SOFTWARE INSTALLATION

SOFTWARE INSTALLATION

Chapter 2: Software Installation

Table of Contents

· Introduction

· Required Compilers and Scripting Languages

· Required/Optional Libraries to Download

· Post-Processing Utilities

· UNIX Environment Settings
· Building the WRF Code

· Building the WPS Code
· Building the WRFDA Code (for 3DVAR)
· Building the WRFDA Code (for 4DVAR)
Introduction

The WRF modeling system software installation is fairly straightforward on the ported platforms listed below. The model-component portion of the package is mostly self-contained. The WRF model does contain the source code to a Fortran interface to ESMF and the source to FFTPACK . Contained within the WRF system is the WRFDA component, which has several external libraries that the user must install (for various observation types and linear algebra solvers). Similarly, the WPS package, separate from the WRF source code, has additional external libraries that must be built (in support of Grib2 processing). The one external package that all of the systems require is the netCDF library, which is one of the supported I/O API packages. The netCDF libraries and source code are available from the Unidata homepage at http://www.unidata.ucar.edu (select DOWNLOADS, registration required).

There are three tar files for the WRF code. The first is the WRF model (including the real and ideal pre-processors). The second is the WRFDA code. The third tar file is for WRF chemistry. In order to run the WRF chemistry code, both the WRF model and the chemistry tar file must be combined.

The WRF model has been successfully ported to a number of Unix-based machines. We do not have access to all of them and must rely on outside users and vendors to supply the required configuration information for the compiler and loader options. Below is a list of the supported combinations of hardware and software for WRF.

	Vendor
	Hardware
	OS
	Compiler

	Cray
	XC30 Intel
	Linux
	Intel

	Cray
	XE AMD
	Linux
	Intel

	IBM
	Power Series
	AIX
	vendor

	IBM
	Intel
	Linux
	Intel / PGI / gfortran

	SGI
	IA64 / Opteron
	Linux
	Intel

	COTS*
	IA32
	Linux
	Intel / PGI /

gfortran / g95 /

PathScale

	COTS
	IA64 / Opteron
	Linux
	Intel / PGI /

gfortran /

PathScale

	Mac
	Power Series
	Darwin
	xlf / g95 / PGI / Intel

	Mac
	Intel
	Darwin
	gfortran / PGI / Intel

	NEC
	NEC
	Linux
	vendor

	Fujitsu
	FX10 Intel
	Linux
	vendor

* Commercial Off-The-Shelf systems

The WRF model may be built to run on a single-processor machine, a shared-memory machine (that uses the OpenMP API), a distributed memory machine (with the appropriate MPI libraries), or on a distributed cluster (utilizing both OpenMP and MPI). The WRFDA and WPS packages run on the above-listed systems.

Required Compilers and Scripting Languages

The majority of the WRF model, WPS, and WRFDA codes are written in Fortran (what many refer to as Fortran 90). The software layer, RSL, which sits between WRF and WRFDA, and the MPI interface is written in C. WPS makes direct calls to the MPI libraries for distributed memory message passing. There are also ancillary programs that are written in C to perform file parsing and file construction, which are required for default building of the WRF modeling code. Additionally, the WRF build mechanism uses several scripting languages: including perl, Cshell and Bourne shell. The traditional UNIX text/file processing utilities are used: make, m4, sed, and awk. See Chapter 8: WRF Software (Required Software) for a more detailed listing of the necessary pieces for the WRF build.

Required/Optional Libraries to Download

The only library that is always required is the netCDF package from Unidata (login > Downloads > NetCDF). Most of the WRF post-processing packages assume that the data from the WRF model, the WPS package, or the WRFDA program are using the netCDF libraries. One may also need to add ‘/path-to-netcdf/netcdf/bin’ to their path so that they may execute netCDF utility commands, such as ncdump. Use a netCDF version that is 3.6.1 or later. WRF does not currently use any of the additional capabilities that are in the newer versions of netCDF (such as 4.0 and later): compression, chunking, HDF5, etc.

Note 1: If one wants to compile WRF system components on a Linux or Darwin system that has access to multiple compilers, link the correct external libraries. For example, do not link the libraries built with PathScale when compiling the WRF components with gfortran. Even more, the same options when building the netCDF libraries must be used when building the WRF code (32 vs 64 bit, assumptions about underscores in the symbol names, etc.).

Note 2: If netCDF-4 is used, be sure that it is installed without activating parallel I/O based on HDF5. The WRF modeling system is able to use either the classic data model from netCDF-3 or the compression options supported in netCDF-4.

If you are going to be running distributed memory WRF jobs, you need a version of MPI. You can pick up a version of mpich, but you might want your system group to install the code. A working installation of MPI is required prior to a build of WRF using distributed memory. Either MPI-1 or MPI-2 are acceptable. Do you already have an MPI lying around? Try

which mpif90

which mpicc

which mpirun

If these are all defined executables in your path, you are probably OK. Make sure your paths are set up to point to the MPI lib, include, and bin directories. As with the netCDF libraries, you must build MPI consistently with the WRF source code.

Note that to output WRF model data in Grib1 format, Todd Hutchinson (WSI) has provided a complete source library that is included with the software release. However, when trying to link the WPS, the WRF model, and the WRFDA data streams together, always use the netCDF format.

Post-Processing Utilities

The more widely used (and therefore supported) WRF post-processing utilities are:

· NCL (homepage and WRF download)
· NCAR Command Language written by NCAR’s Computer Information Systems Laboratory (formerly the Scientific Computing Division)

· NCL scripts written and maintained by WRF support

· many template scripts are provided that are tailored for specific real-data and ideal-data cases

· raw WRF output can be input with the NCL scripts

interactive or command-file driven
· GrADS (homepage and WRF download)

· download GrADS executable, build format converter

· programs are available to convert the WRF output into an input format suitable for GrADS

· interpolates to regular lat/lon grid

· simple to generate publication quality

· RIP (homepage and WRF download)

· RIP4 written and maintained by Mark Stoelinga, UW

· interpolation to various surfaces, trajectories, hundreds of diagnostic calculations

· Fortran source provided

· based on the NCAR Graphics package

· pre-processor converts WRF, WPS, and WRFDA data to RIP input format

· table driven

UNIX Environment Settings

There are only a few environmental settings that are WRF system related. Most of these are not required, but when things start acting badly, test some out. In Cshell syntax:

· setenv WRF_EM_CORE 1

· explicitly defines which model core to build

· setenv WRF_NMM_CORE 0

· explicitly defines which model core NOT to build

· setenv WRF_DA_CORE 0

· explicitly defines no data assimilation

· setenv NETCDF /usr/local/netcdf (or wherever you have it stored)
· all of the WRF components want both the lib and the include directories

· setenv OMP_NUM_THREADS n (where n is the number of procs to use)
· if you have OpenMP on your system, this is how to specify the number of threads

· setenv MP_STACK_SIZE 64000000

· OpenMP blows through the stack size, set it large

· However, if the model still crashes, it may be a problem of over- specifying stack size. Set stack size sufficiently large, but not unlimited.

· On some systems, the equivalent parameter could be KMP_STACKSIZE, or OMP_STACKSIZE

· unlimit

· especially if you are on a small system

Building the WRF Code

The WRF code has a fairly complicated build mechanism. It tries to determine the architecture that you are on, and then presents you with options to allow you to select the preferred build method. For example, if you are on a Linux machine, it determines whether this is a 32 or 64 bit machine, and then prompts you for the desired usage of processors (such as serial, shared memory, or distributed memory). You select from among the available compiling options in the build mechanism. For example, do not choose a PGI build if you do not have PGI compilers installed on your system.

· Get the WRF zipped tar file for WRFV3 from

· http://www.mmm.ucar.edu/wrf/users/download/get_source.html

· Always get the latest version if you are not trying to continue a long project, or duplicate previous work

· unzip and untar the file

· gzip -cd WRFV3.TAR.gz | tar -xf –

· Alternatively tar –xzf WRFV3.TAR.gz on some systems

· cd WRFV3

· ./configure

· serial means single processor

· smpar means Symmetric Multi-Processing/Shared Memory Parallel (OpenMP) – this does not reliably work on most non-IBM machines

· dmpar means Distributed Memory Parallel (MPI)

· dm+sm means Distributed Memory with Shared Memory (for example, MPI across nodes with OpenMP within a node) – usually better performance is through dmpar only

· The second option is for nesting: 0 = no nesting, 1 = standard static nesting, 2 = nesting with a prescribed set of moves, 3 = nesting that allows a domain to follow a vortex (typhoon tracking)

· A typical option that may be included on the ./configure command is the flag “-d” (for debug). This option removes optimization, which is useful when running a debugger (such as gdb or dbx)

· For bounds checking and some additional exception handling, the debugging flag “-D” may be selected. Only PGI, Intel, and gfortran have been set up to use this option.

· ./compile em_real (or any of the directory names in ./WRFV3/test directory)

· ls -ls main/*.exe

· If you built a real-data case, you should see ndown.exe, real.exe, and wrf.exe

· If you built an ideal-data case, you should see ideal.exe and wrf.exe

The WRF code supports a parallel build option, an option that compiles separate source code files in the WRF directories at the same time on separate processors (though those processors need to share memory) via a parallel make. The purpose of the parallel build option is to be able to speed-up the time required to construct executables. In practice, users typically see approximately a 2x speed-up, a limit imposed by the various dependencies in the code due to modules and USE association. To enable the parallel build option, the user sets an environment variable, J. In csh, to utilize two processors, before the ./compile command, issue the following:

setenv J “-j 2”

Users may wish to only use a single processor for the build. In which case:

setenv J “-j 1”

Users wishing to run the WRF chemistry code must first download the WRF model tar file, and untar it. Then the chemistry code is untar’ed in the WRFV3 directory (this is the chem directory structure). Once the source code from the tar files is combined, then users may proceed with the WRF chemistry build.

Building the WPS Code
Building WPS requires that WRFV3 be already built.

If you plan to use Grib2 data, additional libraries for zlib, png, and jasper are required. Please see details in Chapter 3.

· Get the WPS zipped tar file WPSV3.TAR.gz from

· http://www.mmm.ucar.edu/wrf/users/download/get_source.html

· Also download the geographical datasets from the same page. There are new data sets for land cover for North America (NLCD), and high-resolution urban data sets for select North American cities.

· Unzip and untar the source code file

· gzip -cd WPSV3.TAR.gz | tar -xf -

· cd WPS

· ./configure

· Choose one of the options

· Usually, serial builds are the best for an initial test. Most large domains work with a single processor for WPS

· WPS requires that you build for the appropriate Grib decoding. Select an option that is suitable for the data you will use with the ungrib program (the Grib2 option will work for either Grib1 or Grib2 data)

· If you select a Grib2 option, you must have those libraries prepared and built in advance (see the chapter on WPS for the location of these compression libraries). Add the paths to these libraries and include files using variables COMPRESSION_LIBS and COMPRESSION_INC in configure.wps. Also inside the configure.wps file is the location of the built WRFV3 directory, which needs to be modified. This is how the WPS picks up all of the required IO pieces to build the geogrid.exe and metgrid.exe files.
· ./compile

· ls -ls *.exe

· You should see geogrid.exe, ungrib.exe, and metgrid.exe (if you are missing both geogrid.exe and metgrid.exe, you probably need to fix where the path to WRF is pointing in the configure.wps file; if you are missing ungrib.exe, try a Grib1-only build to further isolate the problem)

· ls -ls util/*.exe

· You should see a number of utility executables: avg_tsfc.exe, calc_ecmwf_p.exe, g1print.exe, g2print.exe, height_ukmo.exe, mod_levs.exe, plotfmt.exe, plotgrids.exe, and rd_intermediate.exe (files requiring NCAR Graphics are plotfmt.exe and plotgrids.exe)

· If geogrid.exe and metgrid.exe executables are missing, the path to the built WRFV3 directory structure is probably incorrect (found inside the configure.wps file)

· If the ungrib.exe is missing, the Grib2 libraries are probably not linked or built correctly

· If the plotfmt.exe or the plotgrids.exe programs is missing, the NCAR Graphics path is probably set incorrectly

Building the WRFDA Code (for 3DVAR)

WRFDA uses the same build mechanism as WRF; thus, this mechanism must be instructed to configure and build the code for WRFDA rather than WRF. Additionally, the paths to libraries needed by WRFDA code must be set, as described in the steps below.

· Get the WRFDA zipped tar file, WRFDAV3.4.TAR.gz, from http://www.mmm.ucar.edu/wrf/users/download/get_source.html

· Unzip and untar the WRFDA code

· gzip -cd WRFDAV3.4.TAR.gz | tar -xf –

· This will create a directory, WRFDA

· cd WRFDA

· In addition to netCDF, set up environmental variables pointing to additional libraries required by WRFDA, such as RTTOV
· Please note: only the netCDF library is mandatory to compile the basic WRFDA system; all other libraries are optional

· If you intend to use the PREPBUFR observation data from NCEP, the environmental variable BUFR has to be set with,

setenv BUFR 1

· If you intend to use satellite radiance data, the RTM (Radiative Transfer Model) is required. The current RTM versions that WRFDA uses are CRTM v2.0.2 and RTTOV v10. WRFDA can compile with CRTM only, or RTTOV only, or both CRTM and RTTOV together

To compile WRFDA with CRTM: setenv CRTM 1

(Note: the latest available CRTM, version 2.0.2, is included in this release version and it will be compiled automatically when the appropriate environmental variable is set. Users do not need to download and install the CRTM).

To compile WRFDA with RTTOV: RTTOV still must be downloaded (http://research.metoffice.gov.uk/research/interproj/nwpsaf/rtm/rtm_rttov10.html

 HYPERLINK "http://research.metoffice.gov.uk/research/interproj/nwpsaf/rtm/rtm_rttov10.html) and installed using the same compiler as will be used to build WRFDA, since the library produced by one compiler may not be compatible with code compiled with another. Then, the necessary environment variable should be set with:"
) and installed using the same compiler that will be used to build WRFDA, since the library produced by one compiler may not be compatible with code compiled with another. Then, the necessary environment variable should be set with

setenv RTTOV ${path_for_RTTOV}

· If you intend to use gfortran and intel compilers, the following environmental setting is needed to read BUFR format radiance data

For Csh:

gfortran:setenv GFORTRAN_CONVERT_UNIT "little_endian:94-99" ifort :setenv F_UFMTENDIAN "little:94-99"

For Bash:

gfortran:export GFORTRAN_CONVERT_UNIT="little_endian:94-99" ifort :export F_UFMTENDIAN="little:94-99"

(Note: To WRFDAV3.2.1 or earlier version users, please refer to http://www.mmm.ucar.edu/wrf/users/wrfda/Docs/readBufr.htm)

· ./configure wrfda

· serial means single processor

· smpar means Symmetric Multi-Processing/Shared Memory Parallel (OpenMP)

· dmpar means Distributed Memory Parallel (MPI)

· dm+sm means Distributed Memory with Shared Memory (for example, MPI across nodes with OpenMP within a node)

· WRFDA also supports parallel build.

· ./compile all_wrfvar

· ls -ls var/build/*.exe

· If the compilation was successful, da_wrfvar.exe, da_update_bc.exe, and other executables should be found in the var/build directory. Their links are in the var/da directory; obsproc.exe should be found in the var/obsproc/src directory

Building the WRFDA Code (for 4DVAR)

Building WRFDA 4DVAR requires that WRFPLUSV3.4 be already built.

· Get the WRFPLUSV3.4 zipped tar file WRFPLUSV3.4.TAR.gz from

· http://www.mmm.ucar.edu/wrf/users/download/get_source.html

· unzip and untar the source code file

· gzip -cd WRFPLUSV3.4.TAR.gz | tar -xf -

· cd WRFPLUSV3

· ./configure wrfplus
· serial means single processor

· dmpar means Distributed Memory Parallel (MPI)

· (Note: WRFPLUS does not support Shared Memory Parallel and WRFPLUS is compiled as realsize=8)
· WRFPLUS also support parallel build.
· ./compile em_real
· ls -ls main/*.exe

· you should see ndown.exe, real.exe, and wrf.exe

· Set up the environmental variable pointing to WRFPLUS_DIR.

· setenv WRFPLUS_DIR ${path_of _wrfplusv3.4} (csh)
· export WRFPLUS_DIR=${path_of _wrfplusv3.4} (bash)

· Please refer to above section “Building WRFDA code (for 3DVAR)” to download code and set up necessary environmental variables.
· ./configure 4dvar

· serial means single processor

· dmpar means Distributed Memory Parallel (MPI)

· ./compile all_wrfvar

· ls -ls var/build/*.exe

· If the compilation was successful, da_wrfvar.exe, da_update_bc.exe, and other executables should be found in the var/build directory. Their links are in the var/da directory; obsproc.exe should be found in the var/obsproc/src directory

WRF-ARW V3: User’s Guide
2-10

WRF-ARW V3: User’s Guide
2-9

