERP_METHOD = 1,
LSM_HINTERP_METHOD = 1,
NUM_INIT_TIMES = 1,
INIT_ROOT = 'AWIP',
LBC_ROOT = 'AWIP',
LSM_ROOT = '',
CONSTANTS_FULL_NAME = '',
VERBOSE_LOG = .false.,
OUTPUT_COORD = 'ETAP',
LEVELS = 1.000 , 0.990 , 0.978 , 0.964 , 0.946 , 0.922 ,
0.894 , 0.860 , 0.817 , 0.766 , 0.707 , 0.644 ,
0.576 , 0.507 , 0.444 , 0.380 , 0.324 , 0.273 ,
0.228 , 0.188 , 0.152 , 0.121 , 0.093 , 0.069 ,
0.048 , 0.029 , 0.014 , 0.000

Make sure your INIT_ROOT, LBC_ROOT and/or LSM_ROOT are set to the correct data
types you specified while running grib_prep.pl. These different root names allow one to
use data from different sources.

To run the interpolation script, type the following:

$INSTALLROOT/etc/wrfprep.pl -s 2004063000 -f 12

Note the time information is provided at the command line. Again other options may be
found by typing:

$INSTALLROOT/etc/wrfprep.pl -h

If successful, you should find the following files in $MOAD_DATAROOT/siprd/
directory:

hinterp.d01.2004-06-30_00:00:00
hinterp.d01.2004-06-30_06:00:00
hinterp.d01.2004-06-30_12:00:00
hinterp.global.metadata
wrf_real_input_em.d01.2004-06-30_00:00:00
wrf_real_input_em.d01.2004-06-30_06:00:00
wrf_real_input_em.d01.2004-06-30_12:00:00

 ARW Tutorial 3-12

The wrf_real_input_em.d0.* files are the ones to be used by WRF/real program, and
these files are in netCDF format.

If you get here, your single domain WRFSI job should be successfully completed. If
some files are not created, please check $MOAD_DATAROOT/log/2004063000.wrfprep,
2004063000.hinterp, and 2004063000.vinterp files for possible errors.

WRFSI GUI

For a detailed description and instruction on how to use it, please visit
http://wrfsi.noaa.gov/.

If you have successfully installed the GUI, type the following to start it:

$INSTALLROOT/wrf_tools

Using WRFSI for Nesting

Running WRFSI for nesting option (data for more than one domain are created) is similar
to running the program for a single domain. The key program for the nesting option is the
gridgen_model program which, upon completion, will provide multiple static files, one
for each domain specified. The static files are created for each domain independently.
There is no consistency check between domains at this time, and it is up to the WRF
model to make appropriate adjustment between the static fields when nesting is used.

There are a number of namelists that are key to set up a nested run. These are:

&hgridspec
NUM_DOMAINS = 2
XDIM = 74,
YDIM = 61,
PARENT_ID = 1, 1
RATIO_TO_PARENT = 1, 3
DOMAIN_ORIGIN_LLI = 1, 31
DOMAIN_ORIGIN_LLJ = 1, 17
DOMAIN_ORIGIN_URI = 74, 68
DOMAIN_ORIGIN_URJ = 61, 49

and

&interp_control
NUM_ACTIVE_SUBNESTS = 1,
ACTIVE_SUBNESTS = 2,

where, the ones under &hgridspec are used to create multiple static.wrfsi.d0X files;
while the ones under &interp_control are used to create multiple SI output files for

 ARW Tutorial 3-13

WRF model: wrf_real_input_em.d01.*, wrf_real_input_em.d02.*. The size of
domain 2 in this case is (68 - 31) * 3 + 1 = 112, and (49 - 17) * 3 + 1 = 97.

NUM_DOMAINS: the number of domains one would like to create
XDIM, YDIM: here only the coarse domain dimensions are needed
PARENT_ID: a number identifying the domain
RATIO_TO_PARENT: integer, the ratio of coarse to fine domain grid distances
DOMAIN_ORIGIN_LLI: the starting nest location in terms of its parent domain index I
DOMAIN_ORIGIN_LLJ: the starting nest location in terms of its parent domain index J
DOMAIN_ORIGIN_URI: the ending nest location in terms of its parent domain index I
DOMAIN_ORIGIN_URJ: the ending nest location in terms of its parent domain index J
(see figure below)

NUM_ACTIVE_SUBNESTS: the number of nests (excluding the parent domain)
ACTIVE_SUBNESTS: a list of the nests one would create SI output for

With these namelists set properly, a single run using window_domain_rt.pl, and
wrfprep.pl will create all data required for a nested WRF run.

Similarly, for a two-nests, three domain total run, the above parameters should look like:

&hgridspec
NUM_DOMAINS = 3
XDIM = 74,
YDIM = 61,
PARENT_ID = 1, 1
RATIO_TO_PARENT = 1, 3, 3
DOMAIN_ORIGIN_LLI = 1, 31, 41,
DOMAIN_ORIGIN_LLJ = 1, 17, 30,

 ARW Tutorial 3-14

DOMAIN_ORIGIN_URI = 74, 68, 72,
DOMAIN_ORIGIN_URJ = 61, 49, 60,

and

&interp_control
NUM_ACTIVE_SUBNESTS = 2,
ACTIVE_SUBNESTS = 2,3,

Again the GUI is recommended here. The design of the nest domains can be greatly
simplified with the GUI.

Using Multiple Data Sources

Sometimes one would like to use combined data sources. For example, one may like to
use sea-surface temperature (SST) from a different data source than the other
meteorological fields, or one may like to use fields for land-surface model from a
different data source. SI does support this function. To do so, one needs to run
grib_prep.pl twice: Once for the special fields (such as SST, or LSM fields), and a
second time for the rest of fields. Since these special fields are typically only needed for
the model initial time, one needs only to process it for one time period. Hence the
command is:

$INSTALLROOT/etc/grib_prep.pl -s 2004063000 -l 0 SST

Here the source for SST data is generically declared as SST, which would require the
presence of Vtable.SST. Similarly, if the LSM fields come from another source, such as
AGRMET, one would issue this command:

$INSTALLROOT/etc/grib_prep.pl -s 2004063000 -l 0 AGRMET

When one uses a different source to get the LSM fields, it is probably a good idea to
remove these fields from the Vtable one uses to obtain all other one. After obtaining the
degribbed files (these files would be named SST:[date_string], and
AGRMET:[date_string]), one needs to edit wrfsi.nl so the wrfprep.pl knows how to use
these multiple sourced input.

There are two ways different source data are used. One way is through the use of
namelist variable 'CONSTANT_FULL_NAME'. This usually works with a single field
like SST. In this case, edit wrfsi.nl so that 'CONSTANT_FULL_NAME' is set to:

CONSTANT_FULL_NAME = 'SSTDATA',

The perl script will link the SST file you produced to SSTDATA.

If you would like to use a different data source for LSM, then edit wrfsi.nl so that these
variables are set to the following:

 ARW Tutorial 3-15

INIT_ROOT = 'GFS',
LBC_ROOT = 'GFS',
LSM_ROOT = 'AGRMET',

A special example to use multiple data source is the NCEP/NCAR Reanalysis Project
(NNRP) data. Even though the data source is one, but because of the way data are
archived, the upperair and surface data have different data dimensions. In order to use
both surface and upperair data, one needs to run grib_prep.pl twice: once for the surface
data using Vtable.NNRPSFC, and once for the upperair data using Vtable.NNRP (both
provided). After that set the following in wrfsi.nl:

INIT_ROOT = 'NNRP',
LBC_ROOT = 'NNRP',
LSM_ROOT = 'NNRPSFC',

The latest year of NNRP data can be downloaded from WRF Users' page under the link
DOWNLOAD.

Checking WRFSI Output

There are several ways you may check the output from SI. If you can find all the files that
are supposed be created, then chances are good that everything has gone well. However if
you need some sanity check, here are a few ways to go about it. These includes graphics
tools, and simply print outs.

Checking output from grib_prep

Use the utility program, plotfmt.exe, described above to make plots of the degribbed
files. This will be useful especially if you are ingesting data from a source other than
those supported by the program.

Checking output from gridgen_model

There are three ways you may check the static fields created by gridgen_model. The first
way is to use the netCDF utility, nudump, to check the output. You may type

ncdump -h static.wrfsi.d01

to get an idea (or header information) on what fields are in this file. You may also type

ncdump -v variable-name static.wrfsi.d01

to see the actual values for the variable you are interested.

The second way to check the output is to use the read_wrf_nc.f (see Chapter 8 for
more information). Options provided by this program will allow you to check the data in
various ways.

 ARW Tutorial 3-16

The third way to check the gridgen_model output is to use the NCL script provided by
the WRFSI tar file. If you have used the GUI, you may be able to view the plots already.
But if you want to create the plots outside the GUI, you can too. This can be done by cd
graphics/ncl directory, link the static.wrfsi.d01 file to static.cdf file, and run any of the
ncl scripts residing in the directory. For example, if you would like to see a plot of
terrain, use avc.ncl (and type 'ncl < anv.ncl').

Checking output from hinterp

The utility program to use here is the siscan program described above.

Checking output from vinterp

By this stage, the output files are in WRF I/O API-conforming netCDF format, so various
supported post-processing tools may be used. See again Chapter 8 for more information.
The program read_wrf_nc.f can also be used.

Description of the Namelist Variables

A. PROJECT_ID Section

This section is used to fill in metadata entries that document the run. The settings in this
section will not affect the WRFSI run, but are provided for convenience to allow the user
to document their run in the output metadata.

1. SIMULATION_NAME
Set this to a string describing the experiment or run.

2. USER_DESC
Set this to a string describing who is running the configuration.

B. FILETIMESEPC Section

This section provides the start and stop times that bound the period for which you want SI
to produce data. Times are in UTC.

1. START_YEAR: 4-digit UTC year for start time.
2. START_MONTH: 2-digit UTC month for start time.
3. START_DAY: 2-digit UTC day of month for start time.
4. START_MINUTE: 2-digit UTC minute of month for start time.
5. START_SECOND: 2-digit UTC second of month for start time.
6. END_YEAR-END_SECOND: Same as 1-5, but for ending time.
7. INTERVAL: Interval in seconds between output times. No need to specify data interval
to be finer than the available data times.

 ARW Tutorial 3-17

Note, the starting and ending times, and data interval may be overwritten on the
command line when running wrfprep.pl.

C. HGRIDSPEC section

This is the section used to define your horizontal WRF grid.

1. NUM_DOMAINS: Integer number of nests, including the parent domain. If you are
setting up for a single domain run, set to 1.

2. XDIM/YDIM: Integer number of points in the west-east and south-north directions,
respectively. There are NUM_DOMAINS entries required. The first entry refers to the
main grid (Mother Of All Domains or MOAD). Until nesting is supported, only the first
will be used.

NOTE: The WRFSI defines the map to be what we refer to as the "non-staggered" grid.
This implementation of the Arakawa-C stagger assumes all 3 component grids (U, V, and
mass) are staggered with respect to these points. The U grid is staggered 0.5 gridpoints up
w.r.t. the defined non-staggered points, the V grid is staggered 0.5 gridpoints to the right
of the non-staggered points, and the mass grid is staggered 0.5 grid points up and 0.5 grid
points to the right. To illustrate, here is an example for a case where (XDIM,YDIM) =
(4,4):

+ V + V + V +
U T U T U T U
+ V + V + V +
U T U T U T U
+ V + V + V +
U T U T U T U
+ V + V + V +

The (+) points are the points exactly defined by the parameters in this namelist. The (T)
points are the points on which the mass variables will be provided to and output by the
WRF forecast model. The (U) points are the points on which the U momentum variables
will be provided to and output by the WRF model. The (V) points are the points on which
the V momentum variables will be provided to and output by the WRF model. Thus, if
your WRFSI configuration uses dimensions (XDIM, YDIM), the model will output the
following:

Mass variables with dimensions (XDIM-1,YDIM-1)
U-momentum with dimensions (XDIM,YDIM-1)
V-momentum with dimensions (XDIM-1,YDIM)

3. PARENT_ID: Integer that represents the number of this nests parent nest. Note that the
MOAD has no parent, and thus the first entry of PARENT_ID is always set to 1.

 ARW Tutorial 3-18

4. RATIO_TO_PARENT: Integer specifying the nest ratio of each nest to its parent in
terms of grid spacing.

5. DOMAIN_ORIGIN_LLI/DOMAIN_ORIGIN_LLJ: This parameter specifies the (i,j)
location of the nest grid's origin in its parent.

6. DOMAIN_ORIGIN_URI/DOMAIN_ORIGIN_URJ: This parameter specifies the (i,j)
location of the nest grid's ending points in its parent.

7. MAP_PROJ_NAME: Character string specifying type of map projection. Valid entries
are:

"polar" -> Polar stereographic
"lambert" -> Lambert conformal (secant and tangent)
"mercator" -> Mercator

8. MOAD_KNOWN_LAT/MOAD_KNOWN_LON: Real latitude and longitude of the center
point in the grid. Values are in degrees, with positive latitude for the northern hemisphere
and negative latitude for western hemisphere. Latitude must be between -90 and 90, and
longitude between -180 and 180.

9. MOAD_STAND_LATS: 2 real values for the "true" latitudes (where grid spacing is
exact). Must be between -90 and 90, and the values selected depend on projection:

Polar-stereographic: First value must be the latitude at which the grid
spacing is true. Most users will set this equal to their center latitude.
Second value must be +/-90. for NH/SH grids.
Lambert Conformal: Both values should have the same sign as the center
latitude. For a tangential lambert conformal, set both to the same value
(often equal to the center latitude). For a secant Lambert Conformal, they
may be set to different values.

Mercator: The first value should be set to the latitude you wish your grid
spacing to be true (often your center latitude). Second value is not used.

10. MOAD_STAND_LONS: This is one entry specifying the longitude in degrees East (-
180->180) that is parallel to the y-axis of your grid, (sometimes referred to as the
orientation of the grid). This should be set equal to the center longitude in most cases.

11. MOAD_DELTA_X/MOAD_DELTA_Y: Floating point values specifying grid spacing
in meters in the west-east and north-south directions, respectively. For now, these two
values must be the same.

12. SILAVWT_PARM_WRF: valid values are 1, 2 and 3, which give varying smoothness
of the terrain field. The value of 3 gives the steepest terrain representation.

 ARW Tutorial 3-19

13. TOPTWVL_PARM_WRF: also controls smoothness of the terrain. The smaller the
number, the rougher the terrain is.

D. SFCFILES Section

This section is used to specify the paths to the tiled global geographical data sets, which
are obtained from ftp://aftp.fsl.noaa.gov/divisions/frd-laps/WRFSI/Geog_Data
IT IS NECESSARY THAT EACH DATA SET BE IN ITS OWN SUBDIRECTORY!

1. TOPO_30S: Path to the USGS-derived 30-second topographical height data.

2. LANDUSE_30S: Path to the tiled 24-category USGS 30-second land usage categorical
data.

3. SOILTYPE_TOP_30S: Path to the FAO top-layer 16-category soil-type data.

4. SOILTYPE_BOT_30S: Same as (4) but for bottom layer.

5. GREENFRAC: Path to the greenness fraction data. Resolution: 0.15 degree.

6. SOILTEMP_1DEG: Path to the annual mean deep-layer temperature data. Resolution:
1 degree.

7. ALBEDO_NCEP: Path to the monthly climatological albedo data set (normalized to
local zenith). Resolution: 0.15 degree.

8. MAXSNOWALB: Path to climatological maximum snow albedo data. Resolution: 0.15
degree.

9. ISLOPE: slope data. (Not yet used by WRF). Resolution: 1 degree.

E. INTERP_CONTROL section

This section controls the horizontal and vertical interpolation of the input gridded data
sets.

1. NUM_ACTIVE_SUBNESTS: integer number of nests, excluding the parent domain.

2. ACTIVE_SUBNESTS: a list of the nests to create SI output for. For example, if you
have set to configure 4 domains, then set this namelist to 2, 3, 4.

3. PTOP_PA: Specifies model top in Pascals. Default is 5000 Pa.

4. HINTERP_METHOD: Integer specifying method of interpolation for atmospheric
variables. Codes:

 ARW Tutorial 3-20

0: Nearest neighbor (not recommended)
1: 4-pt bilinear (use if input data has similar resolution as output)
2: 16-point

5. LSM_HINTERP_METHOD: Integer specifying the method of interpolation used for the
land-masked fields. Codes are same as above. Recommended default is 0 or 1. NOTE:
FOR USERS WISHING TO USE THE BACKGROUND DATA'S LANDUSE AND
SOIL TYPE CATEGORIES, THIS MUST BE SET TO 0 AND YOU MUST OBTAIN
"VEGCAT" AND "SOILCAT" FROM YOUR INPUT DATA SET, WHERE VEGCAT
IS A 2D ARRAY OF DOMINANT LANDUSE CATEGORY (USGS 24-CAT) AND
SOILCAT IS THE 2D ARRAY OF FAO DOMINANT SOIL CATEGORY.

6. NUM_INIT_TIMES: Integer, currently set to 1. This controls the number of output
times to use the prefix specified by "INIT_ROOT" and "LSM_ROOT". The idea is for
future support of analysis "nudging". The code will use the data specified by the
INIT_ROOT/LSM_ROOT for time periods 1:NUM_INIT_TIMES, then switch to
"LBC_ROOT" for the remaining time periods. If set to 0, all data comes from
LBC_ROOT and CONSTANTS_FULL_NAME. Most users will set this to 0. However,
setting it to 1 allows the model to be initialize with a different source of data for the
initial conditions and land surface than what is used for lateral boundary conditions.

7. INIT_ROOT: Prefix of data to use for 1:NUM_INIT_TIMES. The wrfprep.pl script
will look in ANALPATH (see SI_PATHS section) for files with this prefix and a time
string suffix valid for the desired time. This entry is only used if NUM_INIT_TIMES >
0.

8. LBC_ROOT: Prefix of data files to use for lateral boundary condition times. The
wrfprep.pl script will link in all files in "LBCPATH" that have this prefix and a valid
time suffix in the correct range.

9. LSM_ROOT: For each NUM_INIT_TIME (when NUM_INIT_TIMES >0), the
wrfprep.pl script will link in a file with this prefix found in LSMPATH that matches in
time. This is designed to support data for the NOAH LSM coming from a source other
than the INIT_ROOT.

10. CONSTANTS_FULL_NAME: Specifies a list of file names to look for in
"CONSTANTS_PATH". Data contained in any of these files actually found will be used
at every output time, and will take precedence over duplicate data found in
LSM_ROOT/INIT_ROOT/LBC_ROOT files.

11. VERBOSE_LOG: Logical. Setting to true provides a lot of logging for troubleshooting
purposes.

12. LEVELS: List of levels to use in the WRF model in ascending (atmospherically)
order. These values range from 1.0 to 0.0.

 ARW Tutorial 3-21

F. SI_PATHS Section

Specify path to deGRIBed (grib_prep output) data files. In most cases all of these will be
the same path ($EXT_DATAROOT/extprd).

1. ANALPATH: Path to search for files with INIT_ROOT prefix when
NUM_INIT_TIMES > 0.

2. LBCPATH: Path to search for files with LBC_ROOT prefix for all time periods >
NUM_INIT_TIMES.

3. LSMPATH: Path to search for files with LSM_ROOT prefix for all time periods
0:NUM_INIT_TIMES.

4. CONSTANTS_PATH: Path to search for files with CONSTANTS_FULL_NAME for
every time period.

List of Fields in WRFSI Output

A List of Fields

 float ZNW(Time, bottom_top_stag) ;
 float MU0(Time, south_north, west_east) ;
 float T(Time, bottom_top, south_north, west_east) ;
 float QVAPOR(Time, bottom_top, south_north, west_east) ;
 float U(Time, bottom_top, south_north, west_east_stag) ;
 float V(Time, bottom_top, south_north_stag, west_east) ;
 float SPECHUMD(Time, bottom_top, south_north, west_east) ;
 float PMSL(Time, south_north, west_east) ;
 float SNOW(Time, south_north, west_east) ;
 float TSK(Time, south_north, west_east) ;
 float ST000010(Time, south_north, west_east) ;
 float ST010040(Time, south_north, west_east) ;
 float ST040100(Time, south_north, west_east) ;
 float ST100200(Time, south_north, west_east) ;
 float SM000010(Time, south_north, west_east) ;
 float SM010040(Time, south_north, west_east) ;
 float SM040100(Time, south_north, west_east) ;
 float SM100200(Time, south_north, west_east) ;
 float XICE(Time, south_north, west_east) ;
 float CANWAT(Time, south_north, west_east) ;
 float SOILHGT(Time, south_north, west_east) ;
 float XLAT(Time, south_north, west_east) ;
 float XLONG(Time, south_north, west_east) ;
 float LANDMASK(Time, south_north, west_east) ;
 float HGT(Time, south_north, west_east) ;
 float TOPOSTDV(Time, south_north, west_east) ;
 float TOPOSLPX(Time, south_north, west_east) ;
 float TOPOSLPY(Time, south_north, west_east) ;
 float COSALPHA(Time, south_north, west_east) ;
 float SINALPHA(Time, south_north, west_east) ;

 ARW Tutorial 3-22

 float F(Time, south_north, west_east) ;
 float E(Time, south_north, west_east) ;
 float MAPFAC_M(Time, south_north, west_east) ;
 float MAPFAC_U(Time, south_north, west_east_stag) ;
 float MAPFAC_V(Time, south_north_stag, west_east) ;
 float VEGFRA(Time, south_north, west_east) ;
 float SHDMAX(Time, south_north, west_east) ;
 float SHDMIN(Time, south_north, west_east) ;
 float ALBBCK(Time, south_north, west_east) ;
 float SNOALB(Time, south_north, west_east) ;
 float TMN(Time, south_north, west_east) ;
 float SLOPECAT(Time, south_north, west_east) ;
 float LANDUSEF(Time, land_cat, south_north, west_east) ;
 float SOILCTOP(Time, soil_cat, south_north, west_east) ;
 float SOILCBOT(Time, soil_cat, south_north, west_east) ;

Global Attributes in WRFSI Output File

 :corner_lats = 28.04805f, 44.23701f, 39.55859f, 24.53824f,
28.05492f, 44.24625f, 39.50478f, 24.49756f, 27.91458f, 44.37634f,
39.68672f, 24.41348f, 27.92145f, 44.38561f, 39.63279f, 24.37289f ;
 :corner_lons = -93.80435f, -92.59967f, -66.23782f, -72.82159f, -
93.95563f, -92.79419f, -66.07178f, -72.68448f, -93.81226f, -92.58652f,
-66.16806f, -72.86612f, -93.96326f, -92.78149f, -66.00174f, -72.72925f
;
 :WEST-EAST_GRID_DIMENSION = 74 ;
 :SOUTH-NORTH_GRID_DIMENSION = 61 ;
 :BOTTOM-TOP_GRID_DIMENSION = 28 ;
 :DX = 30000.f ;
 :DY = 30000.f ;
 :P_TOP = 5000.f ;
 :CEN_LAT = 34.83158f ;
 :CEN_LON = -81.02756f ;
 :FLAG_ST000010 = 1 ;
 :FLAG_ST010040 = 1 ;
 :FLAG_ST040100 = 1 ;
 :FLAG_ST100200 = 1 ;
 :FLAG_SM000010 = 1 ;
 :FLAG_SM010040 = 1 ;
 :FLAG_SM040100 = 1 ;
 :FLAG_SM100200 = 1 ;
 :FLAG_TOPOSOIL = 1 ;
 :simulation_name = "WRF Model Simulation" ;
 :user_desc = "NCAR/MMM Test Case" ;
 :si_version = 2 ;
 :map_projection = "LAMBERT CONFORMAL" ;
 :TITLE = "OUTPUT FROM WRF SI V02 PREPROCESSOR" ;
 :START_DATE = "2000-01-24_12:00:00.0000" ;
 :MOAD_CEN_LAT = 34.83158f ;
 :STAND_LON = -98.f ;
 :TRUELAT1 = 30.f ;
 :TRUELAT2 = 60.f ;
 :MAP_PROJ = 1 ;
 :DYN_OPT = 2 ;

 ARW Tutorial 3-23

 :ISWATER = 16 ;
 :ISICE = 24 ;
 :MMINLU = "USGS" ;

 ARW Tutorial 3-24

ARW Tutorial 4-1

User’s Guide for Advanced Research WRF (ARW)
Modeling System Version 2

Chapter 4: WRF Initialization

Table of Contents

• Introduction
• Initialization for Ideal Data Cases
• Initialization for Real Data Cases

Introduction

The WRF model has two large classes of forecasts that it is able to generate: those with
an ideal initialization and those utilizing real data. The WRF model itself is not altered
by choosing one initialization over another, but the WRF pre-processors are specifically
built based upon a user's selection.

The ideal vs real cases are divided as follows:

• Ideal cases
o 3d

 em_b_wave - barclinic wave
 em_quarter_ss - super cell

o 2d
 em_grav2d_x
 em_hill2d_x
 em_squall2d_x
 em_squall2d_y

• Real data cases
o em_real

The selection of the type of forecast is made when issuing the ./compile statement. If
the user chooses ./compile em_real, then the initialization program is built using the
target module (one of the ./WRFV2/dyn_em/module_initialize_*.F files). In each of
these modules, the same sort of activities go on:

• read data from the namelist
• allocate space
• compute a base state
• compute the perturbations from the base state
• initialize rest of variables

ARW Tutorial 4-2

• generate initial condition file

The real-data case does some additional work:

• read input data from the Standard Initialization (SI)
• compute reference temperature profile (differently than with ideal cases, to allow

for seasonal norms)
• with input total dry surface pressure, partition into base and perturbation mu
• prepare soil fields for use in model (usually, vertical interpolation to the requested

levels)
• checks to verify soil categories, land use, land mask, soil temperature, sea surface

temperature are all consistent with each other
• multiple input time periods are processed to generate the lateral boundary

conditions
• 3d boundary data (u, v, t, q, ph) are coupled with map factors (on the correct

staggering) and total mu

Both the real.exe and the 3d ideal.exe programs may be run as a distributed memory jobs.

Initialization for Ideal Cases

The program "ideal" is an alternative in the WRF system to running with real-data inputs
(which uses program "real".) Typically this program requires no inputs except for the
namelist.input and the input_sounding files (except for the b_wave case which uses a 2d
binary sounding file). The program outputs the wrfinput_d01 file that is read by the WRF
model executable ("wrf.exe".)

Idealized runs can use any of the boundary conditions except "specified", and are not, by
default, set up to run with sophisticated physics apart from microphysics. There are no
radiation, surface fluxes or frictional effects in these cases, so they are mostly useful for
dynamical studies and idealized cloud modeling.

There are 2d and 3d examples of idealized cases, with and without topography, and with
and without an initial thermal perturbation. The namelist can control the size of domain,
number of vertical levels, model top height, grid size, time step, diffusion and damping
properties, and microphysics options.

The input_sounding can be any set of levels that goes at least up to the model top height
(ztop) in the namelist. The first line is the surface pressure (hPa), potential temperature
(K) and moisture mixing ratio (g/kg). The following lines are five digits: height (meters
above sea-level), potential temperature (K), mixing ratio (g/kg), x wind component, y
wind component (m/s). In the hill2d case, the topography is accounted for properly in
setting up the initial 3d arrays, so that example should be followed for any topography
cases. The base state sounding for idealized cases is the initial sounding minus the
moisture, and so does not have to be defined separately. [b_wave Note: For the b_wave
case the input_sounding is not used because the initial 3d arrays are read in from file

ARW Tutorial 4-3

input_jet. This means for b_wave the namelist.input file cannot be used to change the
dimensions either.]

Making modifications apart from namelist-controlled options or soundings has to be done
by editing the Fortran code. Such modifications would include changing the topography,
the distribution of vertical levels, the properties of an initialization bubble, or preparing a
case to use more physics, such as a land-surface model. The Fortran code to edit is
contained in module_initialize_[case].F, where [case] is the case chosen in compilation,
e.g. module_initialize_squall2d_x.F. The subroutine is init_domain_rk. To change the
vertical levels, only the 1d array znw must be defined containing the full levels starting
from 1 at k=1 and ending with 0 at k=kde. To change the topography, only the 2d array
ht(i,j) must be defined, making sure it is periodic if those boundary conditions are used.
To change the bubble, search for the string "bubble" to locate the code to change.

Available Ideal Test Cases

The available test cases are

1. squall2d_x (test/em_squall2d_x)
o 2D squall line (x,z) using Kessler microphysics and a fixed 300 m^2/s

viscosity.
o periodicity condition used in y so that 3D model produces 2D simulation.
o v velocity should be zero and there should be no variation in y in the

results.
2. squall2d_y (test/em_squall2d_y)

o Same as squall2d_x, except with (x) rotated to (y).
o u velocity should be zero and there should be no variation in x in the

results.
3. 3D quarter-circle shear supercell simulation (test/em_quarter_ss).

o Left and right moving supercells are produced.
o See the README.quarter_ss file in the test directory for more

information.
4. 2D flow over a bell-shaped hill (x,z) (test/em_hill2d_x)

o 10 km half-width, 2 km grid-length, 100 m high hill, 10 m/s flow,
N=0.01/s, 30 km high domain, 80 levels, open radiative boundaries,
absorbing upper boundary.

o Case is in linear hydrostatic regime, so vertical tilted waves with ~6km
vertical wavelength.

5. 3D baroclinic waves (test/em_b_wave)
o Baroclinically unstable jet u(y,z) on an f-plane.
o Symmetric north and south, periodic east and west boundaries.
o 100 km grid size 16 km top with 4 km damping layer.
o 41x81 points in (x,y), 64 layers.

6. 2D gravity current (test/em_grav2d_x)
o Test case is described in Straka et al, INT J NUMER METH FL 17 (1): 1-

22 JUL 15 1993.

ARW Tutorial 4-4

o See the README.grav2d_x file in the test directory.

Initialization for Real Data Cases

The real-data WRF cases are those that have the input data to the real.exe program
provided by the Standard Initialization (SI) system. The data from the SI originally came
from a previously run, external analysis or forecast model. The original data was
probably in GriB format and was probably ingested into the SI by first ftp'ing the raw
GriB data from one of the national weather agencies’ anonymous ftp sites.

For example, suppose a WRF forecast is desired with the following criteria:

• 2000 January 24 1200 through 25 1200
• the original GriB data is available at 6 h increments

The following files will be generated by the SI:

• wrf_real_input_em.d01.2000-01-24_12:00:00
• wrf_real_input_em.d01.2000-01-24_18:00:00
• wrf_real_input_em.d01.2000-01-25_00:00:00
• wrf_real_input_em.d01.2000-01-25_06:00:00
• wrf_real_input_em.d01.2000-01-25_12:00:00

The convention is to use "wrf_real_input" to signify data that is output from the SI and
input into the real.exe program. The "d01" part of the name is used to identify to which
domain this data refers. The trailing characters are the date, where each SI output file has
only a single time-slice of processed data.

The SI package delivers data that is ready to be used in the WRF system.

• The data adheres to the WRF IO API.
• The data has already been horizontally interpolated to the correct grid-point

staggering for each variable.
• The 3D data have already been vertically interpolated to the model's

computational surfaces.
• 3D meteorological data from the SI: u, v, theta, mixing ratio
• 3D surface data from the SI: soil temperature, soil moisture, soil liquid
• 2D meteorological data from the SI: total dry surface pressure minus ptop
• 2D static data: LOTS! terrain, land categories, soil info, map factors, Coriolis,

projection rotation, temporally interpolated monthly data
• 1D array of the vertical coordinate
• constants: domain size, date, lists of available optional fields, corner lat/lons

ARW Tutorial 4-5

Real Data Test Case: 2000 January 24/12 through 25/12

• A test data set is accessible from the WRF download page. Under the "WRF
Model Test Data (regenerated for V2.0 WRF)" list, select the January data. This is
a 74x61, 30-km domain centered over the eastern US.

• make sure you have successfully built the code, so that ./WRFV2/main/real.exe
and ./WRFV2/main/wrf.exe exist

• in the ./WRFV2/test/em_real directory, copy the namelist for the January case to
the default name (cp namelist.input.jan00 namelist.input)

• link the SI files (the wrf_real* files from the download) into the
./WRFV2/test/em_real directory

• for a single processor, to execute the real program, type real.exe (this should
take less than a minute for this small case with five time periods)

• after running the real.exe program, the files wrfinput_d01 and wrfbdy_d01 should
be in the directory, these will be directly used by the WRF model

• the wrf.exe program is executed next, this should take a few minutes (only a 12 h
forecast is requested in the namelist)

• the output file wrfout_d01:2000-01-24_12:00:00 should contain a 12 h forecast at
3 h intervals

ARW Tutorial 4-6

 ARW Tutorial 5-1

User’s Guide for Advanced Research WRF (ARW)
Modeling System Version 2

Chapter 5: WRF Model

Table of Contents

• Introduction
• Software Requirement
• Before You Start
• How to Compile WRF?
• How to Run WRF?

o Ideal Case
o Real Data Case
o Two-Way Nest
o One-Way Nest
o Moving Nest

• Physics and Diffusion Options
• Description of Namelist Variables
• List of Fields in WRF Output

Introduction

The WRF model is a fully compressible, nonhydrostatic model (with a hydrostatic
option). Its vertical coordinate is a terrain-following hydrostatic pressure
coordinate. The grid staggering is the Arakawa C-grid. The model uses the
Runge-Kutta 2nd and 3rd order time integration schemes, and 2nd to 6th order
advection schemes in both horizontal and vertical directions. It uses a time-split
small step for acoustic and gravity-wave modes. The dynamics conserves scalar
variables.

The WRF model code contains several initialization programs (ideal.exe and
real.exe; see Chapter 4), a numerical integration program (wrf.exe), and a
program to do one-way nesting (ndown.exe). The WRF model Version 2.1
supports a variety of capabilities. These include

• Real-data and idealized simulations
• Various lateral boundary condition options for both real-data and idealized

simulations
• Full physics options
• non-hydrostatic and hydrostatic (runtime option)
• One-way, two-way nesting and moving nest

 ARW Tutorial 5-2

• Applications ranging from meters to thousands of kilometers

Software requirement

• Fortran 90 or 95 and c compiler
• perl 5.04 or better
• If MPI and OpenMP compilation is desired, it requires MPI or OpenMP

libraries
• WRF I/O API supports netCDF, PHD5 and GriB 1 formats, hence one of

these libraries needs to be available on the computer where you compile
and run WRF

Before you start

Before you compile WRF code on your computer, check to see if you have
netCDF library installed. One of the supported WRF I/O is netCDF format. If
your netCDF is installed in some odd places (e.g. not in your /usr/local/), then you
need to know the paths to netCDF library, and to its include/ directory. You may
use the environment variable NETCDF to define where the path to netCDF library
is. To do so, type

setenv NETCDF /path-to-netcdf-library

If you don't have netCDF on your computer, you need to install it first. You may
download netCDF source code or pre-built binary. Installation instruction can be
found on the Unidata Web page at http://www.unidata.ucar.edu/.

Hint: for Linux users:

If you use PGI or Intel compiler on a Linux computer, make sure your netCDF is
installed using the same compiler. If your path does not point to PGI/Intel-
compiled netCDF, use NETCDF environment variable: e.g.,

setenv NETCDF /usr/local/netcdf-pgi

Hint: NCAR IBM users:

On NCAR's IBM computer (bluesky), netCDF library is installed for both 32-bit and 64-
bit memory usage. The default would be the 32-bit version. If you would like to use the
64-bit version, set the following environment variable before you start compilation:

setenv OBJECT_MODE 64

This will result in creating correct netCDF library and include link in netcdf_links/
directory under WRFV2/.

 ARW Tutorial 5-3

Hint: for nesting compile:

- On most platforms, this requires RSL/MPI, even if you only have one processor. Check
the options carefully and select those which support nesting.

How to compile WRF?

WRF source code tar file may be downloaded from
http://www.mmm.ucar.edu/wrf/download/get_source.html. Once you obtain the
tar file, gunzip, and untar the file, and this will create a WRFV2/ directory. This
contains:

Makefile Top-level makefile
README General information about WRF code
README_test_cases Explanation of the test cases
Registry/ Directory for WRF Registry file
arch/ Directory where compile options are

gathered
clean script to clean created files, executables
compile script for compiling WRF code
configure script to configure the configure.wrf file

for compile
dyn_em/ Directory for modules for dynamics in

current WRF core (Advanced Research
WRF core)

dyn_exp/ Directory for a 'toy' dynamic core
external/ Directory that contains external

packages, such as those for IO, time
keeping and MPI

frame/ Directory that contains modules for
WRF framework

inc/ Directory that contains include files
main/ Directory for main routines, such as

wrf.F, and all executables
phys/ Directory for all physics modules
run/ Directory where one may run WRF
share/ Directory that contains mostly modules

for WRF mediation layer and WRF I/O
test/ Directory that contains 7 test case

directories, may be used to run WRF
tools/ Directory that contains tools for

 ARW Tutorial 5-4

Go to WRFV2 (top) directory.

Type 'configure', and you will be given a list of choices for your computer. These
choices range from compiling for a single processor job, to using OpenMP
shared-memory or distributed-memory parallelization options for multiple
processors. Some options support nesting, others do not. So select the option
carefully. For example, the choices for a Linux computer looks like this:

checking for perl5... no

checking for perl... found /usr/bin/perl (perl)

Will use NETCDF in dir: /usr/local/netcdf-pig

PHDF5 not set in environment. Will configure WRF for use without.

Please select from among the following supported platforms.

1. PC Linux i486 i586 i686, PGI compiler (Single-threaded, no nesting)
2. PC Linux i486 i586 i686, PGI compiler (single threaded, allows
nesting using RSL without MPI)
3. PC Linux i486 i586 i686, PGI compiler SM-Parallel (OpenMP, no
nesting)
4. PC Linux i486 i586 i686, PGI compiler SM-Parallel (OpenMP, allows
nesting using RSL without MPI)
5. PC Linux i486 i586 i686, PGI compiler DM-Parallel (RSL, MPICH,
Allows nesting)
6. PC Linux i486 i586 i686, PGI compiler DM-Parallel (RSL_LITE, MPICH,
Allows nesting)
7. Intel xeon i686 ia32 Xeon Linux, ifort compiler (single-threaded, no
nesting)
8. Intel xeon i686 ia32 Xeon Linux, ifort compiler (single threaded,
allows nesting using RSL without MPI)
9. Intel xeon i686 ia32 Xeon Linux, ifort compiler (OpenMP)
10. Intel xeon i686 ia32 Xeon Linux, ifort compiler SM-Parallel
(OpenMP, allows nesting using RSL without MPI)
11. Intel xeon i686 ia32 Xeon Linux, ifort+icc compiler DM-Parallel
(RSL, MPICH, allows nesting)
12. Intel xeon i686 ia32 Xeon Linux, ifort+gcc compiler DM-Parallel
(RSL, MPICH, allows nesting)
13. PC Linux i486 i586 i686, PGI compiler, ESMF (Single-threaded, ESMF
coupling, no nesting)

Enter selection [1-13] :

Enter a number.

You will see a configure.wrf file. Edit compile options/paths, if necessary.

 ARW Tutorial 5-5

Hint: if you are interested in making nested runs, make sure you select an option
that supports nesting. In general, the options that are used for
MPI/RSL/RSL_LITE are also those which support nesting.

Hint: On some computers (e.g. some Intel machines), it is necessary to set the following
environment variable before one compiles:

setenv WRF_EM_CORE 1

Type 'compile', and it will show the choices:

 Usage:

 compile wrf compile wrf in run dir (Note,
no real.exe, ndown.exe or ideal.exe generated)

 test cases (see README_test_cases for details):

 compile em_b_wave
 compile em_grav2d_x
 compile em_hill2d_x
 compile em_quarter_ss
 compile em_real
 compile em_squall2d_x
 compile em_squall2d_y
 compile -h help message

where em stands for the Advanced Research WRF dynamic solver (which
currently is the 'Eulerian mass-coordinate' solver). When you switch from one test
case to another, you must type one of the above to recompile. The recompile is
necessary for the initialization programs (i.e. real.exe, and ideal.exe - there is a
different ideal.exe for each of the idealized cases), while wrf.exe is the same for
all test cases.

If you want to clean directories of all object files and executables, type 'clean'.

Type 'clean -a' to remove all built files, including configure.wrf. This is
recommended if you make any mistake during the process, or if you have edited
the Registry.EM file.

a. Idealized case

Type 'compile case_name' to compile. Suppose you would like to run the 2-
dimensional squall case, type

compile em_squall2d_x, or compile em_squall2d_x >&
compile.log

 ARW Tutorial 5-6

After successful compilation, you should have two executables created in the
main/ directory: ideal.exe and wrf.exe. These two executables will be linked to
the corresponding test/ or run/ directories. cd to those directory to run the model.

b. Real-data case

Compile WRF model after 'configure', type

compile em_real, or compile em_real >& compile.log

When the compile is successful, it will create three executables in the main/ directory:
ndown.exe, real.exe and wrf.exe.

real.exe : for WRF initialization of real data cases
ndown.exe : used for one-way nesting
wrf.exe : WRF model integration

Like in the idealized cases, these executables will be linked to test/em_real or run/
directories. cd to one of these two directory to run the real-data case.

How to run WRF?

After successful compilation, it is time to run the model. You can do so by either
cd to the run/ directory, or the test/case_name directory. In either case, you
should see executables, ideal.exe or real.exe, and wrf.exe, linked files (mostly for
real-data cases), and one or more namelist.input files in the directory.

Idealized, real data, two-way nested, and one-way nested runs are explained on
this page. Read on.

a. Idealized case

Say you choose to compile the test case em_squall2d_x, now type 'cd
test/em_squall2d_x' or 'cd run'.

Edit namelist.input file (see README.namelist in WRFV2/run/ directory or its
Web version) to change length of integration, frequency of output, size of domain,
timestep, physics options, and other parameters.

If you see a script in the test case directory, called run_me_first.csh, run this one
first by typing:

run_me_first.csh

 ARW Tutorial 5-7

This links some data files that you might need to run the case.

To run the initialization program, type

ideal.exe

This will generate wrfinput_d01 file in the same directory. All idealized cases do
require lateral boundary file because of the boundary condition choices they use,
such as the periodic boundary condition option.

Note:

- ideal.exe cannot generally be run in parallel. For parallel compiles,
run this on a single processor.
- The exception is the quarter_ss case, which can now be run in MPI.

To run the model, type

wrf.exe

or variations such as

wrf.exe >& wrf.out &

Note:

- Two-dimensional ideal cases cannot be run in parallel. OpenMP is
ok.

- The execution command may be different for MPI runs on different
machines, e.g. mpirun.

After successful completion, you should see wrfout_d01_0001-01-01* and
wrfrst* files, depending on how one specifies the namelist variables for output.

b. Real-data case

Type 'cd test/em_real' or 'cd run', and this is where you are going to run both the
WRF initialization program, real.exe, and WRF model, wrf.exe.

Running a real-data case requires successfully running the WRF Standard
Initialization program. Make sure wrf_real_input_em.* files from the Standard
Initialization are in this directory (you may link the files to this directory).

NOTE: you must use the SI version 2.0 and above, to prepare input for V2
WRF!

 ARW Tutorial 5-8

Edit namelist.input for dates, and domain size. Also edit time step, output
options, and physics options.

Type 'real.exe' instead of ideal.exe to produce wrfinput_d01 and wrfbdy_d01
files. In real data case, both files are required.

Run WRF model by typing 'wrf.exe'.

A successful run should produce one or several output files named like
wrfout_d01_yyyy-mm-dd_hh:mm:ss. For example, if you start the model at 1200
UTC, January 24 2000, then your first output file should have the name:

wrfout_d01_2000-01-24_12:00:00

It is always good to check the times written to the output file by typing:

ncdump -v Times wrfout_d01_2000-01-24_12:00:00

You may have other wrfout files depending on the namelist options (how often
you split the output files and so on using namelist option frames_per_outfile).
You may also create restart files if you have restart frequency (restart_interval in
the namelist.input file) set within your total integration length. The restart file
should have names like

wrfrst_d01_yyyy-mm-dd_hh:mm:ss

For DM (distributed memory) parallel systems, some form of mpirun command
will be needed here. For example, on a Linux cluster, the command to run MPI
code and using 4 processors may look like:

mpirun -np 4 real.exe
mpirun -np 4 wrf.exe

On IBM, the command is

poe real.exe
poe wrf.exe

in a batch job, and

poe real.exe -rmpool 1 -procs 4
poe wrf.exe -rmpool 1 -procs 4

for interactive runs.

 ARW Tutorial 5-9

How to Make a Two-way Nested Run?

WRF V2 supports a two-way nest option, in both 3-D idealized cases (quarter_ss
and b_wave) and real data cases. The model can handle multiple domains at the
same nest level (no overlapping nest), or multiple nest levels (telescoping).
Moving nest option is also available since V2.0.3.1.

Most of options to start a nest run are handled through the namelist. All variables
in the namelist.input file that have multiple columns of entries need to be edited
with caution. The following are the key namelist variables to modify:

start_ and end_year/month/day/minute/second: these control the nest start and
end times

input_from_file: whether a nest requires an input file (e.g. wrfinput_d02). This is
typically an option for real data case.

fine_input_stream: which fields from the nest input file are used in nest
initialization. The fields to be used are defined in the Registry.EM. Typically they
include static fields (such as terrain, landuse), and masked surface fields (such as
skin temp, soil moisture and temperature).

max_dom: setting this to a number > 1 will invoke nesting. For example, if you
want to have one coarse domain and one nest, set this variable to 2.

grid_id: domain identifier will be used in the wrfout naming convention.

parent_id: use the grid_id to define the parent_id number for a nest.

i_parent_start/j_parent_start: lower-left corner starting indices of the nest
domain in its parent domain. You should find these numbers in your SI's
$MOAD_DATAROOT/static/wrfsi.nl namelist file, and look for values in the
second (and third, and so on) column of DOMAIN_ORIGIN_LLI and
DOMAIN_ORIGIN_LLJ.

parent_grid_ratio: integer parent-to-nest domain grid size ratio. If feedback is off,
then this ratio can be even or odd. If feedback is on, then this ratio has to be odd.

parent_time_step_ratio: time ratio for the coarse and nest domains may be
different from the parent_grid_ratio. For example, you may run a coarse domain
at 30 km, and a nest at 10 km, the parent_grid_ratio in this case is 3. But you do
not have to use 180 sec for the coarse domain and 60 for the nest domain. You
may use, for example, 45 sec or 90 sec for the nest domain by setting this variable
to 4 or 2.

 ARW Tutorial 5-10

feedback: this option takes the values of prognostic variables in the nest and
overwrites the values in the coarse domain at the coincident points. This is the
reason currently that it requires odd parent_grid_ratio with this option.

smooth_option: this a smoothing option for the parent domain if feedback is on.
Three options are available: 0 - no smoothing; 1 - 1-2-1 smoothing; 2 -
smoothing-desmoothing. (There was a bug for this option in pre-V2.1 code, and it
is fixed.)

3-D Idealized Cases

For 3-D idealized cases, no additional input files are required. The key here is the
specification of the namelist.input file. What the model does is to interpolate all
variables required in the nest from the coarse domain fields. Set

input_from_file = F, F

Real Data Cases

For real-data cases, three input options are supported. The first one is similar to
running the idealized cases. That is to have all fields for the nest interpolated from
the coarse domain (namelist variable input_from_file set to F for each domain).
The disadvantage of this option is obvious, one will not benefit from the higher
resolution static fields (such as terrain, landuse, and so on).

The second option is to set input_from_file = T for each domain, which means
that the nest will have a nested wrfinput file to read in (similar to MM5 nest
option IOVERW = 1). The limitation of this option is that this only allows the
nest to start at hour 0 of the coarse domain run.

The third option is in addition to setting input_from_file = T for each domain, also
set fine_input_stream = 2 for each domain. Why a value of 2? This is based on
current Registry setting which designates certain fields to be read in from
auxiliary input unit 2. This option allows the nest initialization to use interpolated
3-D meterological fields, static fields and masked, time-varying surface fields
from nest wrfinput. It hence allows a nest to start at a later time than hour 0, and
use higher resolution input. Setting fine_input_stream = 0 is equivalent to the
second option. This option is introduced in V2.1.

The way options 2 and 3 work is a bit cumbersome at this time. So please bear
with us. It involves

- Running SI requesting one or more nest domains
- Running real.exe multiple times, once for each nest domain to produce
wrfinput_d0n files (e.g. wrfinput_d02), and once for domain 1 like one

 ARW Tutorial 5-11

normally does to create wrfbdy_d01 and wrfinput_d01
- Running WRF once

To prepare for the nested run, first follow the instruction in program WRF SI to
create nest domain files. In addition to the files available for domain 1
(wrf_real_input_em.d01.yyyy-mm-dd_hh:mm:ss for all time periods), you should
have a file from SI that is named wrf_real_input_em.d02.yyyy-mm-dd_hh:mm:ss,
and this should be for the first time period of your model run. Say you have
created SI output for a model run that starts at 1200 UTC Jan 24, 2000, using 6
hourly data, you should then have these files from SI:

wrf_real_input_em.d01.2000-01-24_12:00:00
wrf_real_input_em.d01.2000-01-24_18:00:00
wrf_real_input_em.d01.2000-01-25_00:00:00
wrf_real_input_em.d01.2000-01-25_06:00:00
wrf_real_input_em.d01.2000-01-25_12:00:00

If you use the nested option in SI, you should have one more file:

wrf_real_input_em.d02.2000-01-24_12:00:00

Once you have these files, do the following:

- Find out the dimensions of your nested domain. You can either make a note
while you are running SI, or type

ncdump -h wrf_real_input_em.d02.2000-01-24_12:00:00

the grid dimensions can be found near the end of the dump: WEST-
EAST_GRID_DIMENSION and SOUTH-NORTH_GRID_DIMENSION

- Use these dimension to set up the first namelist file. Note that you only need
to set the namelist to run the first time period for domain 2. Only the first
column matters in this case.
- To run real.exe, you must rename the domain 2 SI output file as if it is for
domain 1. In the above case, type

mv wrf_real_input_em.d02.2000-01-
24_12:00:00 \
wrf_real_input_em.d01.2000-01-
24_12:00:00

Make sure you don't overwrite the real domain 1 input file for this time period. So
do this first for the nest domain. Move or link file(s) for the nest to your run
directory first.

After running real.exe, rename wrfinput_d01 to wrfinput_d02

 ARW Tutorial 5-12

Save the namelist edited for this domain.

- Re-edit the namelist for the coarse domain. Again, only the first column
matters.
- Run real.exe for all domain 1 input files from SI, and create
wrfinput_d01 and wrfbdy_d01 files.
- Edit the namelist again. This time you must pay attention to all the multiple
column entries. Don't forget to set max_dom = the number of your nested
domains, including the coarse domain.
- Run wrf.exe as usual with namelist modified

The following figure summarizes the data flow in the two-input, two-way nested
run.

 ARW Tutorial 5-13

 ARW Tutorial 5-14

How to Make a One-way Nested Run?

WRF supports one-way nested option. One-way nesting is defined as a finer grid
resolution run made as a subsequent run after the coarser grid resolution run and
driven by coarse grid output as initial and lateral boundary conditions, together
with input from higher resolution terrestrial fields (e.g. terrain, landuse, etc.)

When one-way nesting is used, the coarse-to-fine grid ratio is only restricted to an
integer. An integer less than 5 is recommended.

It takes several steps to make a one-way nested run. It involves these steps:

1) Make a coarse grid run
2) Make temporary fine grid initial condition (only a single time period is
required)
3) Run program ndown, with coarse grid WRF model output, and fine grid
input to generate fine grid initial and boundary conditions
4) Make the fine grid run

To compile, choose an option that supports nesting.

Step 1: Make a coarse grid run

This is no different than any of the single domain WRF run as described above.

Step 2: Make a temporary fine grid initial condition file

The purpose of this step is to ingest higher resolution terrestrial fields and
corresponding land-water masked soil fields.

Before doing this step, one would have run SI and requested one coarse and one
nest domain, and for the one time period one wants to start the one-way nested
run. This should generate an SI output for the nested domain (domain 2) named
wrf_real_input_em.d02.*.

- Rename wrf_real_input_em.d02.* to
wrf_real_input_em.d01.*. (Move the original domain 1 SI output
files to a different place before you do this.)
- Edit the namelist.input file for this domain (pay attention to column 1 only,)
and edit in the correct start time, grid dimensions and physics options.
- Run real.exe for this domain and this will produce a wrfinput_d01 file.
- Rename this wrfinput_d01 file as if it comes from SI again:
wrf_real_input_em.d02.*. Make sure the date string is correctly
specified in the file name.

 ARW Tutorial 5-15

Step 3: Make the final fine grid initial and boundary condition files

- Edit namelist.input again, and this time one needs to edit two columns: one
for dimensions of the coarse grid, and one for the fine grid. Note that the
boundary condition frequencey (namelist variable interval_seconds) is the
time in seconds between the coarse grid output times.
- Run ndown.exe, with inputs from the coarse grid wrfout files, and
wrf_real_input_em.d02.* file generated from Step 2 above. This will
produce wrfinput_d02 and wrfbdy_d02 files.

Note that one may run program ndown in mpi - if it is compiled so. For example,

mpirun -np 4 ndown.exe

Step 4: Make the fine grid WRF run

- Rename wrfinput_d02 and wrfbdy_d02 to wrfinput_d01 and
wrfbdy_d01, respectively.
- Edit namelist.input one more time, and it is now for the fine grid only.
- Run WRF for this grid.

The following figure summarizes the data flow for a one-way nested run.

 ARW Tutorial 5-16

 ARW Tutorial 5-17

How to Make a Moving-Nest Run?

The moving nest option is supported in the current WRF. Two types of moving
tests are allowed. In the first option, a user needs to specify the nest movement in
the namelist. The second option is to allow the nest to move automatically based
on an automatic vortex-following algorithm. This option is designed to follow the
movement of a tropical cyclone.

To make the specified moving nest runs, one first needs to compile the code with
-DMOVE_NESTS added to ARCHFLAGS in the configure.wrf file. To run the
model, only the coarse grid input files are required. In this option, the nest
initialization is defined from the coarse grid data - no nest input is used. In
addition to the namelist options applied to a nested run, the following needs to be
added to namelist section &domains:

num_moves: the total number of moves one can make in a model run. A move of
any domain counts against this total. The maximum is currently set to 50, but it
can be changed by change MAX_MOVES in
frame/module_driver_constants.F.

move_id: a list of nest IDs, one per move, indicating which domain is to move
for a given move.

move_interval: the number of minutes since the beginning of the run that a move
is supposed to occur. The nest will move on the next time step after the specified
instant of model time has passed.

move_cd_x, move_cd_y: distance in number of grid points and direction of the
nest move (positive numbers indicating moving toward east and north, while
negative numbers indicating moving toward west and south).

To make the automatic moving nest runs, two compiler flags are needed in
ARCHFLAGS: -DMOVE_NESTS and -DVORTEX_CENTER. (Note that this
compile would only support auto-moving nest runs, and will not support the
specified moving nest at the same time. One must recompile with only –
DMOVE_NESTS to do the specified moving nest runs.) Again, no nest input is
needed. If one wants to use values other than the default ones, add and edit the
following namelist variables in &domains section:

vortex_interval: how often the vortex position is calculated in minutes (default is
15 minutes).

max_vortex_speed: used with vortex_interval to compute the radius of search for
the new vortex center position.

 ARW Tutorial 5-18

corral_dist: the distance in number of coarse grid cells that the moving nest is
allowed to come near the coarse grid boundary (default is 8).

In both types of moving nest runs, the initial location of the nest is specified
through i_parent_start and j_parent_start in the namelist.input file.

Both moving nest options are considered experimental at this time.

Physics and Diffusion Options

Physics Options

WRF offers multiple physics options that can be combined in any way. The
options typically range from simple and efficient to sophisticated and more
computationally costly, and from newly developed schemes to well tried schemes
such as those in current operational models.

The choices vary with each major WRF release, but here we will outline those
available in WRF Version 2.0.

1. Microphysics (mp_physics)

a. Kessler scheme: A warm-rain (i.e. no ice) scheme used commonly in
idealized cloud modeling studies.
b. Lin et al. scheme: A sophisticated scheme that has ice, snow and graupel
processes, suitable for real-data high-resolution simulations.
c. WRF Single-Moment 3-class scheme: A simple efficient scheme with ice
and snow processes suitable for mesoscale grid sizes.
d. WRF Single-Moment 5-class scheme: A slightly more sophisticated version
of (c) that allows for mixed-phase processes and super-cooled water.
e. Eta microphysics: The operational microphysics in NCEP models. A simple
efficient scheme with diagnostic mixed-phase processes.
f. WRF Single-Moment 6-class scheme: A scheme with ice, snow and graupel
processes suitable for high-resolution simulations.
g. Thompson et al. scheme: A new scheme related to Reisner2 with ice, snow
and graupel processes suitable for high-resolution simulations.
h. NCEP 3-class: An older version of (c)
i. NCEP 5-class: An older version of (d)

 ARW Tutorial 5-19

2.1 Longwave Radiation (ra_lw_physics)

a. RRTM scheme: Rapid Radiative Transfer Model. An accurate scheme using
look-up tables for efficiency. Accounts for multiple bands, trace gases, and
microphysics species.
b. GFDL scheme: Eta operational radiation scheme. An older multi-band
scheme with carbon dioxide, ozone and microphysics effects.

2.2 Shortwave Radiation (ra_sw_physics)

a. Dudhia scheme: Simple downward integration allowing efficiently for
clouds and clear-sky absorption and scattering.
b. Goddard shortwave: Two-stream multi-band scheme with ozone from
climatology and cloud effects.
c. GFDL shortwave: Eta operational scheme. Two-stream multi-band scheme
with ozone from climatology and cloud effects.

3.1 Surface Layer (sf_sfclay_physics)

a. MM5 similarity: Based on Monin-Obukhov with Carslon-Boland viscous
sub-layer and standard similarity functions from look-up tables.
b. Eta similarity: Used in Eta model. Based on Monin-Obukhov with
Zilitinkevich thermal roughness length and standard similarity functions from
look-up tables.

3.2 Land Surface (sf_surface_physics)

a. 5-layer thermal diffusion: Soil temperature only scheme, using five layers.
b. Noah Land Surface Model: Unified NCEP/NCAR/AFWA scheme with soil
temperature and moisture in four layers, fractional snow cover and frozen soil
physics.
c. RUC Land Surface Model: RUC operational scheme with soil temperature
and moisture in six layers, multi-layer snow and frozen soil physics.

4. Planetary Boundary layer (bl_pbl_physics)

a. Yonsei University scheme: Non-local-K scheme with explicit entrainment
layer and parabolic K profile in unstable mixed layer.
b. Mellor-Yamada-Janjic scheme: Eta operational scheme. One-dimensional
prognostic turbulent kinetic energy scheme with local vertical mixing.
c. MRF scheme: Older version of (a) with implicit treatment of entrainment
layer as part of non-local-K mixed layer

 ARW Tutorial 5-20

5. Cumulus Parameterization (cu_physics)

a. Kain-Fritsch scheme: Deep and shallow sub-grid scheme using a mass flux
approach with downdrafts and CAPE removal time scale.
b. Betts-Miller-Janjic scheme. Operational Eta scheme. Column moist
adjustment scheme relaxing towards a well-mixed profile.
c. Grell-Devenyi ensemble scheme: Multi-closure, multi-parameter, ensemble
method with typically 144 sub-grid members.

Diffusion and Damping Options

Diffusion in WRF is categorized under two parameters, the diffusion option and
the K option. The diffusion option selects how the derivatives used in diffusion
are calculated, and the K option selects how the K coefficients are calculated.
Note that when a PBL option is selected, vertical diffusion is done by the PBL
scheme, and not by the diffusion scheme.

1.1 Diffusion Option (diff_opt)
a. Simple diffusion: Gradients are simply taken along coordinate surfaces.
b. Full diffusion: Gradients use full metric terms to more accurately compute
horizontal gradients in sloped coordinates.

1.2 K Option (km_opt)

Note that when using a PBL scheme, only options (a) and (d) below make
sense, because (b) and (c) are designed for 3d diffusion.
a. Constant: K is specified by namelist values for horizontal and vertical
diffusion.
b. 3d TKE: A prognostic equation for turbulent kinetic energy is used, and K
is based on TKE.
c. 3d Deformation: K is diagnosed from 3d deformation and stability
following a Smagorinsky approach.
d. 2d Deformation: K for horizontal diffusion is diagnosed from just
horizontal deformation. The vertical diffusion is assumed to be done by the
PBL scheme.

2. Damping Options
These are independently activated choices.

a. Upper Damping: Either a layer of increased diffusion or a Rayleigh
relaxation layer can be added near the model top to control reflection from the
upper boundary.

 ARW Tutorial 5-21

b. w-Damping: For operational robustness, vertical motion can be damped to
prevent the model from becoming unstable with locally large vertical
velocities. This only affects strong updraft cores, so has very little impact on
results otherwise.
c. Divergence Damping: Controls horizontally propagating sound waves.
d. External Mode Damping: Controls upper-surface (external) waves.
e. Time Off-centering (epssm): Controls vertically propagating sound waves.

Description of Namelist Variables
The following is a description of namelist variables. The variables that are function
of nest are indicated by (max_dom) following the variable.

Variable Names Value Description
&time_control Time control
run_days 1 run time in days
run_hours 0 run time in hours

Note: if it is more than 1 day, one
may use both run_days and
run_hours or just run_hours. e.g. if
the total run length is 36 hrs, you
may set run_days = 1, and
run_hours = 12, or run_days = 0,
and run_hours 36

run_minutes 0 run time in minutes
run_seconds 0 run time in seconds
start_year (max_dom) 2001 four digit year of starting time
start_month (max_dom) 06 two digit month of starting time
start_day (max_dom) 11 two digit day of starting time
start_hour (max_dom) 12 two digit hour of starting time
start_minute (max_dom) 00 two digit minute of starting time
start_second (max_dom) 00 two digit second of starting time

Note: the start time is used to name
the first wrfout file. It also controls
the start time for nest domains, and
the time to restart

end_year (max_dom) 2001 four digit year of ending time
end_month (max_dom) 06 two digit month of ending time
end_day (max_dom) 12 two digit day of ending time
end_hour (max_dom) 12 two digit hour of ending time

 ARW Tutorial 5-22

end_minute (max_dom) 00 two digit minute of ending time
end_second (max_dom) 00 two digit second of ending time

Note all end times also control when
the nest domain integrations end All
start and end times are used by
real.exe. One may use either
run_days/run_hours etc. or
end_year/month/day/hour etc. to
control the length of model
integration. But run_days/run_hours
takes precedence over the end times.
Program real.exe uses start and end
times only.

interval_seconds 10800 time interval between incoming real
data, which will be the interval
between the lateral boundary
condition file (for real only)

input_from_file
(max_dom)

T (logical) logical; whether nested run will
have input files for domains other
than 1

fine_input_stream
(max_dom)

 selected fields from nest input

 0 all fields from nest input are used
 2 only nest input specified from input

stream 2 (defined in the Registry)
are used

history_interval
(max_dom)

60 history output file interval in
minutes (integer only)

history_interval_mo
(max_dom)

1 history output file interval in months
(integer); used as alternative to
history_interval

history_interval_d
(max_dom)

1 history output file interval in days
(integer); used as alternative to
history_interval

history_interval_h
(max_dom)

1 history output file interval in hours
(integer); used as alternative to
history_interval

history_interval_m
(max_dom)

1 history output file interval in
minutes (integer); used as
alternative to history_interval and is
equivalent to history_interval

history_interval_s
(max_dom)

1 history output file interval in
seconds (integer); used as
alternative to history_interval

 ARW Tutorial 5-23

frames_per_outfile
(max_dom)

1 output times per history output file,
used to split output files into smaller
pieces

restart F (logical) whether this run is a restart run
restart_interval 1440 restart output file interval in minutes
io_form_history 2 2 = netCDF; 102 = split netCDF

files one per processor (no
supported post-processing software
for split files)

io_form_restart 2 2 = netCDF; 102 = split netCDF
files one per processor (must restart
with the same number of
processors)

io_form_input 2 2 = netCDF
io_form_boundary 2 netCDF format
 4 PHDF5 format (no supported post-

processing software)
 5 GRIB1 format (no supported post-

processing software)
 1 binary format (no supported post-

processing software)
debug_level 0 50,100,200,300 values give

increasing prints
auxhist2_outname "rainfall" file name for extra output; if not

specified, auxhist2_d_ will be used
also note that to write variables in
output other than the history file
requires Registry.EM file change

auxhist2_interval 10 interval in minutes
io_form_auxhist2 2 output in netCDF
write_input t write input-formatted data as output

for 3DVAR apllication
inputout_interval 180 interval in minutes when writing

input-formatted data
input_outname wrf_3dvar_input Output file name from 3DVAR
inputout_begin_y 0 beginning year to write 3DVAR

date
inputout_begin_mo 0 beginning month to write 3DVAR

data
inputout_begin_d 0 beginning day to write 3DVAR data
inputout_begin_h 3 beginning hour to write 3DVAR

data

 ARW Tutorial 5-24

inputout_begin_s 0 beginning second to write 3DVAR
data

inputout_end_y 0 ending year to write 3DVAR data
inputout_end_mo 0 ending month to write 3DVAR data
inputout_end_d 0 ending day to write 3DVAR data
inputout_end_h 12 ending hour to write 3DVAR data
inputout_end_s 0 ending second to write 3DVAR

data.
 The above example

shows that the input-
formatted data are
output starting from
hour 3 to hour 12 in
180 min interval.

&domains domain definition: dimensions,

nesting parameters
time_step 60 time step for integration in integer

seconds (recommended 6*dx in km
for a typical real-data case

time_step_fract_num 0 numerator for fractional time step
time_step_fract_den 1 denominator for fractional time step

Example, if you want to use 60.3
sec as your time step, set time_step
= 60, time_step_fract_num = 3, and
time_step_fract_den = 10

max_dom 1 number of domains - set it to > 1 if
it is a nested run

s_we (max_dom) 1 start index in x (west-east) direction
(leave as is)

e_we (max_dom) 91 end index in x (west-east) direction
(staggered dimension)

s_sn (max_dom) 1 start index in y (south-north)
direction (leave as is)

e_sn (max_dom) 82 end index in y (south-north)
direction (staggered dimension)

s_vert (max_dom) 1 start index in z (vertical) direction
(leave as is)

e_vert (max_dom) 28 end index in z (vertical) direction
(staggered dimension - this refers to
full levels). Most varialbes are on
unstaggered levels. Vertical

 ARW Tutorial 5-25

dimensions need to be the same for
all nests.

dx (max_dom) 10000 grid length in x direction, unit in
meters

dy (max_dom) 10000 grid length in y direction, unit in
meters

ztop (max_dom) 19000. used in mass model for idealized
cases

grid_id (max_dom) 1 domain identifier
parent_id (max_dom) 0 id of the parent domain
i_parent_start
(max_dom)

0 starting LLC I-indices from the
parent domain

j_parent_start
(max_dom)

0 starting LLC J-indices from the
parent domain

parent_grid_ratio
(max_dom)

1 parent-to-nest domain grid size
ratio: for real-data cases the ratio
has to be odd; for idealized cases,
the ratio can be even if feedback is
set to 0.

parent_time_step_ratio
(max_dom)

1 parent-to-nest time step ratio; it can
be different from the
parent_grid_ratio

feedback 1 feedback from nest to its parent
domain; 0 = no feedback

smooth_option 0 smoothing option for parent domain,
used only with feedback option on.
0: no smoothing; 1: 1-2-1
smoothing; 2: smoothing-
desmoothing

 Namelist variables for controling
the prototype moving nest:
Note that moving nest needs to be
activated at the compile time by
adding -DMOVE_NESTS to the
ARCHFLAGS. The maximum
number of moves, max_moves, is
set to be 50, but can be modified in
source code file
frame/module_driver_constants.F

num_moves 2, total number of moves
move_id 2,2, a list of nest domain id's, one per

move
move_interval 60,120, time in minutes since the start of

 ARW Tutorial 5-26

this domain
move_cd_x 1,-1, the number of parent domain grid

cells to move in i direction
move_cd_y -1,1, the number of parent domain grid

cells to move in j direction (positive
in increasing i/j directions, and
negative in decreasing i/j directions.
The limitation now is to move only
1 grid cell at each move.

vortex_interval 15 how often the new vortex position is
computed

max_vortex_speed 40 used to compute the search radius
for the new vortex position

corral_dist 8 how many coarse grid cells the
moving nest is allowed to get near
the coarse grid boundary

&physics Physics options
chem_opt 0 chemistry option - not yet available
mp_physics (max_dom) microphysics option
 0 no microphysics
 1 Kessler scheme
 2 Lin et al. scheme
 3 WSM 3-class simple ice scheme
 4 WSM 5-class scheme
 5 Ferrier (new Eta) microphysics
 6 WSM 6-class graupel scheme
 8 Thompson et al. graupel scheme
 98 NCEP 3-class simple ice scheme (to

be removed)
 99 NCEP 5-class scheme (to be

removed)
mp_zero_out For non-zero mp_physics options, to

keep Qv >= 0, and to set the other
moisture fields < a threshold value
to zero

 0 no action taken, no adjustment to
any moist field

 1 except for Qv, all other moist arrays
are set to zero if they fall below a
critical value

 ARW Tutorial 5-27

 2 Qv is >= 0, all other moist arrays are
set to zero if they fall below a
critical value

mp_zero_out_thresh 1.e-8 critical value for moisture variable
threshold, below which moist arrays
(except for Qv) are set to zero (unit:
kg/kg)

ra_lw_physics
(max_dom)

 longwave radiation option

 0 no longwave radiation
 1 rrtm scheme
 99 GFDL (Eta) longwave (semi-

supported)
ra_sw_physics
(max_dom)

 shortwave radiation option

 0 no shortwave radiation
 1 Dudhia scheme
 2 Goddard short wave
 99 GFDL (Eta) longwave (semi-

supported)

radt (max_dom) 30 minutes between radiation physics

calls. Recommend 1 minute per km
of dx (e.g. 10 for 10 km grid)

sf_sfclay_physics
(max_dom)

 surface-layer option (old
bl_sfclay_physics option)

 0 no surface-layer
 1 Monin-Obukhov scheme
 2 Monin-Obukhov (Janjic Eta)

scheme
sf_surface_physics
(max_dom)

 land-surface option (old
bl_surface_physics option)

 0 no surface temp prediction
 1 thermal diffusion scheme
 2 Noah land-surface model
 3 RUC land-surface model
bl_pbl_physics
(max_dom)

 boundary-layer option

 0 no boundary-layer
 1 YSU scheme
 2 Mellor-Yamada-Janjic (Eta) TKE

scheme

 ARW Tutorial 5-28

 99 MRF scheme (to be removed)
bldt (max_dom) 0 minutes between boundary-layer

physics calls
cu_physics (max_dom) cumulus option
 0 no cumulus
 1 Kain-Fritsch (new Eta) scheme
 2 Betts-Miller-Janjic scheme
 3 Grell-Devenyi ensemble scheme
 99 previous Kain-Fritsch scheme
cudt 0 minutes between cumulus physics

calls
isfflx 1 heat and moisture fluxes from the

surface (only works for
sf_sfclay_physics = 1) 1 = with
fluxes from the surface 0 = no flux
from the surface

ifsnow 0 snow-cover effects (only works for
sf_surface_physics = 1) 1 = with
snow-cover effect 0 = without
snow-cover effect

icloud 1 cloud effect to the optical depth in
radiation (only works for
ra_sw_physics = 1 and
ra_lw_physics = 1) 1 = with cloud
effect 0 = without cloud effect

surface_input_source 1,2 where landuse and soil category
data come from: 1 = SI/gridgen 2 =
GRIB data from another model
(only possible

 (VEGCAT/SOILCAT are in
wrf_real_input_em files from SI)

num_soil_layers number of soil layers in land surface
model

 5 thermal diffusion scheme
 4 Noah landsurface model
 6 RUC landsurface model
maxiens 1 Grell-Devenyi only
maxens 3 G-D only
maxens2 3 G-D only
maxens3 16 G-D only
ensdim 144 G-D only These are recommended

 ARW Tutorial 5-29

numbers. If you would like to use
any other number, consult the code,
know what you are doing.

seaice_threshold 271. tsk < seaice_threshold, if water
point and 5-layer slab scheme, set to
land point and permanent ice; if
water point and Noah scheme, set to
land point, permanent ice, set temps
from 3 m to surface, and set smois
and sh2o

sst_update option to use time-varying SST
during a model simulation

 0 no SST update
 1 real.exe will create

wrflowinput_d01 file at the same
time interval as the available input
data. To use it in wrf.exe, add
auxinput_inname =
"wrflowinp_d01",
auxinput5_interval, and
auxinput_end_h in namelist section
&time_control

&dynamics Diffusion, damping options,

advection options
dyn_opt 2 dynamical core option: advanced

research WRF core (Eulerian mass)
rk_ord time-integration scheme option:
 2 Runge-Kutta 2nd order
 3 Runge-Kutta 3rd order

(recommended)
diff_opt turbulence and mixing option:
 0 = no turbulence or explicit spatial

numerical filters (km_opt IS
IGNORED).

 1 evaluates 2nd order diffusion term
on coordinate surfaces. uses kvdif
for vertical diff unless PBL option is
used. may be used with km_opt = 1
and 4. (= 1, recommended for real-
data case when grid distance < 10
km)

 2 evaluates mixing terms in physical

 ARW Tutorial 5-30

space (stress form) (x,y,z).
turbulence parameterization is
chosen by specifying km_opt.

km_opt eddy coefficient option
 1 constant (use khdif kvdif)
 2 1.5 order TKE closure (3D)
 3 Smagorinsky first order closure

(3D) Note: option 2 and 3 are not
recommended for DX > 2 km

 4 horizontal Smagorinsky first order
closure (recommended for real-data
case when grid distance < 10 km)

damp_opt upper level damping flag (do not
use for real-data cases until further
notice)

 0 without damping
 1 with diffusive damping (dampcoef

nondimensional ~ 0.01 - 0.1)
 2 with Rayleigh damping (dampcoef

inverse time scale [1/s], e.g. 0.003)
w_damping vertical velocity damping flag (for

operational use)
 0 without damping
 1 with damping
zdamp (max_dom) 5000 damping depth (m) from model top
dampcoef (max_dom) 0. damping coefficient (dampcoef <=

0.2, for 3D cases, set it <=0.1)
base_temp 290. real-data, em ONLY, base sea-level

temp (K)
base_pres 100000. real-data, em ONLY, base sea-level

pressure (Pa), DO NOT CHANGE
base_lapse 50. real-data, em ONLY, lapse rate (K),

DO NOT CHANGE
khdif (max_dom) 0 horizontal diffusion constant

(m^2/s)
kvdif (max_dom) 0 vertical diffusion constant (m^2/s)
smdiv (max_dom) 0.1 divergence damping (0.1 is typical)
emdiv (max_dom) 0.01 external-mode filter coef for mass

coordinate model (0.01 is typical for
real-data cases)

epssm (max_dom) .1 time off-centering for vertical sound

 ARW Tutorial 5-31

waves
non_hydrostatic
(max_dom)

.true. whether running the model in
hydrostatic or non-hydro mode

pert_coriolis
(max_dom)

.false. Coriolis only acts on wind
perturbation (idealized)

h_mom_adv_order
(max_dom)

5 horizontal momentum advection
order (5=5th, etc.)

v_mom_adv_order
(max_dom)

3 vertical momentum advection order

h_sca_adv_order
(max_dom)

5 horizontal scalar advection order

v_sca_adv_order
(max_dom)

3 vertical scalar advection order

time_step_sound
(max_dom)

4 number of sound steps per time-step
(if using a time_step much larger
than 6*dx (in km), increase number
of sound steps)

&bc_control boundary condition control
spec_bdy_width 5 total number of rows for specified

boundary value nudging
spec_zone 1 number of points in specified zone

(spec b.c. option)
relax_zone 4 number of points in relaxation zone

(spec b.c. option)
specified (max_dom) .false. specified boundary conditions (only

applies to domain 1)
 The above 4

namelists are used
for real-data runs
only

periodic_x (max_dom) .false. periodic boundary conditions in x
direction

symmetric_xs (max_dom) .false. symmetric boundary conditions at x
start (west)

symmetric_xe (max_dom) .false. symmetric boundary conditions at x
end (east)

open_xs (max_dom) .false. open boundary conditions at x start
(west)

open_xe (max_dom) .false. open boundary conditions at x end
(east)

periodic_y (max_dom) .false. periodic boundary conditions in y

 ARW Tutorial 5-32

direction
symmetric_ys (max_dom) .false. symmetric boundary conditions at y

start (south)
symmetric_ye (max_dom) .false. symmetric boundary conditions at y

end (north)
open_ys (max_dom) .false. open boundary conditions at y start

(south)
open_ye (max_dom) .false. open boundary conditions at y end

(north)
nested (max_dom) .false. nested boundary conditions

(inactive)

&namelist_quilt Option for asynchronized I/O for

MPI applications.
nio_tasks_per_group 0 default value is 0: no quilting; > 0

quilting I/O
nio_groups 1 default 1, don't change

miscelleneous in
&domains:

tile_sz_x 0 number of points in tile x direction
tile_sz_y 0 number of points in tile y direction

can be determined automatically
numtiles 1 number of tiles per patch

(alternative to above two items)
nproc_x -1 number of processors in x for

decomposition
nproc_y -1 number of processors in y for

decomposition -1: code will do
automatic decomposition >1: for
both: will be used for decomposition

 ARW Tutorial 5-33

List of Fields in WRF Output
List of Fields
The following is an edited output from netCDF command 'ncdump':

ncdump -h wrfout_d01_yyyy_mm_dd-hh:mm:ss

 char Times(Time, DateStrLen) ;
 float LU_INDEX(Time, south_north, west_east) ;
 LU_INDEX:description = "LAND USE CATEGORY" ;
 LU_INDEX:units = "" ;
 float U(Time, bottom_top, south_north, west_east_stag) ;
 U:description = "x-wind component" ;
 U:units = "m s-1" ;
 float V(Time, bottom_top, south_north_stag, west_east) ;
 V:description = "y-wind component" ;
 V:units = "m s-1" ;
 float W(Time, bottom_top_stag, south_north, west_east) ;
 W:description = "z-wind component" ;
 W:units = "m s-1" ;
 float PH(Time, bottom_top_stag, south_north, west_east) ;
 PH:description = "perturbation geopotential" ;
 PH:units = "m2 s-2" ;
 float PHB(Time, bottom_top_stag, south_north, west_east) ;
 PHB:description = "base-state geopotential" ;
 PHB:units = "m2 s-2" ;
 float T(Time, bottom_top, south_north, west_east) ;
 T:description = "perturbation potential temperature (theta-t0)" ;
 T:units = "K" ;
 float MU(Time, south_north, west_east) ;
 MU:description = "perturbation dry air mass in column" ;
 MU:units = "Pa" ;
 float MUB(Time, south_north, west_east) ;
 MUB:description = "base state dry air mass in column" ;
 MUB:units = "Pa" ;
 float P(Time, bottom_top, south_north, west_east) ;
 P:description = "perturbation pressure" ;
 P:units = "Pa" ;
 float PB(Time, bottom_top, south_north, west_east) ;
 PB:description = "BASE STATE PRESSURE" ;
 PB:units = "Pa" ;
 float FNM(Time, bottom_top) ;
 FNM:description = "upper weight for vertical stretching" ;
 FNM:units = "" ;
 float FNP(Time, bottom_top) ;
 FNP:description = "lower weight for vertical stretching" ;
 FNP:units = "" ;
 float RDNW(Time, bottom_top) ;
 RDNW:description = "inverse dn values on full (w) levels" ;
 RDNW:units = "" ;
 float RDN(Time, bottom_top) ;
 RDN:description = "dn values on half (mass) levels" ;
 RDN:units = "" ;
 float DNW(Time, bottom_top) ;
 DNW:description = "dn values on full (w) levels" ;
 DNW:units = "" ;
 float DN(Time, bottom_top) ;
 DN:description = "dn values on half (mass) levels" ;
 DN:units = "" ;
 float ZNU(Time, bottom_top) ;
 ZNU:description = "eta values on half (mass) levels" ;
 ZNU:units = "" ;
 float ZNW(Time, bottom_top_stag) ;
 ZNW:description = "eta values on full (w) levels" ;
 ZNW:units = "" ;
 float CFN(Time, ext_scalar) ;
 CFN:description = "" ;
 CFN:units = "" ;

 ARW Tutorial 5-34

 float CFN1(Time, ext_scalar) ;
 CFN1:description = "" ;
 CFN1:units = "" ;
 float EPSTS(Time, ext_scalar) ;
 EPSTS:description = "" ;
 EPSTS:units = "" ;
 float Q2(Time, south_north, west_east) ;
 Q2:description = "QV at 2 M" ;
 Q2:units = "kg kg-1" ;
 float T2(Time, south_north, west_east) ;
 T2:description = "TEMP at 2 M" ;
 T2:units = "K" ;
 float TH2(Time, south_north, west_east) ;
 TH2:description = "POT TEMP at 2 M" ;
 TH2:units = "K" ;
 float PSFC(Time, south_north, west_east) ;
 PSFC:description = "SFC PRESSURE" ;
 PSFC:units = "Pa" ;
 float U10(Time, south_north, west_east) ;
 U10:description = "U at 10 M" ;
 U10:units = "m s-1" ;
 float V10(Time, south_north, west_east) ;
 V10:description = "V at 10 M" ;
 V10:units = "m s-1" ;
 float RDX(Time, ext_scalar) ;
 RDX:description = "INVERSE X GRID LENGTH" ;
 RDX:units = "" ;
 float RDY(Time, ext_scalar) ;
 RDY:description = "INVERSE Y GRID LENGTH" ;
 RDY:units = "" ;
 float RESM(Time, ext_scalar) ;
 RESM:description = "TIME WEIGHT CONSTANT FOR SMALL STEPS" ;
 RESM:units = "" ;
 float ZETATOP(Time, ext_scalar) ;
 ZETATOP:description = "ZETA AT MODEL TOP" ;
 ZETATOP:units = "" ;
 float CF1(Time, ext_scalar) ;
 CF1:description = "2nd order extrapolation constant" ;
 CF1:units = "" ;
 float CF2(Time, ext_scalar) ;
 CF2:description = "2nd order extrapolation constant" ;
 CF2:units = "" ;
 float CF3(Time, ext_scalar) ;
 CF3:description = "2nd order extrapolation constant" ;
 CF3:units = "" ;
 int ITIMESTEP(Time, ext_scalar) ;
 ITIMESTEP:description = "" ;
 ITIMESTEP:units = "" ;
 float QVAPOR(Time, bottom_top, south_north, west_east) ;
 QVAPOR:description = "Water vapor mixing ratio" ;
 QVAPOR:units = "kg kg-1" ;
 float QCLOUD(Time, bottom_top, south_north, west_east) ;
 QCLOUD:description = "Cloud water mixing ratio" ;
 QCLOUD:units = "kg kg-1" ;
 float QRAIN(Time, bottom_top, south_north, west_east) ;
 QRAIN:description = "Rain water mixing ratio" ;
 QRAIN:units = "kg kg-1" ;
 float LANDMASK(Time, south_north, west_east) ;
 LANDMASK:description = "LAND MASK (1 FOR LAND, 0 FOR WATER)" ;
 LANDMASK:units = "" ;
 float TSLB(Time, soil_layers_stag, south_north, west_east) ;
 TSLB:description = "SOIL TEMPERATURE" ;
 TSLB:units = "K" ;
 float ZS(Time, soil_layers_stag) ;
 ZS:description = "DEPTHS OF CENTERS OF SOIL LAYERS" ;
 ZS:units = "m" ;
 float DZS(Time, soil_layers_stag) ;
 DZS:description = "THICKNESSES OF SOIL LAYERS" ;
 DZS:units = "m" ;
 float SMOIS(Time, soil_layers_stag, south_north, west_east) ;
 SMOIS:description = "SOIL MOISTURE" ;

 ARW Tutorial 5-35

 SMOIS:units = "m3 m-3" ;
 float SH2O(Time, soil_layers_stag, south_north, west_east) ;
 SH2O:description = "SOIL LIQUID WATER" ;
 SH2O:units = "m3 m-3" ;
 float XICE(Time, south_north, west_east) ;
 XICE:description = "SEA ICE FLAG" ;
 XICE:units = "" ;
 float SFROFF(Time, south_north, west_east) ;
 SFROFF:description = "SURFACE RUNOFF" ;
 SFROFF:units = "mm" ;
 float UDROFF(Time, south_north, west_east) ;
 UDROFF:description = "UNDERGROUND RUNOFF" ;
 UDROFF:units = "mm" ;
 int IVGTYP(Time, south_north, west_east) ;
 IVGTYP:description = "DOMINANT VEGETATION CATEGORY" ;
 IVGTYP:units = "" ;
 int ISLTYP(Time, south_north, west_east) ;
 ISLTYP:description = "DOMINANT SOIL CATEGORY" ;
 ISLTYP:units = "" ;
 float VEGFRA(Time, south_north, west_east) ;
 VEGFRA:description = "VEGETATION FRACTION" ;
 VEGFRA:units = "" ;
 float GRDFLX(Time, south_north, west_east) ;
 GRDFLX:description = "GROUND HEAT FLUX" ;
 GRDFLX:units = "W m-2" ;
 float SNOW(Time, south_north, west_east) ;
 SNOW:description = "SNOW WATER EQUIVALENT" ;
 SNOW:units = "kg m-2" ;
 float SNOWH(Time, south_north, west_east) ;
 SNOWH:description = "PHYSICAL SNOW DEPTH" ;
 SNOWH:units = "m" ;
 float CANWAT(Time, south_north, west_east) ;
 CANWAT:description = "CANOPY WATER" ;
 CANWAT:units = "kg m-2" ;
 float SST(Time, south_north, west_east) ;
 SST:description = "SEA SURFACE TEMPERATURE" ;
 SST:units = "K" ;
 float MAPFAC_M(Time, south_north, west_east) ;
 MAPFAC_M:description = "Map scale factor on mass grid" ;
 MAPFAC_M:units = "" ;
 float MAPFAC_U(Time, south_north, west_east_stag) ;
 MAPFAC_U:description = "Map scale factor on u-grid" ;
 MAPFAC_U:units = "" ;
 float MAPFAC_V(Time, south_north_stag, west_east) ;
 MAPFAC_V:description = "Map scale factor on v-grid" ;
 MAPFAC_V:units = "" ;
 float F(Time, south_north, west_east) ;
 F:description = "Coriolis sine latitude term" ;
 F:units = "s-1" ;
 float E(Time, south_north, west_east) ;
 E:description = "Coriolis cosine latitude term" ;
 E:units = "s-1" ;
 float SINALPHA(Time, south_north, west_east) ;
 SINALPHA:description = "Local sine of map rotation" ;
 SINALPHA:units = "" ;
 float COSALPHA(Time, south_north, west_east) ;
 COSALPHA:description = "Local cosine of map rotation" ;
 COSALPHA:units = "" ;
 float HGT(Time, south_north, west_east) ;
 HGT:description = "Terrain Height" ;
 HGT:units = "m" ;
 float TSK(Time, south_north, west_east) ;
 TSK:description = "SURFACE SKIN TEMPERATURE" ;
 TSK:units = "K" ;
 float P_TOP(Time, ext_scalar) ;
 P_TOP:description = "PRESSURE TOP OF THE MODEL" ;
 P_TOP:units = "Pa" ;
 float RAINC(Time, south_north, west_east) ;
 RAINC:description = "ACCUMULATED TOTAL CUMULUS PRECIPITATION" ;
 RAINC:units = "mm" ;
 float RAINNC(Time, south_north, west_east) ;

 ARW Tutorial 5-36

 RAINNC:description = "Accumulated Total Grid Scale Precipitation" ;
 RAINNC:units = "mm" ;
 float SWDOWN(Time, south_north, west_east) ;
 SWDOWN:description = "Downward Short Wave Flux At Ground Surface" ;
 SWDOWN:units = "W m-2" ;
 float GLW(Time, south_north, west_east) ;
 GLW:description = "DOWNWARD LONG WAVE FLUX AT GROUND SURFACE" ;
 GLW:units = "W m-2" ;
 float XLAT(Time, south_north, west_east) ;
 XLAT:description = "LATITUDE, SOUTH IS NEGATIVE" ;
 XLAT:units = "degree_north" ;
 float XLONG(Time, south_north, west_east) ;
 XLONG:description = "LONGITUDE, WEST IS NEGATIVE" ;
 XLONG:units = "degree_east" ;
 float TMN(Time, south_north, west_east) ;
 TMN:description = "SOIL TEMPERATURE AT LOWER BOUNDARY" ;
 TMN:units = "K" ;
 float XLAND(Time, south_north, west_east) ;
 XLAND:description = "LAND MASK (1 FOR LAND, 2 FOR WATER)" ;
 XLAND:units = "" ;
 float PBLH(Time, south_north, west_east) ;
 PBLH:description = "PBL HEIGHT" ;
 PBLH:units = "m" ;
 float HFX(Time, south_north, west_east) ;
 HFX:description = "UPWARD HEAT FLUX AT THE SURFACE" ;
 HFX:units = "W m-2" ;
 float QFX(Time, south_north, west_east) ;
 QFX:description = "UPWARD MOISTURE FLUX AT THE SURFACE" ;
 QFX:units = "kg m-2 s-1" ;
 float LH(Time, south_north, west_east) ;
 LH:description = "LATENT HEAT FLUX AT THE SURFACE" ;
 LH:units = "W m-2" ;
 float SNOWC(Time, south_north, west_east) ;
 SNOWC:description = "FLAG INDICATING SNOW COVERAGE (1 FOR SNOW
COVER)" ;
 SNOWC:units = "" ;

Special WRF Output Variables

WRF model outputs the state variables defined in the Registry file, and these state
variables are used in the model's prognostic equations. Some of these variables
are perturbation fields. Therefore some definition for reconstructing
meteorological variables is necessary. In particular, the definitions for the
following variables are:

total geopotential PH + PHB
total geopotential height in m (PH + PHB) / 9.81
total potential temperature in K T + 300
total pressure in mb (P + PB) * 0.01

 ARW Tutorial 5-37

List of Global Attributes

 :TITLE = " OUTPUT FROM WRF V2.0.3.1 MODEL" ;
 :START_DATE = "2000-01-24_12:00:00" ;
 :SIMULATION_START_DATE = "2000-01-24_12:00:00" ;
 :WEST-EAST_GRID_DIMENSION = 74 ;
 :SOUTH-NORTH_GRID_DIMENSION = 61 ;
 :BOTTOM-TOP_GRID_DIMENSION = 28 ;
 :GRIDTYPE = "C" ;
 :DYN_OPT = 2 ;
 :DIFF_OPT = 0 ;
 :KM_OPT = 1 ;
 :DAMP_OPT = 0 ;
 :KHDIF = 0.f ;
 :KVDIF = 0.f ;
 :MP_PHYSICS = 3 ;
 :RA_LW_PHYSICS = 1 ;
 :RA_SW_PHYSICS = 1 ;
 :SF_SFCLAY_PHYSICS = 1 ;
 :SF_SURFACE_PHYSICS = 1 ;
 :BL_PBL_PHYSICS = 1 ;
 :CU_PHYSICS = 1 ;
 :WEST-EAST_PATCH_START_UNSTAG = 1 ;
 :WEST-EAST_PATCH_END_UNSTAG = 73 ;
 :WEST-EAST_PATCH_START_STAG = 1 ;
 :WEST-EAST_PATCH_END_STAG = 74 ;
 :SOUTH-NORTH_PATCH_START_UNSTAG = 1 ;
 :SOUTH-NORTH_PATCH_END_UNSTAG = 60 ;
 :SOUTH-NORTH_PATCH_START_STAG = 1 ;
 :SOUTH-NORTH_PATCH_END_STAG = 61 ;
 :BOTTOM-TOP_PATCH_START_UNSTAG = 1 ;
 :BOTTOM-TOP_PATCH_END_UNSTAG = 27 ;
 :BOTTOM-TOP_PATCH_START_STAG = 1 ;
 :BOTTOM-TOP_PATCH_END_STAG = 28 ;
 :GRID_ID = 1 ;
 :PARENT_ID = 0 ;
 :I_PARENT_START = 0 ;
 :J_PARENT_START = 0 ;
 :PARENT_GRID_RATIO = 1 ;
 :DX = 30000.f ;
 :DY = 30000.f ;
 :DT = 180.f ;
 :CEN_LAT = 34.72602f ;
 :CEN_LON = -81.22598f ;
 :TRUELAT1 = 30.f ;
 :TRUELAT2 = 60.f ;
 :MOAD_CEN_LAT = 34.72602f ;
 :STAND_LON = -98.f ;
 :GMT = 12.f ;
 :JULYR = 2000 ;
 :JULDAY = 24 ;
 :MAP_PROJ = 1 ;
 :MMINLU = "USGS" ;
 :ISWATER = 16 ;
 :ISICE = 24 ;
 :ISURBAN = 1 ;
 :ISOILWATER = 14 ;

 ARW Tutorial 5-38

 ARW Tutorial 6-1

User’s Guide for Advanced Research WRF (ARW)
Modeling System Version 2

Chapter 6: WRF-VAR

Introduction

To ensure the best communication of the WRF-VAR system, the documentation has been
developed to be highly dynamic. For this reason it is best viewed online.

For a full description of the code and step-by-step help through a case study please visit:

http://www.mmm.ucar.edu/wrf/WG4/tutorial/wrf3dvar_tutorial.htm

 ARW Tutorial 6-2

 ARW Tutorial 7-1

User’s Guide for Advanced Research WRF (ARW)
Modeling System Version 2

Chapter 7: WRF Software

Table of Contents

• Introduction
• WRF Build Mechanism
• Registry
• I/O Applications Program Interface (I/O API)
• Timekeeping
• Software Documentation
• Portability and Performance

Introduction

WRF Build Mechanism

The WRF build mechanism provides a uniform apparatus for configuring and compiling
the WRF model and pre-processors over a range of platforms with a variety of options.
This section describes the components and functioning of the build mechanism. For
information on building the WRF code, see Section 2.

Required software:

The WRF build relies on Perl version 5 or later and a number of UNIX utilities: Csh and
Bourne shell, make, M4, sed, awk, and the uname command. A C compiler is needed to
compile programs and libraries in the tools and external directories. The WRF code itself
is Fortran90. For distributed-memory, MPI and related tools and libraries should be
installed.

Build Mechanism Components:

Directory structure: The directory structure of WRF consists of the top-level directory
plus directories containing files related to the WRF software framework (frame), the
WRF model (dyn_em, phys, share), configuration files (arch, Registry), helper programs
(tools), and packages that are distributed with the WRF code (external).

Scripts: The top-level directory contains three user-executable scripts: configure,
compile, and clean. The configure script relies on a Perl script in arch/Config.pl.

 ARW Tutorial 7-2

Programs: A significant number of WRF lines of code are automatically generated at
compile time. The program that does this is tools/registry and it is distributed as source
code with the WRF model.

Makefiles: The main makefile (input to the UNIX make utility) is in the top-level
directory. There are also makefiles in most of the subdirectories that come with WRF.
Make is called recursively over the directory structure. Make is not used directly to
compile WRF; the compile script is provided for this purpose.

Configuration files: The configure.wrf contains compiler, linker, and other build settings,
as well as rules and macro definitions used by the make utility. Configure.wrf is included
by the Makefiles in most of the WRF source distribution (Makefiles in tools and external
directories do not include configure.wrf). The configure.wrf file in the top-level
directory is generated each time the configure script is invoked. It is also deleted by
clean -a. Thus, configure.wrf is the place to make temporary changes: optimization
levels, compiling with debugging, etc., but permanent changes should be made in
arch/configure.defaults.

The arch/configure.defaults file contains lists of compiler options for all the supported
platforms and configurations. Changes made to this file will be permanent. This file is
used by the configure script to generate a temporary configure.wrf file in the top-level
directory. The arch directory also contains the files preamble and postamble, which the
unchanging parts of the configure.wrf file that is generated by the configure script.

The Registry directory contains files that control many compile-time aspects of the WRF
code (described elsewhere). The files are named Registry.core. The
configure script copies one of these to Registry/Registry, which is the file that
tools/registry will use as input. The choice of core depends on settings to the
configure script. Changes to Registry/Registry will be lost; permanent changes should be
made to Registry.core.

Environment variables: Certain aspects of the configuration and build are controlled by
environment variables: the non-standard locations of NetCDF libraries or the PERL
command, which dynamic core to compile, machine-specific options (e.g.
OBJECT_MODE on the IBM systems), etc.

In addition to WRF-related environment settings, there may also be settings specific to
particular compilers or libraries. For example, local installations may require setting a
variable like MPICH_F90 to make sure the correct instance of the Fortran 90 compiler is
used by the mpif90 command.

How the WRF build works:

There are two steps in building WRF: configuration and compilation.

 ARW Tutorial 7-3

Configuration: The configure script configures the model for compilation on your
system. Configure first attempts to locate needed libraries such as NetCDF or HDF and
tools such as Perl. It will check for these in normal places, or will use settings from the
user's shell environment. Configure then calls the UNIX uname command to discover
what platform you are compiling on. It then calls the Perl script in arch/Config.pl, which
traverses the list of known machine configurations and displays a list of available options
to the user. The selected set of options is then used to create the configure.wrf file in the
top-level directory. This file may be edited but changes are temporary, since the file will
be overwritten or deleted by the configure script or clean -a.

Compilation: The compile script is used to compile the WRF code after it has been
configured using the configure script, a Csh script that performs a number of checks,
constructs an argument list, copies to Registry/Registry the correct Registry.core file for
the core being compiled, and the invokes the UNIX make command in the top-level
directory. The core to be compiled is determined from the user’s environment; if no core
is specified in the environment (by setting WRF_CORE_CORE to 1) the default core is
selected (current the Eulerian Mass core). The makefile in the top-level directory directs
the rest of the build, accomplished as a set of recursive invocations of make in the
subdirectories of WRF. Most of these makefiles include the configure.wrf file in the top-
level directory. The order of a complete build is as follows:

1. Make in frame directory

a. make in external/io_netcdf to build NetCDF implementation of I/O API

b. make in RSL or RSL_LITE directory to build communications layer
(DM_PARALLEL only)

c. make in external/esmf_time_f90 directory to build ESMF time manager
library

d. make in other external directories as specified by “external:” target in the
configure.wrf file

2. Make in the tools directory to build the program that reads the Registry/Registry
file and auto-generates files in the inc directory

3. Make in the frame directory to build the WRF framework specific modules

4. Make in the share directory to build the non-core-specific mediation layer
routines, including WRF I/O modules that call the I/O API

5. Make in the phys directory to build the WRF model layer routines for physics
(non core-specific)

6. Make in the dyn_core directory for core-specific mediation-layer and model-layer
subroutines

 ARW Tutorial 7-4

7. Make in the main directory to build the main program(s) for WRF and link to
create executable file(s) depending on the build case that was selected as the
argument to the compile script (e.g. compile em_real)

8. Symbolic link executable files in the main directory to the run directory for the
specific case and to the directory named “run”

Source files (.F and, in some of the external directories, .F90) are preprocessed to
produce .f files, which are input to the compiler. As part of the preprocessing, Registry-
generated files from the inc directory may be included. Compiling the .f files results in
the creation of object (.o) files that are added to the library main/libwrflib.a. The linking
step produces the wrf.exe executable and other executables, depending on the case
argument to the compile command: real.exe (a preprocessor for real-data cases) or
ideal.exe (a preprocessor for idealized cases), and the ndown.exe program, for one-way
nesting of real-data cases.

The .o files and .f files from a compile are retained until the next invocation of the clean
script. The .f files provide the true reference for tracking down run time errors that refer
to line numbers or for sessions using interactive debugging tools such as dbx or gdb.

Registry

Tools for automatic generation of application code from user-specified tables provide
significant software productivity benefits in development and maintenance of large
applications such as WRF. Some 30-thousand lines of WRF code are automatically
generated from a user-edited table, called the Registry. The Registry provides a high-
level single-point-of-control over the fundamental structure of the model data, and thus
provides considerable utility for developers and maintainers. It contains lists describing
state data fields and their attributes: dimensionality, binding to particular solvers,
association with WRF I/O streams, communication operations, and run time
configuration options (namelist elements and their bindings to model control structures).
Adding or modifying a state variable to WRF involves modifying a single line of a single
file; this single change is then automatically propagated to scores of locations in the
source code the next time the code is compiled.

The WRF Registry has two components: the Registry file, and the Registry program.

The Registry file is located in the Registry directory and contains the entries that direct
the auto-generation of WRF code by the Registry program. There may be more than one
Registry in this directory, with filenames such as Registry.EM (for builds using the
Eulerian Mass core) and Registry.NMM (for builds using the NMM core). The WRF
Build Mechanism copies one of these to the file Registry/Registry and this file is used to
direct the Registry program. The syntax and semantics for entries in the Registry are
described in detail in “WRF Tiger Team Documentation: The Registry” on
http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/.
The Registry program is distributed as part of WRF in the tools directory. It is built
automatically (if necessary) when WRF is compiled. The executable file is tools/registry.

 ARW Tutorial 7-5

This program reads the contents of the Registry file, Registry/Registry, and generates
files in the inc directory. These files are included by other WRF source files when they
are compiled. Additional information on these is provided as an appendix to “WRF Tiger
Team Documentation: The Registry (DRAFT)”. The Registry program itself is written in
C. The source files and makefile are in the tools directory.

Figure 1. When the user compiles WRF, the Registry Program reads Registry/Registry,
producing auto-generated sections of code that are stored in files in the inc directory. These
are included into WRF using the CPP preprocessor and the Fortran compiler.

In addition to the WRF model itself, the Registry/Registry file is used to build the
accompanying preprocessors such as real.exe (for real data) or ideal.exe (for ideal
simulations), and the ndown.exe program (used for one-way, off-line nesting).

I/O Applications Program Interface (I/O API)

The software that implements WRF I/O, like the software that implements the model in
general, is organized hierarchically, as a “software stack”
(http://www.mmm.ucar.edu/wrf/WG2/Tigers/IOAPI/IOStack.html) . From top (closest to
the model code itself) to bottom (closest to the external package implementing the I/O),
the I/O stack looks like this:

 ARW Tutorial 7-6

• Domain I/O (operations on an entire domain)
• Field I/O (operations on individual fields)
• Package-neutral I/O API
• Package-dependent I/O API (external package)

There is additional information on the WRF I/O software architecture on
http://www.mmm.ucar.edu/wrf/WG2/IOAPI/IO_files/v3_document.htm. The lower-
levels of the stack are described in the I/O and Model Coupling API specification
document on http://www.mmm.ucar.edu/wrf/WG2/Tigers/IOAPI/index.html.

Timekeeping

Starting times, stopping times, and time intervals in WRF are stored and manipulated as
Earth System Modeling Framework (ESMF, http://www.esmf.ucar.edu) time manager
objects. This allows exact representation of time instants and intervals as integer numbers
of years, months, hours, days, minutes, seconds, and/or fractions of a second (numerator
and denominator are specified separately as integers). All time arithmetic involving these
objects is performed exactly, without drift or rounding, even for fractions of a second.

The WRF implementation of the ESMF Time Manger is distributed with WRF in the
external/esmf_time_f90 directory. This implementation is entirely Fortran90 (as opposed
to the ESMF implementation that required C++) and it is conformant to the version of the
ESMF Time Manager API that was available in 2003 (the API has changed in later
versions of ESMF and an update will be necessary for WRF once the ESMF
specifications and software have stabilized). The WRF implementation of the ESMF
Time Manager supports exact fractional arithmetic (numerator and denominator
explicitly specified and operated on as integers), a feature needed by models operating at
WRF resolutions, but deferred in 2003 since it was not needed for models running at
more coarse resolutions.

WRF source modules and subroutines that use the ESMF routines do so by use-
association of the top-level ESMF Time Manager module, esmf_mod:

 USE esmf_mod

The code is linked to the library file libesmf_time.a in the external/esmf_time_f90
directory.

ESMF timekeeping is set up on a domain-by-domain basis in the routine
setup_timekeeping (share/set_timekeeping.F). Each domain keeps its own clocks, alarms,
etc. – since the time arithmetic is exact there is no problem with clocks getting out of
synchronization.

 ARW Tutorial 7-7

Software Documentation

Detailed and comprehensive documentation aimed at WRF software is available at
http://www.mmm.ucar.edu/wrf/WG2/software_2.0.

Portability and Performance

WRF is supported on the following platforms:

Ports are in progress to other systems. Contact wrfhelp@ucar.edu for additional
information.

Benchmark information is available at http://www.mmm.ucar.edu/wrf/bench

Vendor Hardware OS Compiler
Apple (*) G5 MacOS IBM
Cray Inc. X1 UNICOS Cray

Alpha Tru64 Compaq
Linux Intel
HPUX HP

IBM SP Power-3/4 AIX IBM
Itanium-2 Linux Intel

MIPS IRIX SGI
Sun (*) UltraSPARC Solaris Sun

Xeon and Athlon
Itanium-2 and Opteron

Linux Intel and Portland Group

HP/Compaq

SGI

various

Itanium-2

 ARW Tutorial 7-8

ARW Tutorial 8-1

User’s Guide for Advanced Research WRF (ARW)
Modeling System Version 2

Chapter 8: Post-Processing Utilities

Table of Contents
• Introduction
• NCL
• RIP4
• WRF2GrADS
• WRF2VIS5D
• read_wrf_nc utility

Introduction
There are a number of visualization tools available to display ARW (http://wrf-
model.org/) model data. Model data in netCDF format (netCDF libraries are available
from the Unidata homepage (http://www.unidata.ucar.edu/) - registration login required),
can essentially be displayed using any tool capable of displaying this data format.
Currently 4 post-processing utilities are supported, NCL, RIP4, WRF2GrADS and
WRF2VIS5D. All these programs can only read ARW data in netCDF format.

Required software:

• The only library that is almost always required is the netCDF package from
Unidata (http://www.unidata.ucar.edu/ : login > Downloads > NetCDF). The
ARW post-processing packages assume that the data from the ARW model is
using the netCDF libraries.

• Additional libraries required by each of the 4 supported post-processing
packages:

• NCL (http://ngwww.ucar.edu/), requires the NCAR Command Language
written by NCAR Scientific Computing Division
• RIP (http://www.atmos.washington.edu/~stoeling/), requires NCAR Graphics
• GrADS (http://grads.iges.org/home.html), requires the GrADS visualization
software
• Vis5D (http://www.ssec.wisc.edu/~billh/vis5d.html), requires the Vis5D
visualization software

ARW Tutorial 8-2

NCL
Ready-made NCL scripts are provided to create meta files for both real and ideal
datasets. These scripts are relatively easy to read and change to generate different or more
plots.

• Necessary software
• Obtain the WRF_NCL TAR file from the WRF Download page
(http://www.mmm.ucar.edu/wrf/users/download/get_source.html)
• NCAR Command Language libraries (http://ngwww.ucar.edu/)

• Hardware
The code has been ported to the following machines

• DEC Alpha
• Linux
• SUN
• IBM

• Steps to compile and run

• Untar WRF_NCL TAR file
 Inside the TAR file you will have the following files:

README_FIRST
README_NCL
gsn_code.ncl
skewt_func.ncl
wrf_plot.ncl
wrf_user_mass.ncl

Readme Files and
NCL function scripts

wrf_user_fortran_util_0.f
make_ncl_fortran
make_ncl_fortran.alpha
make_ncl_fortran.linux
make_ncl_fortran.sun

FORTRAN utility file and
make files to compile the utility
program

wrf_em_b_wave.ncl
wrf_em_hill2d.ncl
wrf_em_grav2d.ncl
wrf_em_squall_2d_x.ncl
wrf_em_squall_2d_y.ncl

wrf_em_real_input.ncl
wrf_em_real.ncl
wrf_em_qc.ncl
wrf_em_qss.ncl
wrf_em_qv.ncl

NCL scripts for ideal and real data

ARW Tutorial 8-3

wrf_em_sfc.ncl
wrf_em_slp.ncl
wrf_em_the.ncl

• Build the external function, wrf_user_fortran_util_0.so
 NCL has the ability to link in FORTRAN shareable object files. This

provides an easy way to compute diagnostic quantities and to performing
interpolations.

 Presently, only one FORTRAN object needs to be built -
wrf_user_fortran_util_0.so

 To build the FORTRAN object, running one of the make_ncl_fortran csh
scripts that will build the shared-object library
e.g. make_ncl_fortran wrf_user_fortran_util_0

 If successful, you will see these files created in your directory:
 so_locations
 wrf_user_fortran_util_0.o

 wrf_user_fortran_util_0.so
 HINT: The most common error when building the external function is not

finding the “wrapit77” function on your system. “wrapit77” is part of the
NCAR Graphics routines. If you run into this problem, make sure your path
to this function is setup correctly.

• Edit the script you want to run
 Mostly it is only necessary to change the location and name of the file:

a = addfile("../../WRFV2/run/wrfout_d01_2000-01-24_00:00:00.nc","r")
 Do not remove the ".nc" after the file name - the script needs it

• Run the NCL script
 To run the script, type:

ncl < NCL_script (or “ncl NCL_script” for higher versions of NCL)
e.g. ncl < wrf_em_real.ncl

 This will create a meta file
e.g. wrf_mass_plots

 The name of the meta file that is created, is controlled by the line:
 wks = wrf_open_ncgm("wrf_mass_plots") inside the NCL script

• View the meta file
 To view the meta file, use the command "idt", e.g.

idt wrf_mass_plots
 Examples of plots created for both idealized and real cases are available

from:
http://www.mmm.ucar.edu/wrf/users/graphics/WRF_NCL/NCL.htm

ARW Tutorial 8-4

• Miscellaneous
• To convert NCGM files to GIF images, a very handy tool is the ncgm2gif script
(http://ngwww.ucar.edu/info/ncgm2gif)
• To run the script, type:

 ncgm2gif metafile
 e.g. ncgm2gif -res 500x500 -nomerge test.cgm

This will convert all images in test.cgm to 500x500 pixel gif images, testxxx.gif
• A compete list of options are available inside the ncgm2gif script
(http://ngwww.ucar.edu/info/ncgm2gif)

RIP4
RIP4 was adapted from the RIP code, originally developed to display MM5 model data.
(Primarily Mark Stoelinga, from both NCAR and the University of Washington developed
RIP).

The code reads ARW (and MM5) output files and creates meta file plots.
Since version 4.1 RIP4 can read both real and idealized ARW datasets.

The RIP users' guide (http://www.mmm.ucar.edu/wrf/users/docs/ripug.htm) is essential
reading.

• Necessary software
• Obtain the RIP4 TAR file from the WRF Download page
(http://www.mmm.ucar.edu/wrf/users/download/get_source.html)
• NCAR Graphics software (http://ngwww.ucar.edu/)

• Hardware
The code has been ported to the following machines

• DEC Alpha
• Linux
• MAC (xlf and absoft compilers)
• SUN
• SGI
• IBM
• CRAY
• Fujitsu

• Steps to compile and run

• Untar RIP4.TAR.gz file
Inside the TAR file you will have the following files:

ARW Tutorial 8-5

CHANGES
Doc/
Makefile
README
color.tbl
psadilookup.dat
rip_sample.in
ripdp_sample.in
src/
stationlist
tabdiag_sample.in
tserstn.dat
bwave.in | new in version 4.1
custom_maps/ | new in version 4.1
grav2d_x.in | new in version 4.1
hill2d.in | new in version 4.1
qss.in | new in version 4.1
sqx.in | new in version 4.1
sqy.in | new in version 4.1

• Compile the code
Typing "make" will produce the following list of compile options

make dec
make linux
make mac_xlf
make mac
make sun
make sun2
make sun90
make sgi
make sgi64
make ibm
make cray
make vpp300
make vpp5000
make clean
make clobber

To Run on DEC_ALPHA
To Run on LINUX
To Run on MAC_OS_X with Xlf Compiler
To Run on MAC_OS_X with Absoft Compiler
To Run on SUN
To Run on SUN if make sun didn't work
To Run on SUN usingF90
To Run on SGI
To Run on 64-bit SGI
To Run on IBM SP2
To Run on NCAR's Cray
To Run on Fujitsu VPP 300
To Run on Fujitsu VPP 5000
to remove object files
to remove object files and executables

Pick the compiler option for the machine you are working on and type:
"make machine"

 e.g. make dec will compile the code for a DEC Alpha computer

ARW Tutorial 8-6

• After a successful compilation the following new files will be created.

rip Post-processing program.
Before using this program, the input data must first be
converted to the correct format expected by this program,
using the program ripdp_wrf.

ripcomp This program reads in two rip data files and compares their
contents.

ripdp_mm5 RIP Data Preparation program for MM5 input data
ripdp_wrf RIP Data Preparation program for WRF input data
ripinterp This program reads in model output (in rip-format files) from

a coarse domain and from a fine domain, and creates a new
file which has the data from the coarse domain file
interpolated (bi-linearly) to the fine domain. The header and
data dimensions of the new file will be that of the fine
domain, and the case name used in the file name will be the
same as that of the fine domain file that was read in.

ripshow This program reads in a rip data file and prints out the
contents of the header record.

showtraj Sometimes, you may want to examine the contents of a
trajectory position file. Since it is a binary file, the trajectory
position file cannot simply be printed out. showtraj, reads the
trajectory position file and prints out its contents in a readable
form. When you run showtraj, it prompts you for the name of
the trajectory position file to be printed out.

tabdiag If fields are specified in the plot specification table for a
trajectory calculation run, then RIP produces a .diag file that
contains values of those fields along the trajectories. This file
is an unformatted Fortran file; so another program is required
to view the diagnostics. tabdiag serves this purpose.

upscale This program reads in model output (in rip-format files) from
a coarse domain and from a fine domain, and replaces the
coarse data with fine data at overlapping points. Any
refinement ratio is allowed, and the fine domain borders do
not have to coincide with coarse domain grid points.

• Prepare the data
 To prepare the data for the RIP program, one much first run RIPDP (RIP

Data Preparation), for WRF
 As this step will create a large number of extra file, creating a new directory

to place these files in, will enable you to manage the files easier
mkdir DATA

ARW Tutorial 8-7

 Edit the namelist ripdp_sample.in
The most important information needed in the namelist, is the times you want
to process

 Run ripdp for WRF
 ripdp_wrf [-n namelist_file] casename [basic|all] data_file_1
data_file_2 data_file_3 ...
 e.g. ripdp_wrf -n ripdp_sample.in DATA/real basic
../DATA/real/wrfout_d01_2000-01-24_12:00:00 >& ripdp_log

• Create graphics - step 1
 The first step in creating the graphics you are interested in, is to edit the User

Input File (UIP) rip_sample.in (or create your own UIP)

 The UIP file, consists of
− 2 namelists userin (which control the general input specifications) and
trajcalc (which control the creation of trajectories); and
− the Plot Specification Table (PST), used to control the generation of the
graphics

 namelist: userin

Namelist
Variable

Variable
Type

Description

idotitle Integer Control of first part of title line.
titlecolor Character Control color of the title lines
ptimes Integer Times to process. This can be a string of times

or a series in the form of A,-B,C, which means
"times from hour A, to hour B, every C hours"

ptimeunits Character Time units. This can be either `h' (hours), `m'
(minutes), or `s' (seconds)

tacc Real Time tolerance in seconds. Any time in the
model output that is within tacc seconds of the
time specified in ptimes will be processed.

timezone Integer Specifies the offset from Greenwich time.
iusdaylightrule Integer Flag to determine if US daylight saving is

applied.
iinittime Integer Controls the plotting of the initial time on the

plots.
ivalidtime Integer Controls the plotting of the plot valid time.
inearesth Integer Plot time as two digits rather than 4 digits.
flmin Real Left frame limit
flmax Real Right frame limit
fbmin Real Bottom frame limit
ftmax Real Top frame limit
ntextq Integer Quality of the text

ARW Tutorial 8-8

ntextcd Integer Text font
fcoffset Integer Change initial time to something other than

output initial time.
idotser Integer Generate time series output files (no plots) only

ASCII file that can be used as input to a plotting
program).

idescriptive Integer Use more descriptive plot titles.
icgmsplit Integer Split metacode into several files.
maxfld Integer Reserve memory for RIP.
ittrajcalc Integer Generate trajectory output files (use namelist

trajcalc when this is set).
imakev5d Integer Generate output for Vis5D

 Plot Specification Table

The second part of the RIP UIF consists of the Plot Specification Table. The
PST provides all of the user control over particular aspects of individual
frames and overlays. The basic structure of the PST is as follows:

− The first line of the PST is a line of consecutive equal signs. This line as
well as the next two lines is ignored by RIP, it is simply a banner that says this
is the start of the PST section.
− After that there are several groups of one or more lines separated by a full
line of equal signs. Each group of lines is a frame specification group (FSG),
and it describes what will be plotted in a single frame of metacode. Each FSG
must be ended with a full line of equal signs, so that RIP can determine where
individual frames starts and ends.
− Each line within a FGS is referred to as a plot specification line (PSL). A
FSG that consists of three PSL lines will result in a single metacode frame with
three overlaid plots.

Example of a frame specification groups (FSG's):
 ==
 feld=tmc; ptyp=hc; vcor=p; levs=850,700,-300,100; >
 cint=2; cmth=fill; cosq=-32,light.violet,-24,violet,>
 -16,blue,-8,green,0,yellow,8,red,>
 16,orange,24,brown,32,light.gray
 feld=ght; ptyp=hc; cint=30; linw=2
 feld=uuu,vvv; ptyp=hv; vcmx=-1; colr=white; intv=5
 feld=map; ptyp=hb
 feld=tic; ptyp=hb
 ===
This FSG will generate 5 overlaid plots:

− Temperature in degrees C (feld=tmc). This will be plotted as a horizontal
contour plot (ptyp=hc), on pressure levels (vcor=p). The pressure levels used
will be 850 and 700 to 300 in steps of 100 mb (thus 5 plots will be generated,
on 850, 700, 600, 500, 400, and 300 mb). The contour intervals are set to 2

ARW Tutorial 8-9

(cint=2), and shaded plots (cmth=fill) will be generated with a color range
from light violet to light gray.
− Geopotential heights (feld=ght) will also be plotted as a horizontal contour
plot. This time the contour intervals will be 30 (cint=30), and contour lines,
with a line width of 2 (linw=2) will be used.
− Wind vectors (feld=uuu,vvv), plotted as barbs (vcmax=-1).
− A map background will be displayed (feld=map), and
− Tic marks will be placed on the plot (feld=tic).

• Create graphics - step 2
 First set the environment variable:

setenv RIP_ROOT your_rip4_directory
 Run rip

 rip [-f] model_case_name rip_case_name
 e.g. rip -f DATA/real rip_sample

 If this is successful, the following files will be created
rip_sample.cgm gmeta file
rip_sample.out log file - view this file if a problem occurred

• View the meta file
 To view the meta file, use the command "idt", e.g.

idt rip_sample.cgm
 Examples of plots created for both idealized and real cases are available

from:
http://www.mmm.ucar.edu/wrf/users/graphics/RIP4/RIP4.htm

• Miscellaneous
• To convert NCGM files to GIF images, a very handy tool is the ncgm2gif script
(http://ngwww.ucar.edu/info/ncgm2gif)
• To run the script, type:
 ncgm2gif metafile
 e.g. ncgm2gif -res 500x500 -nomerge test.cgm
This will convert all images in test.cgm to 500x500 pixel gif images, testxxx.gif
• A compete list of options are available inside the ncgm2gif script
(http://ngwww.ucar.edu/info/ncgm2gif)

WRF2GrADS
The WRF2GrADS converter read ARW netCDF files, and creates "ieee", GrADS data
files, and corresponding grads_control (.ctl) files.
The converter can process all ARW input, output and static (real and idealized data) in
netCDF format.

ARW Tutorial 8-10

• Necessary software
• Obtain the WRF2GrADS TAR file from the WRF Download page
(http://www.mmm.ucar.edu/wrf/users/download/get_source.html)
• GrADS software - You can download and install GrADS from
http://grads/iges.org/grads

• Hardware
The code has been ported to the following machines

• DEC Alpha
• Linux (pgf and intel compilers)
• MAC
• SUN
• SGI
• IBM

• Steps to compile and run

• Untar WRF2GrADS TAR file
Inside the TAR file you will have the following files:

Makefile
README

control_file
control_file_height
control_file_pressure

Sample control file

module_wrf_to_grads_netcdf.F
module_wrf_to_grads_util.F
wrf_to_grads.F

Source code

cbar.gs
rgbset.gs

Utility scripts

skew.gs
real_surf.gs
plevels.gs
rain.gs
cross_z.gs
zlevels.gs
input.gs
bwave.gs
grav2d.gs
hill2d.gs
qss.gs
sqx.gs
sqy.gs

Sample scripts to generate plots for
real/idealized datasets

ARW Tutorial 8-11

• Compile
 To compile the code, EDIT the Makefile to select the compiler flags for your

machine
 Type: make
 This will create a wrf_to_grads executable

• Edit the control_file file

-2
2000-01-24_12:00:00
2000-01-24_18:00:00
2000-01-25_00:00:00
end_of_time_list

Times to process
° If the first line contains a negative number,
ALL times in the WRF file will be processed.
° A positive number means, process that
number of times. In this case the times to
process needs to be listed.
° The number in the first line, do not need to
match the number of times listed. For the case
where a positive number is used, the first x
number of times will be processed.
° Do not remove or indent the line
"end_of_time_list", the code depends on this
line.

U ! U Compoment of wind
V ! V Component of wind
 UMET ! U wind - rotated
 VMET ! V wind - rotated
W ! W Component of wind
THETA ! Theta
TK ! Temperature in K
TC ! Temperature in C
TKE ! TURBULENCE KINETIC
ENERGY
P ! Pressure (HPa)
 Z ! Height (m)
QVAPOR ! Vapor
QCLOUD ! Cloud Water
TSLB ! SOIL TEMPERATURE
 SMOIS ! SOIL MOISTURE
end_of_3dvar_list

3D variables to process
° List of all 3D variables you would like
processed.
° If you do not wish to process a specific field,
you can skip processing it, but simply
indenting the line in which the field it listed. In
this case, UMET, VMET, Z, and SMOIS will
not be processed.
° If a variables is present in the WRF netCDF
file, but not in this list, it can be processed by
simply adding it to the list.
° To add a diagnostic, requires code changes.
° All 3D fields go here, including for instance
soil fields, which have a different number of
levels.
° The "!" and description behind every field
name is required by the program. If you add
variables remember to add the description of
the field as well.
° Do not remove or indent the line
"end_of_3dvar_list", the code depends on this
line.

RAINC ! TOTAL CUMULUS
PRECIPITATION
RAINNC ! TOTAL GRID SCALE
PRECIPITATION
slvl ! sea level pressure
T2 ! TEMP at 2 M
U10 ! U at 10 M
 U10M ! U at 10 M - rotated
V10 ! V at 10 M
 V10M ! V at 10 M - rotated

2D variables to process
° List of all 2D variables you would like
processed.
° If you do not wish to process a specific field,
you can skip processing it, but simply
indenting the line in which the field it listed. In
this case, U10M, and V10M will not be
processed.
° If a variables is present in the WRF netCDF
file, but not in this list, it can be processed by

ARW Tutorial 8-12

XLAT ! LATITUDE
XLONG ! LONGITUDE
XLAND ! LAND MASK
end_of_2dvar_list

simply adding it to the list.
° To add a diagnostic, requires code changes.
° The "!" and description behind every field
name is required by the program. If you add
variables remember to add the description of
the field as well.
° Do not remove or indent the line
"end_of_2dvar_list", the code depends on this
line.

 /DATA/real/wrfinput_d01
wrfout_d01_2000-01-24_12:00:00
wrfout_d01_2000-01-25_00:00:00
 /DATA/b_wave/wrfout_d01
 /DATA/hill2d_x/wrfout_d01
end_of_file_list

WRF netCDF files process
° List of all the WRF netCDF files you would
like processed.
° Do not mix different types of WRF files.
° If you do not wish to process a specific file,
you can skip processing it, but simply
indenting the line in which the field it listed. In
this case only the 2 real WRF output files will
be processed.
° Do not remove or indent the line
"end_of_file_list", the code it.

 ! what to do with the data
real ! real / ideal / static
1 ! map background in grads
1 ! specify grads vertical grid
 ! 0=cartesian,
 ! -1=interp to z from lowest h
 ! 1 list levels (height/pressure)

This section describes what to do with the
data
° DO NOT ADD OR REMOVE LINES, the
code needs this section exactly as is.
° We will process real data
° We would like a MAP background
° We would like to interpolate the data to
levels given below

1000.0
950.0
900.0
850.0
800.0
750.0
700.0
650.0
600.0
550.0
500.0
450.0
400.0
350.0
300.0
250.0
200.0
150.0
100.0

Levels to interpolate to
° This is only used if "1" is used for vertical
interpolation above.
° Can be pressure (as in this case) or height
levels.
° Levels must be from bottom to top.
° Pressure levels are given in mb, and height
levels in km.
° Indenting will NOT remove a level from the
list, it must be removed physically.

• Run the code
 wrf_to_grads control_file MyOutput [-options]

This will create MyOutput.dat and MyOutput.ctl for use with GrADS

ARW Tutorial 8-13

 There are 3 debug levels (options) available:

 Only basic information will be written to the screen
-v Debug option low
-V Debug option high (lots of output)

 Now you are ready to use GrADS

• Miscellaneous

To help users get started a number of grads scripts have been provided.

• The scripts provided are only examples of the type of plots one can generate
with GrADS data.
• The user will need to modify these scripts to suit their data (Example, if you did
not specify 0.25 km and 2 km as levels to interpolate to when you run the "bwave"
data through the converter, the "bwave.gs" script will not display any plots, since it
will specifically look for these to levels).

• GENERAL SCRIPTS

cbar.gs Plot color bar on shaded plots (from GrADS home page)
rgbset.gs Some extra colors (Users can add/change colors from color

number 20 to 99)
skew.gs Program to plot a skewT

TO RUN TYPE: run skew.gs (needs pressure level TC,TD,U,V
as input)
User will be prompted if a hardcopy of the plot must be create -
1 for yes and 0 for no.
If 1 is entered a GIF image will be created.
Need to enter lon/lat of point you are interested in
Need to enter time you are interested in
Can overlay 2 different times

• SCRIPTS FOR REAL DATA

real_surf.gs Plot some surface data
Need input data on model levels

plevels.gs Plot some pressure level fields
Need model output on pressure levels

rain.gs Plot total rainfall
Need a model output data set (any vertical coordinate), that
contain fields "RAINC" and "RAINNC"

cross_z.gs Need z level data as input
Will plot a NS and EW cross section of RH and T (C)

ARW Tutorial 8-14

Plots will run through middle of the domain
zlevels.gs Plot some height level fields

Need input data on height levels
Will plot data on 2, 5, 10 and 16km levels

input.gs Need WRF INPUT data on height levels

• SCRIPTS FOR IDEALIZED DATA

bwave.gs Need height level data as input
Will look for 0.25 and 2 km data to plot

grav2d.gs Need normal model level data
hill2d.gs Need normal model level data
qss.gs Need height level data as input.

Will look for heights 0.75, 1.5, 4 and 8 km to plot
sqx.gs Need normal model level data a input
sqy.gs Need normal model level data a input

• Examples of plots created for both idealized and real cases are available from:
http://www.mmm.ucar.edu/wrf/users/graphics/WRF2GrADS/GrADS.htm

• Trouble Shooting
The code executes correctly, but you get "NaN" or "Undefined Grid" for all fields
when displaying the data.

Look in the .ctl file.

a) If the second line is:
 options byteswapped
Remove this line from your .ctl file and try to display the data again.
If this SOLVES the problem, you need to remove the -Dbytesw option from the
Makefile.

b) If the line below does NOT appear in your .ctl file:
 options byteswapped
ADD this line as the second line in the .ctl file.
Try to display the data again.
If this SOLVES the problem, you need to ADD the -Dbytesw option for the
Makefile.

The line "options byteswapped" is often needed on some computers (DEC alpha as
an example). It is also often needed if you run the converter on one computer and
use another to display the data.

ARW Tutorial 8-15

WRF2VIS5D
Generate VIS5D files from WRF netCDF files.
ONLY ARW output files in netCDF format can be converted.

• Necessary software
• Obtain the WRF2VIS5D TAR file from the WRF Download page
(http://www.mmm.ucar.edu/wrf/users/download/get_source.html)
• VIS5D software (http://www.ssec.wisc.edu/~billh/vis5d.html)

• Hardware
The code has been ported to the following machines

• DEC Alpha
• Linux
• SUN
• SGI
• IBM

• Steps to compile and run

• Untar WRF2VIS5D TAR file
Inside the TAR file you will have the following files:

Makefile
README

wrf_v5d_input Sample control file
module_map_utils.F
module_wrf_to_vis5d_netcdf.F
module_wrf_to_vis5d_util.F
wrf_to_vis5d.F

Source code

• Compile
 To compile the code, EDIT the Makefile to select the compiler flags for your

machine
 Type: make
 This will create a wrf_to_vis5d executable

• Edit the control_file file

-2
2000-01-24_12:00:00
2000-01-24_18:00:00

Times to process
° If the first line contains a negative number,
ALL times in the WRF file will be processed.
° A positive number means, process that
number of times. In this case the times to
process needs to be listed.
° The number in the first line MUST match

ARW Tutorial 8-16

the number of times listed, for BOTH negative
and positive numbers.

U
V
W
THETA
 TK
TC
QVAPOR
QCLOUD
QRAIN
RAINC
TSK
end_of_variable_list

Variables to process
° List of variables you would like process.
° If you do not wish to process a specific field,
you can skip processing it, but simply
indenting the line in which the field it listed. In
this case, TK will not be processed.
° If a variables is present in the WRF netCDF
file, but not in this list, it can be processed by
simply adding it to the list.
° To add a diagnostic, requires code changes.
° Do not remove or indent the line
"end_of_variable_list", the code depends on
this line.

/real/wrfout_d01_2000-01-24_12:00:00
/real/wrfout_d01_2000-01-25_00:00:00
end_of_file_list

WRF netCDF files process
° List of all the WRF netCDF files you would
like processed.
° List ONLY files you want to process.
Indenting a file name will result in a run time
error.
° Do not remove or indent the line
"end_of_file_list", the code depends on this
line.

20 ! specify v5d vertical grid 0=cartesian, -
 1=interp to z from lowest h,
 >1 list levels (z) desired in vis5d file

This section describe what to do with the
data
° 0 : cartesian vertical grid will be used
° -1 : interpolation from lowest h level
° >1 : for list of levels (height only, in km) to
interpolate to (in this case 20 levels will be
used)

1 1.
2 2.
3 3.
4 4.
5 5.
6 6.
7 7.
8 8.
9 9.
10 10.
11 11.
12 12.
13 13.
14 14.
15 15.
16 16.
17 17.
18 18.
19 19.
20 20.

Levels to interpolate to
° Only height (must be in km).
° In this case, 20 levels must be given to
correspond to number set above.
° Levels must be from bottom to top.
° Levels must be presided by the level
number.
° Indenting will NOT remove a level from the
list, it must be removed physically.

ARW Tutorial 8-17

• Run the code
 wrf_to_vis5d wrf_v5d_input MyOutput

This will create MyOutput for use with VIS5D
 Now you are ready to use VIS5D

read_wrf_nc utility
This utility was created to allow a user to look at a WRF netCDF file at a glance.

What is the difference between this utility and the netCDF utility ncdump?

• This utility has a large number of options, to allow a user to look at the specific
part of the netCDF file in question.
• The utility is written in Fortran 90, which will allow users to add options.

Obtain the read_wrf_nc utility from the WRF Download page
(http://www.mmm.ucar.edu/wrf/users/download/get_source.html)

• Compile
• The code has been ported to Dec Alpha, Linux, Sun, SGI and IBM
• The code should run on any machine with a netCDF library (If you port the
code to a different machine, please forward the compile flags to wrfhelp@ucar.edu)
• To compile the code, use the compile flags at the top of the utility.
e.g., for a LINUX machine you need to type:
 pgf90 read_wrf_nc.f -L/usr/local/netcdf/lib -lnetcdf -lm

 -I/usr/local/netcdf/include -Mfree -o read_wrf_nc
• This will create the executable: read_wrf_nc

• Run
• read_wrf_nc wrf_data_file_name [-options]
• options : [-help] [-head] [-m] [-M z] [-s] [-S x y z] ! [-t] [-v VAL]

[-V VAL] [-w VAL]
 [-EditData]

Options: (Note: none of the options can be used with any other option)
-help Print help information.
-head Print header information only.
-m Print list of fields available for each time, plus the min and max

values for each field.
Also print the header information.

-M z Print list of fields available for each time, plus the min and max
values for each field.
The min and max values of 3d fields will be for the z level of the

ARW Tutorial 8-18

field.
Also print the header information.

-s Print list of fields available for each time, plus a sample value for
each field.
Sample value is taken from the middle of model domain.
Also print the header information.
Default if no options are supplied.

-S x y z Print list of fields available for each time, plus a sample value for
each field.
Sample value is at point x y z in the model domain.
Also print the header information.

-t Print only the times in the file.
-v VAR Print basic information about field VAR.

-V VAR Print basic information about field VAR, and dump the full field
out to the screen.

-w VAR Write the full field out to a file VAR.out

SPECIAL option : -EditData VAR

• This option allows a user to read a WRF netCDF file, change a
specific field and write it BACK into the WRF netCDF file.
• This option will CHANGE your CURRENT WRF netCDF file so
TAKE CARE when using this option.
• ONLY one field at a time can be changed. So if you need 3 fields
changed, you will need to run this program 3 times, each with a different
"VAR"
• IF you have multiple times in your WRF netCDF file - ALL times for
variable "VAR" WILL be changed.

• HOW TO USE THIS OPTION:

Make a COPY of your WRF netCDF file before using this option

 EDIT the subroutine USER_CODE

ADD an IF-statement block for the variable you want to change. This
is to prevent a variable getting overwritten by mistake.

For REAL data arrays, work with array "data_real" and for
INTEGER data arrays, work with the array "data_int".

Example 1:
If you want to change all (all time periods too) values of U to a
constant 10.0 m/s, you would add the following IF-statement:
 elseif (var == 'U') then
 data_real = 10.0

ARW Tutorial 8-19

Example 2:
If you want to change a section of the LANDMASK data to SEA
points:
 elseif (var == 'LANDMASK') then
 data_real(10:15,20:25,1) = 0

Example 3:
Change all ISLTYP category 3 values into category 7 values (NOTE
this is an INTEGER field):
 elseif (var == 'ISLTYP') then
 where (data_int == 3)
 data_int = 7
 endwhere

 Compile and run program
You will be prompted if this is really what you want to do.
ONLY the answer "yes" will allow the change to take effect

ARW Tutorial 8-20

