WRF Physics Options Jimy Dudhia

WRF Physics

- Turbulence/Diffusion (diff_opt, km_opt)
- Radiation
 - Longwave (ra_lw_physics)
 - Shortwave (ra_sw_physics)
- Surface
 - Surface layer (sf_sfclay_physics)
 - Land/water surface (sf_surface_physics)
- PBL (bl_physics)
- Cumulus parameterization (cu_physics)
- Microphysics (mp_physics)

Turbulence/Diffusion

Sub-grid eddy mixing effects on all fields

diff_opt=1

- 2nd order diffusion on model levels
 - Constant vertical coefficient (kvdif)
 - Or Use with PBL
- km_opt
 - 1: constant (khdif and kvdif used)
 - 2: 1.5-order TKE prediction (not recommended with diff_opt=1)
 - 3: Smagorinsky (deformation/stability based K) (not recommended with diff_opt=1)
 - 4: 2D Smagorinsky (deformation based on horizontal wind for horizontal diffusion only)

diff_opt=2

- 2nd order horizontal diffusion
- Allows for terrain-following coordinate
- km_opt
 - 1: constant (khdif and kvdif used)
 - 2: 1.5-order TKE prediction
 - 3: Smagorinsky (deformation/stability based K)
 - 4: 2D Smagorinsky (deformation based on horizontal wind for horizontal diffusion only)

diff_opt=2 (continued)

- mix_full_fields=.true.: vertical diffusion acts on full (not perturbation) fields (recommended)
- Idealized constant surface fluxes can be added in diff_opt=2 using namelist (dynamics section)
 - tke_drag_coefficient (C_D)
 - tke_heat_flux (=H/ρcp)

Diffusion Option Choice

- Real-data case with PBL physics on
 - Best is diff_opt=1, km_opt=4
 - This complements vertical diffusion done by PBL scheme
- Idealized large-eddy resolving cases
 - km_opt=2 (tke scheme) is designed for hi-res eddyresolving modeling
- Cloud-resolving modeling (smooth or no topography)
 - diff_opt=1; km_opt=2,3
- Complex topography
 - diff_opt=2 is more accurate for sloped coordinate surfaces, and prevents diffusion up/down valley sides
- Note: WRF can run with no diffusion, but especially not recommended with even-order advection

damp_opt=1

- Upper level diffusive layer
- Enhanced horizontal and (only for diff_opt=2) vertical diffusion at top
- Cosine function of height
- Uses additional parameters
 - zdamp: depth of damping layer
 - dampcoef: nondimensional maximum magnitude of damping
- Only for idealized cases (for now)

damp_opt=2

- Upper level relaxation towards 1-d profile
- Rayleigh (relaxation) layer
- Cosine function of height
- Uses additional parameters
 - zdamp: depth of damping layer
 - dampcoef: inverse time scale (s⁻¹)
- Only for idealized cases (for now)

Radiation

Atmospheric temperature tendency
Surface radiative fluxes

Illustration of Free Atmosphere Radiation Processes

ra_lw_physics=1

RRTM scheme

- Spectral scheme
- K-distribution
- Look-up table fit to accurate calculations
- Interacts with clouds
- Ozone/CO2 from climatology

ra_lw_physics=99

GFDL longwave scheme

- used in Eta
- Spectral scheme from global model
- Also uses tables
- Interacts with clouds
- Ozone/CO2 from climatology

ra_sw_physics=1

MM5 shortwave (Dudhia)

- Simple downward calculation
- Clear-sky scattering
- Water vapor absorption
- Cloud albedo and absorption

ra_sw_physics=2

Goddard shortwave

- Spectral method
- Interacts with clouds
- Ozone effects

ra_sw_physics=99

GFDL shortwave

- Used in Eta model
- Ozone effects
- Interacts with clouds

radt

Radiation time-step recommendation

- Radiation is too expensive to call every step
- Frequency should resolve cloud-cover changes with time
- radt=1 minute per km grid size is about right (e.g. radt=10 for dx=10 km)

Surface schemes

Surface layer of atmosphere diagnostics (exchange coeffs)
Soil temperature/moisture/snow, etc.

sf_sfclay_physics=1

Monin-Obukhov similarity theory

- Taken from standard relations used in MM5 MRF PBL
- Provides exchange coefficients to surface (land) scheme
- Should be used with bl_pbl_physics=1

sf_sfclay_physics=2

Monin-Obukhov similarity theory

- Modifications due to Janjic
- Taken from standard relations used in Eta model, including Zilitinkevich thermal roughness length
- Should be used with bl_pbl_physics=2

Illustration of Surface Processes

sf_surface_physics=1

- 5-layer thermal diffusion model from MM5
- Predict ground temp and soil temps
- Thermal properties depend on land use
- No effect for water
- Provides heat and moisture fluxes for PBL

sf_surface_physics=2

Noah Land Surface Model

- Vegetation effects included
- Predicts soil temperature and soil moisture in four layers
- Predicts snow cover and canopy moisture
- Handles fractional snow cover and frozen soil
- Diagnoses skin temp and uses emissivity
- Provides heat and moisture fluxes for PBL

sf_surface_physics=3

RUC Land Surface Model (Smirnova)

- Vegetation effects included
- Predicts soil temperature and soil moisture in six layers
- Multi-layer snow model
- Provides heat and moisture fluxes for PBL

LANDUSE.TBL

LANDUSE.TBL file (ascii) has land-use properties (vegetation, urban, water, etc.)

- 24 USGS categories from 30" global dataset
- Each type is assigned summer/winter value
 - Albedo
 - Emissivity
 - Roughness length
- Other table properties (thermal inertia, moisture availability, snow albedo effect) are used by 5-layer model
- Other tables (VEGPARM.TBL, etc.) are used by Noah
- RUC LSM has internal values

Initializing LSMs

- Noah and RUC LSM require additional fields for initialization
 - Soil temperature
 - Soil moisture
 - Snow liquid equivalent
- Best source is a consistent model-derived dataset
 - Eta/GFS/AGRMET/NNRP for Noah (although some have limited soil levels available)
 - RUC for RUC
- Optimally the resolution, land-use, soil texture, should match the data source model, otherwise there will be a spin-up issue

sst_update=1

Reads lower boundary file periodically to update the sea-surface temperature (otherwise it is fixed with time)

- For long-period simulations (a week or more)
- wrflowinp_d01 created by real
- Sea-ice
 - Cannot update sea-ice cover (yet)
 - Treat sea-ice as just cold water (no initial sea ice) if using sst_update
- Vegetation fraction update can be included in file too

Planetary Boundary Layer

Boundary layer fluxes (heat, moisture, momentum)

Vertical diffusion

bl_pbl_physics=1

YSU PBL scheme (Hong and Noh)

- Non-local K mixing in dry convective boundary layer
- Depth of PBL determined from thermal profile
- Explicit treatment of entrainment
- Vertical diffusion depends on Ri in free atmosphere

bl_pbl_physics=2

Mellor-Yamada-Janjic (Eta) PBL

- ◆1.5-order, level 2.5, TKE prediction
- Local K vertical mixing in boundary layer and free atmosphere

bl_pbl_physics=99

MRF PBL scheme (Hong and Pan 1996)

- Non-local K mixing in dry convective boundary layer
- Depth of PBL determined from critical Ri number
- Vertical diffusion depends on Ri in free atmosphere

PBL Scheme Options

PBL schemes can be used for most grid sizes when surface fluxes are present

- Assumes that PBL eddies are not resolved
- At grid size dx << 1 km, this assumption breaks down</p>
- Can use 3d tke diffusion, but, this is not yet coupled to the actual surface fluxes (future version will have this)
- Currently 3d tke can only be used with constant specified surface fluxes

Cumulus Parameterization

Atmospheric heat and moisture/cloud tendencies
Surface rainfall

Illustration of Cumulus Processes

cu_physics=1

New Kain-Fritsch

- As in MM5 and Eta test version
- Includes shallow convection
- CAPE removal time scale
- Mass flux type with updrafts and downdrafts, entrainment and detrainment
- Includes cloud detrainment

Cumulus scheme

Recommendations about use

- For dx ≥ 10 km: probably need cumulus scheme
- \bullet For dx \leq 3 km: probably do not need scheme
 - However, there are cases where the earlier triggering of convection by cumulus schemes help
- ◆ For dx=3-10 km, scale separation is a ?
 - No schemes are specifically designed with this range of scales in mind

cu_physics=2

Betts-Miller-Janjic

- As in Eta model
- Adjustment type scheme
- No explicit updraft or downdraft

cu_physics=3

Grell-Devenyi Ensemble

- Multiple-closure (e.g. CAPE removal, quasiequilibrium)
- Multi-parameter (e.g maximum cap, precipitation efficiency)
- Explicit updrafts/downdrafts
- Mean feedback of ensemble is applied
- Weights can be tuned (spatially, temporally) to optimize scheme (training)

Microphysics

Atmospheric heat and moisture tendencies

Microphysical rates

Surface rainfall

Illustration of Microphysics Processes

Kessler scheme

- ◆Warm rain no ice
- Idealized microphysics

Purdue Lin et al. scheme

- 5-class microphysics including graupel
- Includes ice sedimentation

WSM 3-class scheme

- From Hong, Dudhia and Chen (2004)
- Replaces NCEP3 scheme
- 3-class microphysics with ice
- ◆Ice processes below 0 deg C
- Ice number is function of ice content
- Ice sedimentation

WSM 5-class scheme

- Also from Hong, Dudhia and Chen (2004)
- Replaces NCEP5 scheme
- 5-class microphysics with ice
- Supercooled water and snow melt
- Ice sedimentation

Ferrier (current Eta) scheme

- One prognostic total condensate variable
- Designed for efficiency
- Diagnostic ice and water species and liquid fractions

WSM 6-class scheme

- From Hong and Lim (2003 workshop)
- 6-class microphysics with graupel
- ◆Ice number concentration as in WSM3 and WSM5
- Modified accretion

- Thompson et al. graupel scheme
- From Thompson et al. (2004, MWR)
- Newer version of Reisner2 scheme
- 6-class microphysics with graupel
- Ice number concentration also predicted (double-moment ice)

mp_physics=98,99

NCEP3,NCEP5

- Old options from Version 1.3 still available for comparison
- To be phased out later

mp_zero_out

- Microphysics switch (also mp_zero_out_thresh)
- 1: all values less than threshold set to zero (except vapor)
- \bullet 2: as 1 but vapor also limited ≥ 0
- Note: this option will not conserve total water

Microphysics Options

Recommendations about choice

- Probably not necessary to use a graupel scheme for dx > 10 km
 - Updrafts producing graupel not resolved
 - Cheaper scheme may give similar results
- When resolving individual updrafts, graupel scheme should be used

Physics Interactions

Direct Interactions of Parameterizations

Physics Summary and Plans

Subgrid Turbulence

IN	WORKING ON	PLANNEI
(1) Level 2.5 TKE		
(2)3d Smagorinsky		
(3) Const. coeffs.		
(4)2d Smagorinsky		
(mesoscale)		

Microphysics

IN	WORKING ON	PLANNEL
(1) Kessler		
(2) Lin et al. [Purdue]	2-moment	Goddard
(3) WSM3	schemes	
(4) WSM5	(WSM- and	
(5) Eta (Ferrier)	Thompson-	
(6) WSM6	related)	
(8) Thompson		

Radiation

		WORKING ON	PLANNED
Long	(1)RRTM (2)Eta (GFDL)	CAMIw	Goddard Iw
Suort	(1) Dudhia [MM5] (2) Goddard (3) Eta (GFDL)	CAM sw	RRTMsw

Boundary Layer

	WORKING ON	PLANNED
(1)YSU (2)M-Y-Janjic	GFS PBL	
(99)MRF		

Surface

	IN	WORKING ON	PLANNED
layer	(1)MRF Similarity (2)Eta Similarity	GFS surface	
surface	(1)5-layer soil temp (2)Noah LSM (3)RUC LSM	CLM	

Cumulus

(1)New Kain-Fritsch (2) Betts-Miller-Janjic from GFS	(2) Botts Millor Ioniia Simpified A-S		WORKING ON	PLANNED
(2) Betts-Miller-Janjic from GFS	(2) Betts-Miller-Janjic from GFS	(1)New Kain-Fritsch	Simplified A S	
		(2) Betts-Miller-Janjic		
(3) Grell-Devenyi		(3) Grell-Devenyi		

Y				
End				
End				
	5	_		