
Tutorial Notes: WRF-VAR Software 2.1

Wei Huang （黄伟）

July 28, 2005

Many are copied/modified from John Michalakes’ 2004 lecture

Outline

• Introduction

• Software Overview

• Data Structures

• Registry

• Example

Introduction

• Intended audience for this tutorial session:
– Primarily scientific users and others who wish to:

• Work with the code
• Extend/modify the code to enable their work/research
• Address problems as they arise
• Adapt the code to take advantage of local computing resources

– Also: developers, computer scientists and software engineers, computer vendors
• Developing new functionality (e.g. new observations, new minimization package)
• Porting and benchmarking new platforms

Introduction

• Supported Platforms

IBM (AIX)

HP (OSF1)

MAC (OS X)

PC (Linux)

SGI (IRIX)

Model domain is decomposed for parallelism
Patch: section of model domain allocated to a distributed memory node
Tile: same as patch in wrf-var

• Single version of code for efficient execution on:
– Distributed-memory
– Vector and microprocessors

Parallelism in WRF-VAR: MPI Decomposition

Logical
domain

Each Patch has
ONLY 1 tile.

different to WRF

Inter-processor
communication

• Halo Region Observation

Observation in Distributed Memory

Obs. on one processor’s halo Obs. on neighboring processor

*

• Halo updates

• Periodic boundary updates

(only needed for global

3dvar)

Distributed Memory Communications

• Halo updates

• Periodic boundary updates

• Parallel transposes

all y on
patch

all x on
patch

all z on
patch

Distributed Memory Communications

WRF-VAR Software Architecture

• Hierarchical software architecture
– Insulate scientists' code from parallelism and other architecture/implementation-specific details
– Well-defined interfaces between layers, and external packages for communications, I/O, and model coupling facilitates code reuse and

exploiting of community infrastructure, e.g. ESMF.

• Borrowed from John
– Replace WRF with WRF/WRF-VAR
– Replace solve with solve_v3d
– There is NO OpenMP in wrfvar

Directory Structure

Replace wrf with wrfvar
Replace integrate with da_solve_v3d_interface
Replace solve_em with da_solve_v3d
Replace cumulus_driver with obs. (ships)

WRF-VAR Directory Structure

driver
mediation

model

Add da_3dvar directory
No physics package needed in wrf-var (yet)

Data Structures

• Data Taxonomy

• How data appears at different levels of architecture

• Grid representation in WRF-VAR arrays

• Observations

Data Structures

• WRF-VAR Data Taxonomy
– State data
– Intermediate data type 1 (I1)
– Intermediate data type 2 (I2)
– Heap storage (COMMON or Module data)

– All WRF data are used in WRF-VAR (Because of Frame, I/O API)

State Data

• Persist for the duration of a domain

• Represented as fields in domain data structure

• Arrays are represented as dynamically allocated pointer arrays in the domain data

structure

• Declared in Registry using state keyword

• Always memory dimensioned; always thread shared

• Only state arrays can be subject to I/O and Interprocessor communication

WRF-VAR Observations

• May be single level or multiple levels

• Have defined type of: ob, iv, re, and y. Ob looks like in code:

ob%ob_type(:)%field_type%[inv/qc]

Obs. structure

Ob_type and length

Obs field (u,v,t,etc.)

Innovation or quality flag

Example

Radiosonde observation appears as:

ob%sound(n)%u(lvl)%inc
ob%sound(n)%v(lvl)%qc

Radiosonde residual appears as:

re%sound(n)%u(lvl)
re%sound(n)%v(lvl)

Observation Storage

• Observation is stored in heap
– Completely self-contained and private
– Set once (Read in from disk file)
– No exchange between processors/processes

Grid Representation in Arrays

• Increasing indices in WRF-VAR arrays run
– West to East (X, or I-dimension)
– South to North (Y, or J-dimension)
– Bottom to Top (Z, or K-dimension)

• Storage order in WRF-VAR is IJK, but this is a WRF -VAR convention, not a

restriction of the WRF Software Framework

• WRF-VAR grid data are all converted to mass-grid point

WRF-VAR Registry
• "Active data-dictionary” for managing WRF-VAR data structures

– Database describing attributes of model state, intermediate, and configuration data
• Dimensionality, number of time levels, staggering
• Association with physics
• I/O classification (history, initial, restart, boundary)
• Communication points and patterns
• Configuration lists (e.g. namelists)

– Program for auto-generating sections of WRF from database:
• Allocation statements for state data, I1 data
• Argument lists for driver layer/mediation layer interfaces
• Interprocessor communications: Halo and periodic boundary updates, transposes
• Code for defining and managing run-time configuration information
• Code for forcing, feedback and interpolation of nest data

• Automates time consuming, repetitive, error-prone programming

• Insulates programmers and code from package dependencies

• Allow rapid development

• Documents the data

Registry Mechanics

%compile var

WRF-VAR source
/.F

CPP

Fortran90

wrfvar.exe

Registry/Registry
registry program:

tools/registry

inc/*.inc

Registry Data Base

• Currently implemented as a text file: Registry/Registry

• Types of entry:
– State – Describes state variables and arrays in the domain structure
– Dimspec – Describes dimensions that are used to define arrays in the model
– I1 – Describes local variables and arrays in solve
– Typedef – Describes derived types that are subtypes of the domain structure
– Rconfig – Describes a configuration (e.g. namelist) variable or array
– Package – Describes attributes of a package (e.g. physics)
– Halo – Describes halo update interprocessor communications
– Period – Describes communications for periodic boundary updates
– Xpose – Describes communications for parallel matrix transposes

State entry

• Elements
– Entry: The keyword “state”
– Type: The type of the state variable or array (real, double, integer, logical, character, or derived)
– Sym: The symbolic name of the variable or array
– Dims: A string denoting the dimensionality of the array or a hyphen (-)
– Use: A string denoting association with a solver or 4D scalar array, or a hyphen
– NumTLev: An integer indicating the number of time levels (for arrays) or hypen (for variables)
– Stagger: String indicating staggered dimensions of variable (X, Y, Z, or hyphen)
– IO: String indicating whether and how the variable is subject to I/O and Nesting
– DName: Metadata name for the variable
– Units: Metadata units of the variable
– Descrip: Metadata description of the variable

• Example
Type Sym Dims Use Tlev Stag IO Dname
Descrip
definition of a 3D, two-time level, staggered state array

state real u ijk dyn_em 2 X irh "U" "X WIND
COMPONENT“
…
typedef xb_type real u ijk - 1 - -
…
state xb_type xb - -

Dimspec entry

• Elements
– Entry: The keyword “dimspec”
– DimName: The name of the dimension (single character)
– Order: The order of the dimension in the WRF framework (1, 2, 3, or ‘-‘)
– HowDefined: specification of how the range of the dimension is defined
– CoordAxis: which axis the dimension corresponds to, if any (X, Y, Z, or C)
– DatName: metadata name of dimension

• Example

#<Table> <Dim> <Order> <How defined> <Coord-axis> <DatName>
dimspec i 1 standard_domain x west_east
dimspec j 2 standard_domain y south_north
dimspec k 3 standard_domain z bottom_top
dimspec l 3 namelist=num_soil_layers z soil_layers

Comm entries: halo

• Elements
– Entry: keywords “halo” or “period”
– Commname: name of comm operation
– Description: defines the halo or period operation

• For halo: npts:f1,f2,...[;npts:f1,f2,...]*
• For period: width:f1,f2,...[;width:f1,f2,...]*

• Example

halo HALO_XA dyn_em 24:xa%u,xa%v,xa%q,xa%p,xa%t,xa%rho,xa%rh,xa%psfc,xa%qcw,xa%qrn,xa%qt
halo HALO_XB dyn_em 24:xb%u,xb%v,xb%w,xb%wh,xb%q,xb%p,xb%t,xb%rho,xb%rh,xb%psfc,xb%slp

I/O

• Use WRF I/O API

Adding WRF-VAR to WRF Frame

• Conceptual
– WRF framework can slot in new dynamics as run-time selectable option

• Changes to:

– Mediation layer, model layer
– Registry

• Reuse:

– Top-level driver layer
– I/O infrastructure
– Parallel infrastructure

OMP
Config
Inquiry I/O API

Config
Module

WRF Tile-callable
Subroutines

Solve
DM comm

Th
re

ad
s

Data formats,
Parallel I/O

M
es

sa
ge

Pa
ss

in
g

Driver

OMP
Config
Inquiry I/O API

Config
Module

WRF Tile-callable
Subroutines

Solve
DM comm

Th
re

ad
s

Data formats,
Parallel I/O

M
es

sa
ge

Pa
ss

in
g

Driver

Registry

Adding WRF-VAR
• Steps

– Develop new or convert existing code:
• Mediation layer routine: solve
• Model layer subroutines called by solver

– Add to WRF
• Add code to source tree
• Incorporate into build mechanism
• Registry entries: data, solver options, comms
• Some additional splicing

– Single processor testing
– Analyze data-dependencies, define and implement

communication for parallelism
– Multi-processor testing

Config
Inquiry I/O API

Config
Module

-callable
Subroutines

Solve
DM comm

Data formats,
Parallel I/O

M
es

sa
ge

Pa
ss

in
g

Driver

Config
Inquiry I/O API

Config
Module

WRF-VAR
Tile

-callable
Subroutines

solve_v3d
DM comm

Data formats,
Parallel I/O

M
es

sa
ge

Pa
ss

in
g

Driver

Registry

Add new Observation

• Edit DA_Define_Structure.F to add new

type

• May need add grid array in Registry

• Make a new obs directory

• Input observation

• Link into minimization package

