
WRF Software

John Michalakes, NCAR

Dave Gill, NCAR

WRF Software Architecture Working Group

http://www.openmp.org/


Outline

• Introduction

• Computing Overview

• WRF Software Overview

- - - - - - - - - - - -

• Examples



Introduction – Intended Audience

• Intended audience for this tutorial session: scientific users and 
others who wish to:
– Understand overall design concepts and motivations
– Work with the code
– Extend/modify the code to enable their work/research
– Address problems as they arise
– Adapt the code to take advantage of local computing 

resources



Introduction – WRF Resources

• WRF project home page
– http://www.wrf-model.org

• WRF users page (linked from above)
– http://www.mmm.ucar.edu/wrf/users

• On line documentation (also from above)
– http://www.mmm.ucar.edu/wrf/WG2/software_v2

• WRF user services and help desk
– wrfhelp@ucar.edu

http://www.wrf-model.org/
http://www.mmm.ucar.edu/wrf/users
http://www.mmm.ucar.edu/wrf/WG2/software_v2
mailto:rfhelp@ucar.edu


Introduction – WRF Software Characteristics

• Developed from scratch beginning around 1998, primarily 
Fortran and C

• Requirements emphasize flexibility over a range of platforms, 
applications, users, performance

• WRF develops rapidly. First released Dec 2000; current 
release WRF v2.2 (December 2006)

• Supported by flexible efficient architecture and implementation 
called the WRF Software Framework



Introduction - WRF Software Framework Overview

• Implementation of  WRF 
Architecture
– Hierarchical organization
– Multiple dynamical cores
– Plug compatible physics
– Abstract interfaces (APIs) 

to external packages
– Performance-portable

• Designed from beginning to be 
adaptable to today’s computing 
environment for NWP

http://box.mmm.ucar.edu/wrf/WG2/
bench/

ARW solver

Physics Interfaces
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Introduction - WRF Supported Platforms

Vendor Hardware OS Compiler
Apple G4/G5 MacOS IBM, g95

X1, X1e UNICOS Cray
Opteron Linux PGI
Alpha Tru64 Compaq

Linux Intel
HPUX HP

IBM Power-3/4/5 AIX IBM
Itanium-2 Linux Intel

MIPS IRIX SGI
Sun UltraSPARC Solaris Sun

Xeon and Athlon
Itanium-2 and Opteron

Cray Inc.

Linux PGI, Intel, g95, 
Pathscale

HP/Compaq

SGI

various

Itanium-2
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Hardware: The Computer

• The ‘N’ in NWP

• Components
– Processor

• A program counter
• Arithmetic unit(s)
• Some scratch space (registers)
• Circuitry to store/retrieve from memory device
• Cache

– Memory
– Secondary storage
– Peripherals

• The implementation has been continually refined, but the 
basic idea hasn’t changed much
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Hardware has not changed much…

~50,000 flop/s
48hr 12km WRF CONUS in 600 years

6-way superscalar

36-bit floating point precision

~144 Kbytes

~5,000,000,000 flop/s
48 12km WRF CONUS in 52 Hours

A computer in 1960

IBM 7090

APPLICATION
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Dual core, 2.2 GHz chip

64-bit floating point precision

1.9 MB L2, 36 MB L3

Upto 16 GB per processor
IBM P5+

A computer in 2007



…how we use it has

• Fundamentally, processors haven’t changed much since 1960

• Quantitatively, they haven’t improved nearly enough
– 100,000x increase in peak speed
– 100,000x increase in memory size
– These are too slow and too small for even a moderately large 

NWP run today

• We make up the difference with parallelism
– Ganging multiple processors together to achieve 1011-12 

flop/second
– Aggregate available memories of 1011-12 bytes

~1,000,000,000,000 flop/s ~250 procs
48 12km WRF CONUS in under 15 minutes
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Parallel Computing Terms -- Hardware

• Processor: 
– A device that reads and executes instructions in 

sequence to produce perform operations on data 
that it gets from a memory device producing 
results that are stored back onto the memory 
device

• Node: One memory device connected to one or 
more processors. 
– Multiple processors in a node are said to share-

memory and this is “shared memory parallelism”
– They can work together because they can see 

each other’s memory
– The latency and bandwidth to memory affect 

performance
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Parallel Computing Terms -- Hardware

• Cluster: Multiple nodes connected by a network
– The processors attached to the memory in one 

node can not see the memory for processors on 
another node

– For processors on different nodes to work 
together they must send messages between the 
nodes. This is  “distributed memory parallelism”

• Network: 
– Devices and wires for sending messages 

between nodes
– Bandwidth – a measure of the number of bytes 

that can be moved in a second
– Latency – the amount of time it takes before the 

first byte of a message arrives at its destination
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Parallel Computing Terms – System Software

• Process:

– A set of instructions to be executed on a processor
– Enough state information to allow process 

execution to stop on a processor and be picked up 
again later, possibly by another processor

• Processes may be lightweight or heavyweight

– Lightweight processes, e.g. shared-memory 
threads, store very little state; just enough to stop 
and then start the process

– Heavyweight processes, e.g. UNIX processes, 
store a lot more (basically the memory image of 
the job)

“The only thing one does directly with hardware is pay for it.”
John’s Zeroth Law of Computing
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Parallel Computing Terms – System Software

• Every job has at least one heavy-weight process. 
– A job with more than one heavy-weight process is a 

distributed-memory parallel job 
– Even on the same node, heavyweight processes do not share 

memory

• Within a heavyweight process you may have some number of 
lightweight processes, called threads.
– Threads are shared-memory parallel; only threads in the same 

memory space can work together. 
– A thread never exists by itself; it is always inside a heavy-

weight process.

• Heavy-weight processes are the vehicles for distributed memory 
parallelism

• Threads (light weight processes) are the vehicles for shared
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Jobs, Processes, and Hardware

• Message Passing Interface – MPI, referred to as the 
communication layer

• MPI is used to start up and pass messages between multiple 
heavyweight processes
– The mpirun command controls the number of processes 

and how they are mapped onto nodes of the parallel 
machine

– Calls to MPI routines send and receive messages and 
control other interactions between processes

– http://www.mcs.anl.gov/mpi

APPLICATION
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http://www.mcs.anl.gov/mpi


Jobs, Processes, and Hardware

• OpenMP is used to start up and control threads within each 
process 
– Directives specify which parts of the program are multi-

threaded
– OpenMP environment variables determine the number of 

threads in each process
– http://www.openmp.org

• OpenMP is usually activated via a compiler option

• MPI is usually activated via the compiler name

• The number of processes (number of MPI processes times 
the number of threads in each process) usually corresponds to 
the number of processors

APPLICATION

HARDWARE

SYSTEM

http://www.openmp.org/


• If the machine consists of 4 nodes, each with 4 processors, how many 
different ways can you run a job to use all 16 processors?

– 4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 wrf.exe

– 8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 wrf.exe

– 16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
mpirun –np 16 wrf.exe

Examples

4 threads

1 MPI

4 threads

1 MPI

4 threads

1 MPI

4 threads

1 MPI



Examples
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Examples
• If the machine consists of 4 nodes, each with 4 processors, how many 

different ways can you run a job to use all 16 processors?

– 4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 wrf.exe

– 8 MPI processes, each with 2 threads
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Examples (cont.)

• Note, since there are 4 nodes, we can never have fewer than 4 
MPI processes because nodes do not share memory

• What happens on this same machine for the following?

setenv OMP_NUM_THREADS 8
mpirun –np 32



Application:  WRF

• WRF can be run serially or as a parallel job

• WRF uses domain decomposition to divide total amount of 
work over parallel processes 

• Since the process model has two levels (heavy-weight and 
light-weight = MPI and OpenMP), the decomposition of the 
application over processes has two levels:
– The domain is first broken up into rectangular pieces that 

are assigned to heavy-weight processes. These pieces are 
called patches

– The patches may be further subdivided into smaller 
rectangular pieces that are called tiles, and these are 
assigned to threads within the process.

APPLICATION
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SYSTEM



Model domains are decomposed for parallelism on two-levels
Patch: section of model domain  allocated to a distributed memory  node, 
this is the scope of a mediation layer solver or physics driver.

Tile: section of a patch allocated to a shared-memory processor within a 
node; this is also the scope of a model layer subroutine.

Distributed memory parallelism is over patches; shared memory parallelism 
is over tiles within patches

• Single version of code for efficient execution on:

– Distributed-memory
– Shared-memory (SMP)
– Clusters of SMPs
– Vector and microprocessors

Parallelism in WRF: Multi-level Decomposition

Logical 
domain

1 Patch, divided 
into multiple tiles

Inter-processor 
communication
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Distributed Memory Communications

Communication is required between patches when a 
horizontal index is incremented or decremented on the right-
hand-side of an assignment.  

On a patch boundary, the index may refer to a value that is 
on a different patch.

Following is an example code fragment that requires 
communication between patches

Note the tell-tale +1 and –1 expressions in indices for rr, H1,
and H2 arrays on right-hand side of assignment. 

These are horizontal data dependencies because the 
indexed operands may lie in the patch of a neighboring 
processor. That neighbor’s updates to that element of the 
array won’t be seen on this processor.

We have to communicate. 

When
Needed?

Why?

Dr Phil



(module_diffusion.F )

SUBROUTINE horizontal_diffusion_s (tendency, rr, var, . . .
. . .

DO j = jts,jte
DO k = kts,ktf
DO i = its,ite

mrdx=msft(i,j)*rdx
mrdy=msft(i,j)*rdy
tendency(i,k,j)=tendency(i,k,j)- &

(mrdx*0.5*((rr(i+1,k,j)+rr(i,k,j))*H1(i+1,k,j)- &
(rr(i-1,k,j)+rr(i,k,j))*H1(i  ,k,j))+     &

mrdy*0.5*((rr(i,k,j+1)+rr(i,k,j))*H2(i,k,j+1)- &
(rr(i,k,j-1)+rr(i,k,j))*H2(i,k,j  ))- &

msft(i,j)*(H1avg(i,k+1,j)-H1avg(i,k,j)+             &
H2avg(i,k+1,j)-H2avg(i,k,j)              &

)/dzetaw(k)                     &
)

ENDDO
ENDDO
ENDDO

. . .

Distributed Memory Communications



(module_diffusion.F )

SUBROUTINE horizontal_diffusion_s (tendency, rr, var, . . .
. . .

DO j = jts,jte
DO k = kts,ktf
DO i = its,ite

mrdx=msft(i,j)*rdx
mrdy=msft(i,j)*rdy
tendency(i,k,j)=tendency(i,k,j)- &

(mrdx*0.5*((rr(i+1,k,j)+rr(i,k,j))*H1(i+1,k,j)- &
(rr(i-1,k,j)+rr(i,k,j))*H1(i  ,k,j))+     &

mrdy*0.5*((rr(i,k,j+1)+rr(i,k,j))*H2(i,k,j+1)- &
(rr(i,k,j-1)+rr(i,k,j))*H2(i,k,j  ))- &

msft(i,j)*(H1avg(i,k+1,j)-H1avg(i,k,j)+             &
H2avg(i,k+1,j)-H2avg(i,k,j)              &

)/dzetaw(k)                     &
)

ENDDO
ENDDO
ENDDO

. . .

Distributed Memory Communications



(module_diffusion.F )

SUBROUTINE horizontal_diffusion_s (tendency, rr, var, . . .
. . .

DO j = jts,jte
DO k = kts,ktf
DO i = its,ite

mrdx=msft(i,j)*rdx
mrdy=msft(i,j)*rdy
tendency(i,k,j)=tendency(i,k,j)- &

(mrdx*0.5*((rr(i+1,k,j)+rr(i,k,j))*H1(i+1,k,j)- &
(rr(i-1,k,j)+rr(i,k,j))*H1(i  ,k,j))+     &

mrdy*0.5*((rr(i,k,j+1)+rr(i,k,j))*H2(i,k,j+1)- &
(rr(i,k,j-1)+rr(i,k,j))*H2(i,k,j  ))- &

msft(i,j)*(H1avg(i,k+1,j)-H1avg(i,k,j)+             &
H2avg(i,k+1,j)-H2avg(i,k,j)              &

)/dzetaw(k)                     &
)

ENDDO
ENDDO
ENDDO

. . .

Distributed Memory Communications



• Halo updates

Distributed Memory MPI 
Communications

memory on one processor

*
+ *
*

*

memory on neighboring processor

*
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• Halo updates

• Periodic boundary 
updates

• Parallel transposes

• Nesting scatters/gathers

Distributed Memory (MPI) 
Communications
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• Halo updates

• Periodic boundary 
updates

• Parallel transposes

• Nesting scatters/gathers

Distributed Memory (MPI) 
Communications
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• Halo updates

• Periodic boundary 
updates

• Parallel transposes

• Nesting 
scatters/gathers

Distributed Memory (MPI) 
Communications
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NEST:2.22 km INTERMEDIATE: 6.66 km

COARSE
Ross Island
6.66 km
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WRF Software Architecture

• Hierarchical software architecture
– Insulate scientists' code from parallelism and other 

architecture/implementation-specific details
– Well-defined interfaces between layers, and external packages for 

communications, I/O, and model coupling facilitates code reuse and 
exploiting of community infrastructure, e.g. ESMF.

Registry



WRF Software Architecture

• Driver Layer
– Domains: Allocates, stores, decomposes, represents abstractly 

as single data objects
– Time loop: top level, algorithms for integration over nest 

hierarchy
– Mediation Layer calls: nest forcing and feedback
– Non package-specific access:  communications and I/O
– Utilities: for example module_wrf_error, which is used for 

diagnostic prints and error stops, accessibility to run-time options

Registry



WRF Software Architecture

• Mediation Layer
– Provides to the Driver Layer

• Solve routine, which takes a domain object and advances it one time step
• I/O routines that Driver calls when it is time to do some input or output 

operation on a domain
• Nest forcing, interpolation, and feedback routines

– Provides to Model Layer
• The sequence of calls for doing a time-step for one domain is known in 

Solve routine
• Dereferences fields in calls to physics drivers and dynamics code

Calls to message passing are contained here as part of Solve routine

Registry
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• Solve routine, which takes a domain object and advances it one time step
• I/O routines that Driver calls when it is time to do some input or output 

operation on a domain
• Nest forcing, interpolation, and feedback routines

– Provides to Model Layer
• The sequence of calls for doing a time-step for one domain is known in 

Solve routine
• Dereferences fields in calls to physics drivers and dynamics code

Calls to message passing are contained here as part of Solve routine
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WRF Software Architecture

• Model Layer
– Information about the model itself: machine architecture and 

implementation aspects abstracted out and moved into layers above
– Physics and Dynamics: contains the actual WRF model routines are written 

to perform some computation over an arbitrarily sized/shaped subdomain
– F77-esque: all state data objects are simple types, passed in through 

argument list from physics drivers
– No I/O, comms, control: Model Layer routines don’t know anything about 

communication or I/O, executed on one thread – they never contain a PRINT, 
WRITE, or STOP statement

Registry
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communication or I/O, executed on one thread – they never contain a PRINT, 
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WRF Software Architecture

• Registry: an “Active” data dictionary
– Tabular listing of model state and attributes 
– Large sections of interface code generated automatically
– Scientists manipulate model state simply by modifying Registry, 

without further knowledge of code mechanics 
– Special “cases” exist: chemistry, NMM nesting, SST coupling

Registry



Call Structure Superimposed on Architecture

wrf (main/wrf.F)wrf (main/wrf.F)

integrate (frame/module_integrate.F)integrate (frame/module_integrate.F)

KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
WSM5  (phys/module_mp_wsm5.FWSM5  (phys/module_mp_wsm5.F

advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)

microphysics_driver (phys/module_microphysics_driver.F)microphysics_driver (phys/module_microphysics_driver.F)

solve_nmm (dyn_nmm/solve_nmm.F)solve_nmm (dyn_nmm/solve_nmm.F)

solve_interface (share/solve_interface.F)solve_interface (share/solve_interface.F)
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WRF Model
Top-Level
Directory
Structure

WRF Design
and
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Doc, p 5

DRIVER
MEDIATION
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Makefile
README
README_test_cases
clean
compile
configure
Registry/
arch/
dyn_em/
dyn_nnm/
external/
frame/
inc/
main/
phys/
share/
tools/
run/
test/

build
scripts

source
code
directories

execution
directories

machine build rules
CASE input files

http://www.mmm.ucar.edu/wrf/WG2/software_v2
http://www.mmm.ucar.edu/wrf/WG2/software_v2
http://www.mmm.ucar.edu/wrf/WG2/software_v2
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WRF Model Layer Interface

OMP
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All state arrays passed through 
argument list as simple (not derived) 
data types

Domain, memory, and run dimensions 
passed unambiguously in three 
physical dimensions

Model layer routines are called from 
mediation layer (physics drivers) in 
loops over tiles, which are multi-
threaded

Restrictions on Model Layer 
subroutines:

No common/module storage of 
decomposed data (exception 
allowed for set-once/read-only 
tables)

Spatial scope of a Model Layer call 
is one “tile”



SUBROUTINE driver_for_some_physics_suite ( 
. . .

!$OMP DO PARALLEL
DO ij = 1, numtiles

its = i_start(ij) ; ite = i_end(ij)
jts = j_start(ij) ; jte = j_end(ij)
CALL model_subroutine( arg1, arg2, . . .

ids , ide , jds , jde , kds , kde ,
ims , ime , jms , jme , kms , kme ,
its , ite , jts , jte , kts , kte )

END DO
. . .

END SUBROUTINE

SUBROUTINE driver_for_some_physics_suite ( 
. . .

!$OMP DO PARALLEL
DO ij = 1, numtiles

its = i_start(ij) ; ite = i_end(ij)
jts = j_start(ij) ; jte = j_end(ij)
CALL model_subroutine( arg1, arg2, . . .

ids , ide , jds , jde , kds , kde ,
ims , ime , jms , jme , kms , kme ,
its , ite , jts , jte , kts , kte )

END DO
. . .

END SUBROUTINE

WRF Model Layer Interface



template for model layer subroutine       

SUBROUTINE model_subroutine ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte )  ! Tile dims

IMPLICIT NONE

! Define Arguments (State and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

template for model layer subroutine       

SUBROUTINE model_subroutine ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte )  ! Tile dims

IMPLICIT NONE

! Define Arguments (State and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

WRF Model Layer Interface



template for model layer subroutine       

. . .
! Executable code; loops run over tile 
! dimensions
DO j = MAX(jts,jds), MIN(jte,jde-1)
DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide-1)
loc1(i,k,j) = arg1(i,k,j) + …

END DO
END DO

END DO

template for model layer subroutine       

. . .
! Executable code; loops run over tile 
! dimensions
DO j = MAX(jts,jds), MIN(jte,jde-1)
DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide-1)
loc1(i,k,j) = arg1(i,k,j) + …

END DO
END DO

END DO

WRF Model Layer Interface



template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = MAX(jts,jds), MIN(jte,jde-1)

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide-1)

loc1(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO
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END DO
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• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.
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• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.

• Memory dimensions
• Used to dimension dummy 

arguments
• Do not use for local arrays
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• Domain dimensions
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arguments
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• Tile dimensions
• Local loop ranges
• Local array dimensions
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• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.

• Memory dimensions
• Used to dimension dummy 

arguments
• Do not use for local arrays

• Tile dimensions
• Local loop ranges
• Local array dimensions

• Patch dimensions
• Start and end indices of local 

distributed memory subdomain
• Available from mediation layer 

(solve) and driver layer; not usually 
needed or used at model layer



WRF Software Overview

• Architecture

• Directory structure

• Model Layer Interface

• Data Structures

• I/O

• Registry



Driver Layer Data Structures: Domain Objects

• Driver layer
– All data for a domain is a single object, a domain derived 

data type (DDT)
– The domain DDTs are dynamically allocated/deallocated
– Linked together in a tree to represent nest hierarchy; root 

pointer is head_grid, defined in frame/module_domain.F
– Supports recursive depth-first traversal algorithm 

(frame/module_integrate.F) 1

2
4

3

head_grid 1

4

32



Model Layer Data Structures: F77

• Model layer
– All data objects are scalars and arrays of simple 

types only
– Virtually all passed in through subroutine 

argument lists
– Non-decomposed arrays and “local to a module”

storage are permitted with an initialization at the 
model start



Mediation Layer Data Structures: Objects + F77

• Mediation layer
– One task of mediation layer is to dereference fields from 

DDTs
– Therefore, sees domain data in both forms, as DDT and as 

individual fields which are components of the DDTs

• The name of a data type and how it is referenced differs 
depending on the level of the architecture



Data Structures

• WRF Data Taxonomy
– State data
– Intermediate data type 1 (I1)
– Intermediate data type 2 (I2)
– Heap storage (COMMON or Module data)
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Data Structures

• WRF Data Taxonomy
– State data
– Intermediate data type 1 (I1)
– Intermediate data type 2 (I2)
– Heap storage (COMMON or Module data)

Defined in the
module top,
typically
look-up tables
and routine
constants,
NO HORIZ
DECOMPOSED
DATA!



Mediation/Model Layer Data Structures: 
State Data

• Duration: Persist between start and stop of a domain

• Represented as fields in domain data structure
– Memory for state arrays are dynamically allocated, only big 

enough to hold the local subdomain’s (ie. patch’s) set of 
array elements 

– Always memory dimensioned
– Declared in Registry using state keyword

• Only state arrays can be subject to I/O and Interprocessor 
communication



Mediation/Model Layer Data Structures: 
I1 Data

• Persist for the duration of a single time step in solve

• Represented as fields in domain data structure
– Memory for I1 arrays are dynamically allocated, only big 

enough to hold the local subdomain’s (ie. patch’s) set of 
array elements 

– Always memory dimensioned
– Declared in Registry using I1 keyword
– Typically tendency fields computed, used, and discarded in 

a single time step



Model Layer Data Structures: 
I2 Data

• Persist for the duration of a call of the physics routine

• NOT contained within the DDT structure
– Memory for I2 arrays are dynamically allocated on 

subroutine entry, and automatically deallocated on exit 
– Always tile dimensioned
– Not declared in the Registry, not communicated, no IO, not 

passed back to the solver



Grid Representation in Arrays 

• Increasing indices in WRF arrays run
– West to East   (X, or I-dimension)
– South to North (Y, or J-dimension)
– Bottom to Top (Z, or K-dimension)

• Storage order in WRF is IKJ but this is a WRF Model 
convention, not a restriction of the WRF Software Framework 
(provides cache coherency, but long vectors possible)

• Output data has grid ordering independent of the ordering 
inside the WRF model



Grid Representation in Arrays

• The extent of the logical or domain dimensions is always the 
"staggered" grid dimension. That is, from the point of view of a
non-staggered dimension, there is always an extra cell on the 
end of the domain dimension

• In the case of the NMM dynamics (E-grid) neither the IDEth nor 
JDEth index is ever used – logically all computations run from 
JDS..JDE-1 and IDS..IDE-1 or IDS..IDE-2 (depending on the 
even/odd value of J index)
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• Architecture
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WRF I/O

• Streams: pathways into and out of model
– History + 11 auxiliary output streams (10 and 11 are 

reserved for nudging)
– Input + 11 auxiliary input streams (10 and 11 are reserved 

for nudging)
– Restart, boundary, and a special Var stream



WRF I/O

• Attributes of streams
– Variable set

• The set of WRF state variables that comprise one read 
or write on a stream

• Defined for a stream at compile time in Registry
– Format

• The format of the data outside the program (e.g. 
NetCDF), split

• Specified for a stream at run time in the namelist
– Additional namelist-controlled attributes of streams

• Dataset name
• Time interval between I/O operations on stream
• Starting, ending times for I/O (specified as intervals 

from start of run)
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WRF Registry
• "Active data-dictionary” for managing WRF data structures

– Database describing attributes of model state, intermediate, and
configuration data

• Dimensionality, number of time levels, staggering
• Association with physics
• I/O classification (history, initial, restart, boundary)
• Communication points and patterns
• Configuration lists (e.g. namelists)
• Nesting up- and down-scale interpolation

– Program for auto-generating sections of WRF from database: 
• >1100 Registry entries ⇒ 90-thousand lines of automatically 

generated WRF code
• Allocation statements for state data and I1 data
• Interprocessor communications: Halo and periodic boundary updates, 

transposes
• Code for defining and managing run-time configuration information
• Code for forcing, feedback, shifting, and interpolation of nest data



WRF Registry

• Why?
– Automates time consuming, repetitive, error-prone programming
– Insulates programmers and code from package dependencies
– Allow rapid development
– Documents the data

• A Registry file is available for each of the dynamical cores, plus special 
purpose packages

• Reference: Description of WRF Registry, 
http://www.mmm.ucar.edu/wrf/WG2/software_v2

http://box.mmm.ucar.edu/wrf/WG2


Registry Data Base

• Currently implemented as a text file: Registry/Registry.EM and 
Registry/Registry.NMM

• Types of entry:
– Dimspec – Describes dimensions that are used to define 

arrays in the model
– State – Describes state variables and arrays in the domain 

structure
– I1 – Describes local variables and arrays in solve
– Typedef – Describes derived types that are subtypes of the 

domain structure 
– Rconfig – Describes a configuration (e.g. namelist) variable or 

array
– Package – Describes attributes of a package (e.g. physics)

H l D ib h l d t i t i ti



Registry State Entry: ordinary State 

• Elements
– Entry: The keyword “state”
– Type: The type of the state variable or array (real, double, integer,

logical, character, or derived)
– Sym: The symbolic name of the variable or array
– Dims: A string denoting the dimensionality of the array or a 

hyphen (-)
– Use: A string denoting association with a solver or 4D scalar 

array, or a hyphen
– NumTLev: An integer indicating the number of time levels (for 

arrays) or hypen (for variables)
– Stagger: String indicating staggered dimensions of variable  (X, 

Y, Z, or hyphen)
– IO: String indicating whether and how the variable is subject to I/O 

and Nesting
– DName: Metadata name for the variable
– Units: Metadata units of the variable
– Descrip: Metadata description of the variable

#      Type Sym  Dims   Use     Tlev Stag IO       Dname      Descrip

state  real  u   ikjb dyn_em   2   X    irhusdf   "U"    "X WIND COMPONENT“



Registry State Entry: ordinary State 

• This single entry results in 130 lines automatically added to 43
different locations of the WRF code:
– Declaration and dynamic allocation of arrays in TYPE(domain)

• Two 3D state arrays corresponding to the 2 time levels of 
U

u_1 ( ims:ime , kms:kme , jms:jme )
u_2 ( ims:ime , kms:kme , jms:jme )

• Two LBC arrays for boundary and boundary tendencies
u_b ( max(ide,jde), kms:kme, spec_bdy_width, 4 )
u_bt ( max(ide,jde), kms:kme, spec_bdy_width, 4 )

– Nesting code to interpolate, force, feedback, and smooth u
– Addition of u to the input, restart, history, and LBC  I/O 

streams

#      Type Sym  Dims        Use     Tlev Stag IO    Dname Descrip

state  real  u   ikjb dyn_em 2   X    irhusdf "U"    "X WIND COMPONENT“



State Entry: Defining a variable-set for an I/O stream

• Fields are added to a variable-set on an I/O stream in the 
Registry

IO is a string that specifies if the variable is to be subject to initial, restart, history, or 
boundary I/O.  The string may consist of 'h' (subject to history I/O), 'i' (initial dataset), 
'r' (restart dataset), or 'b' (lateral boundary dataset).  The 'h', 'r', and 'i' specifiers may 
appear in any order or combination.  

The ‘h’ and ‘i’ specifiers may be followed by an optional integer string consisting of 
‘0’, ‘1’,  … , ‘9’ Zero denotes that the variable is part of the principal input or history 
I/O stream. The characters ‘1’ through ‘9’ denote one of the auxiliary input or history 
I/O streams.

usdf refers to nesting options: u = UP, d = DOWN, s = SMOOTH, f = FORCE

#      Type Sym  Dims   Use     Tlev Stag IO        Dname Descrip

state  real  u   ikjb dyn_em 2   X    irhusdf "U"  "X WIND COMPONENT“



State Entry: Defining Variable-set for an I/O stream

irh -- The state variable will be included in the input, restart, and history I/O streams

irh13 -- The state variable has been added to the first and third auxiliary history output 
streams; it has been removed from the principal history output stream, because zero is not 
among the integers in the integer string that follows the character 'h'

rh01 -- The state variable has been added to the first auxiliary history output stream; it is 
also retained in the principal history output

i205hr -- Now the state variable is included in the principal input stream as well as 
auxiliary inputs 2 and 5.  Note that the order of the integers is unimportant. The variable is 
also in the principal history output stream

ir12h -- No effect; there is only 1 restart data stream

i01 -- Data goes into real and into WRF

i1 -- Data goes into real only



Rconfig entry

• This defines namelist entries

• Elements
– Entry: the keyword “rconfig”
– Type: the type of the namelist variable (integer, real, logical, 

string )
– Sym: the name of the namelist variable or array
– How set: indicates how the variable is set: e.g. namelist or 

derived, and if namelist, which block of the namelist it is set in
– Nentries: specifies the dimensionality of the namelist variable or 

array. If 1 (one) it is a variable and applies to all domains; 
otherwise specify max_domains (which is an integer parameter 
defined in module_driver_constants.F).

– Default: the default value of the variable to be used if none is 
specified in the namelist; hyphen (-) for no default

• Example

#         Type       Sym              How set          Nentries Default
rconfig integer spec_bdy_width namelist,bdy_control 1          1



Rconfig entry

• Result of this Registry Entry:
– Define an namelist variable 

“spec_bdy_width” in the bdy_control
section of namelist.input

– Type integer (others: real, logical, 
character)

– If this is first entry in that section, define 
“bdy_control” as a new section in the 
namelist.input file

– Specifies that bdy_control applies to all 
domains in the run 

• if Nentries is “max_domains” then 
the entry in the namelist.input file is a 
comma-separate list, each element 
of which applies to a separate 
domain

#         Type       Sym              How set          Nentries Default
rconfig integer spec_bdy_width namelist,bdy_control 1          1

--- File: namelist.input ---

&bdy_control
spec_bdy_width = 5,
spec_zone            = 1,
relax_zone           = 4,

. . .
/



Rconfig entry

– Specify a default value of “1” if nothing is 
specified in the namelist.input file

– In the case of a multi-process run, 
generate code to read in the bdy_control
section of the namelist.input file on one 
process and broadcast the value to all 
other processes

#         Type       Sym              How set          Nentries Default
rconfig integer spec_bdy_width namelist,bdy_control 1          1

--- File: namelist.input ---

&bdy_control
spec_bdy_width = 5,
spec_zone            = 1,
relax_zone           = 4,

. . .
/



Package Entry

• Elements
– Entry: the keyword “package”,
– Package name: the name of the package: e.g. “kesslerscheme”
– Associated rconfig choice: the name of a rconfig variable and 

the value of that variable that choses this package
– Package state vars: unused at present; specify hyphen (-)
– Associated 4D scalars: the names of 4D scalar arrays and the 

fields within those arrays this package uses
# specification of microphysics options
package   passiveqv mp_physics==0    - moist:qv
package   kesslerscheme mp_physics==1    - moist:qv,qc,qr
package   linscheme mp_physics==2    - moist:qv,qc,qr,qi,qs,qg
package   ncepcloud3    mp_physics==3    - moist:qv,qc,qr
package   ncepcloud5    mp_physics==4    - moist:qv,qc,qr,qi,qs

# namelist entry that controls microphysics option
rconfig integer     mp_physics   namelist,namelist_04     max_domains 0



Outline
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• Examples
– Add a variable to the namelist
– Add an array 
– Compute a diagnostic
– Add a physics package



Example: Add a variable to the namelist

• Adding a variable to the namelist requires the inclusion of a 
new line in the Registry file:

rconfig integer my_option namelist,time_control 1 0 - "my_option" 
"test namelist option"  ""

• Accessing the variable is through an automatically generated 
function:INTEGER :: my_option

CALL nl_get_my_option( 1, my_option )



Examples

• Add a variable to the namelist

• Add an array to solver, and IO stream 

• Compute a diagnostic

• Add a physics package



Example: Add an Array

• Adding a state array to the solver, requires adding a single line 
in the Registry.

state  real  h_diabatic ikj misc 1  - r                    \
"h_diabatic"  "PREVIOUS TIMESTEP CONDENSATIONAL HEATING"

state  real  msft ij misc 1  - i012rhdu=(copy_fcnm)  \
"MAPFAC_M"    "Map scale factor on mass grid"

state  real  ht          ij misc 1  - i012rhdus             \
"HGT"         "Terrain Height"   

state  real  ht_input ij misc 1  - - \
"HGT_INPUT"   "Terrain Height from FG Input File"

state  real  TSK_SAVE    ij misc 1  - - \
"TSK_SAVE"    "SURFACE SKIN TEMPERATURE"  "K"



• Add a variable to the namelist

• Add an array 

• Compute a diagnostic

• Add a physics package

Examples



Example: Compute a Diagnostic

• Problem: Output global average and global maximum and 
lat/lon location of maximum for 10 meter wind speed in WRF

• Steps:
– Modify solve to compute wind-speed and then compute the 

local sum and maxima at the end of each time step
– Use reduction operations built-in to WRF software to 

compute the global qualitities
– Output these on one process (process zero, the “monitor”

process)



Example: Compute a Diagnostic

• Compute local sum and local max and the local indices of the local 
maximum--- File: dyn_em/solve_em.F (near the end) ---

! Compute local maximum and sum of 10m wind-speed
sum_ws = 0.
max_ws = 0.
DO j = jps, jpe
DO i = ips, ipe
wind_vel = sqrt( u10(i,j)*u10(i,j) + v10(i,j)*v10(i,j) )
IF ( wind_vel .GT. max_ws ) THEN

max_ws = wind_vel
idex = i
jdex = j

ENDIF
sum_ws = sum_ws + wind_vel

ENDDO
ENDDO



Example: Compute a Diagnostic

• Compute global sum,  global max, and indices of the global max

! Compute global sum
sum_ws = wrf_dm_sum_real ( sum_ws )

! Compute global maximum and associated i,j point
CALL wrf_dm_maxval_real ( max_ws, idex, jdex )



Example: Compute a Diagnostic
• On the process that contains the maximum value, obtain the 

latitude and longitude of that point; on other processes set to an 
artificially low value.

• The use parallel reduction to store that result on every process
IF ( ips .LE. idex .AND. idex .LE. ipe .AND.  &

jps .LE. jdex .AND. jdex .LE. jpe ) THEN
glat = xlat(idex,jdex)
glon = xlong(idex,jdex)

ELSE
glat = -99999.
glon = -99999.

ENDIF

! Compute global maximum to find glat and glon
glat = wrf_dm_max_real ( glat )
glon = wrf_dm_max_real ( glon )



Example: Compute a Diagnostic

• Output the value on process zero, the “monitor”

! Print out the result on the monitor process
IF ( wrf_dm_on_monitor() ) THEN

WRITE(outstring,*)'Avg. ',sum_ws/((ide-ids*1)*(jde-jds+1))
CALL wrf_message ( TRIM(outstring) )
WRITE(outstring,*)'Max. ',max_ws,' Lat. ',glat,&

' Lon. ',glon
CALL wrf_message ( TRIM(outstring) )

ENDIF



Example: Compute a Diagnostic

• Output from process zero of a 4 process run

--- Output file: rsl.out.0000 ---
. . .

Avg.    5.159380
Max.    15.09370     Lat.    37.25022     Lon.   -67.44571

Timing for main: time 2000-01-24_12:03:00 on domain   1:    8.96500 elapsed seconds.
Avg.    5.166167
Max.    14.97418     Lat.    37.25022     Lon.   -67.44571

Timing for main: time 2000-01-24_12:06:00 on domain   1:    4.89460 elapsed seconds.
Avg.    5.205693
Max.    14.92687     Lat.    37.25022     Lon.   -67.44571

Timing for main: time 2000-01-24_12:09:00 on domain   1:    4.83500 elapsed seconds.
. . .



• Add a variable to the namelist

• Add an array 

• Compute a diagnostic

• Add a physics package

Examples



Examples: working with WRF software

Add a new physics package 
with time varying input source to 
the model



Example: Input periodic SSTs

• Problem: adapt WRF to input a time-varying lower 
boundary condition, e.g. SSTs, from an input file for 
a new surface scheme

• Given: Input file in WRF I/O format containing 12-
hourly SST’s

• Modify WRF model to read these into a new state 
array and make available to WRF surface physics



Example: Input periodic SSTs

• Steps
– Add a new state variable and definition of a new 

surface layer package that will use the variable to 
the Registry

– Add to variable stream for an unused Auxiliary 
Input stream

– Adapt physics interface to pass new state 
variable to physics

– Setup namelist to input the file at desired interval



Example: Input periodic SSTs

• Add a new state variable to Registry/Registry.EM and put it in 
the variable set for input on AuxInput #3

– Also added to History and Restart

• Result:
– 2-D variable named nsst defined and available in 

solve_em
– Dimensions: ims:ime, jms:jme
– Input and output on the AuxInput #3 stream will include the 

variable under the name NEW_SST

#     type  symbol dims use  tl stag  io dname description       units
state real  nsst ij misc 1  - i3rh  "NEW_SST" "Time Varying SST" "K“



Example: Input periodic SSTs

• Add a new state variable to Registry/Registry.NMM and put it 
in the variable set for input on AuxInput #3

– Also added to History and Restart

• Result:
– 2-D variable named nsst defined and available in 

solve_nmm
– Dimensions: ims:ime, jms:jme
– Input and output on the AuxInput #3 stream will include the 

variable under the name NEW_SST

#     type  symbol dims use  tl stag  io dname description       units
state real  nsst ij misc 1  - i3rh  "NEW_SST" "Time Varying SST" "K“



Example: Input periodic SSTs

• Pass new state variable to surface physics

--- File: dyn_em/solve_em.F ---

CALL surface_driver(                                          &
. . .

! Optional
&        ,QV_CURR=moist(ims,kms,jms,P_QV), F_QV=F_QV                 &
&        ,QC_CURR=moist(ims,kms,jms,P_QC), F_QC=F_QC                 &
&        ,QR_CURR=moist(ims,kms,jms,P_QR), F_QR=F_QR                 &
&        ,QI_CURR=moist(ims,kms,jms,P_QI), F_QI=F_QI                 &
&        ,QS_CURR=moist(ims,kms,jms,P_QS), F_QS=F_QS                 &
&        ,QG_CURR=moist(ims,kms,jms,P_QG), F_QG=F_QG                 &
&        ,NSST=grid%nsst                                             & ! new
&        ,CAPG=grid%capg, EMISS=grid%emiss, HOL=hol,MOL=grid%mol     &
&        ,RAINBL=grid%rainbl,SR=grid%em_sr                           &
&        ,RAINNCV=grid%rainncv,REGIME=regime,T2=grid%t2,THC=grid%thc &

. . . 



Example: Input periodic SSTs

• Add new variable nsst to Physics Driver in Mediation Layer

• By making this an “Optional” argument, we preserve the driver’s 
compatibility with other cores and with versions of WRF where this 
variable hasn’t been added.

--- File: phys/module_surface_driver.F ---

SUBROUTINE surface_driver(                                   &
. . .

!  Other optionals (more or less em specific)
&          ,nsst &
&          ,capg,emiss,hol,mol &
&          ,rainncv,rainbl,regime,t2,thc                   &
&          ,qsg,qvg,qcg,soilt1,tsnav                       &
&          ,smfr3d,keepfr3dflag                            &

!  Other optionals (more or less nmm specific)
&          ,potevp,snopcx,soiltb,sr &

))
. . .

REAL, DIMENSION( ims:ime, jms:jme ), OPTIONAL, INTENT(INOUT)::   nsst



--- File: phys/module_surface_driver ---

!$OMP PARALLEL DO   &
!$OMP PRIVATE ( ij, i, j, k )

DO ij = 1 , num_tiles
sfclay_select: SELECT CASE(sf_sfclay_physics)

CASE (SFCLAYSCHEME)
. . .

CASE (NEWSFCSCHEME)  ! <- This is defined by the Registry “package” entry

IF (PRESENT(nsst))  THEN
CALL NEWSFCCHEME(                                   &

nsst,                                                &
ids,ide, jds,jde, kds,kde,                           &
ims,ime, jms,jme, kms,kme,                           &
i_start(ij),i_end(ij), j_start(ij),j_end(ij), kts,kte    )

ELSE
CALL wrf_error_fatal('Missing argument for NEWSCHEME in surface driver')

ENDIF
. . .

END SELECT sfclay_select
ENDDO

!$OMP END PARALLEL DO

Example: Input periodic SSTs

• Add call to Model-Layer subroutine for new physics package to Surface Driver

• Note the PRESENT test to make sure new optional variable nsst is available



Example: Input periodic SSTs

• Add definition for new physics package NEWSCHEME as 
setting 4 for namelist variable sf_sfclay_physics

• This creates a defined constant NEWSFCSCHEME and 
represents selection of the new scheme when the namelist 
variable sf_sfclay_physics is set to ‘4’ in the namelist.input file

• clean –a and recompile so code and Registry changes take 
effect

rconfig   integer  sf_sfclay_physics   namelist,physics   max_domains    0

package   sfclayscheme   sf_sfclay_physics==1        - -
package   myjsfcscheme   sf_sfclay_physics==2        - -
package   gfssfcscheme   sf_sfclay_physics==3        - -
package   newsfcscheme   sf_sfclay_physics==4 - -



Example: Input periodic SSTs

• Setup namelist to input SSTs from the file at desired interval

• Run code with sst_input file in run-directory

--- File: namelist.input ---

&time_control
. . .

auxinput3_inname      = "sst_input"
auxinput3_interval_h  = 12
. . .

/

. . .
&physics
sf_sfclay_physics = 4, 4, 4
. . .

/



Example: Input periodic SSTs

• A few notes…
– The read times and the time-stamps in the input 

file must match exactly
– We haven’t done anything about what happens if 

the file runs out of time periods (the last time 
period read will be used over and over again, 
though you’ll see some error messages in the 
output if you set debug_level to be 1 or greater in 
namelist.input)

– We haven’t said anything about what generates 
sst_input
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