Initialization for Idealized Cases

Bill Skamarock skamaroc@ucar.edu

Why do we provide idealized cases?

1. The cases provide simple tests of the dynamics solver for a broad range of space and time scale:

LES - Δx meters, Δt < second; Baroclinic waves - Δx 100 km, Δt = 30 minutes.

- 2. The test cases reproduce known solutions (analytic, converged, or otherwise).
- 3. The cases provide a starting point for other idealized experiments.

Color Legend

Directories, Files

Commands, Executions

Special Comments

WRF ARW code

Test Cases for the WRF ARW Model

• 2D flow over a bell-shaped mountain

WRFV2/test/em_hill2d_x

Test Cases for the WRF ARW Model

• 2D flow over a bell-shaped mountain

```
WRFV2/test/em_hill2d_x
```

2D squall line (x, z; y, z)
 WRFV2/test/em_squall2d_x
 WRFV2/test/em_squall2d_y

- 3D quarter-circle shear supercell thunderstorm WRFV2/test/em quarter ss
- 3D baroclinic wave

• 2D gravity current

```
WRFV2/test/em grav2d x
```

2D Flow Over a Bell-Shaped Mountain

(dx = 2 km, dt = 20 s, T=10 hr)

Run - 2D Flow Over a Bell-Shaped Mountain

From WRFV2 - compile em_hill2d_x; From WRFV2/test/em_hill2d_x - run ideal.exe, run wrf.exe

Run 2D Flow Over a Bell-Shaped Mountain

From WRFV2 - compile em_hill2d_x; From WRFV2/test/em_hill2d_x - run ideal.exe, run wrf.exe

Initialization code is in

WRFV2/dyn_em/module_initialize_hill2d_x.F

The terrain profile is set in the initialization code.

Run 2D Flow Over a Bell-Shaped Mountain

```
From WRFV2 - compile em_hill2d_x;
From WRFV2/test/em_hill2d_x - run ideal.exe, run wrf.exe
```

Initialization code is in

WRFV2/dyn_em/module_initialize_hill2d_x.F
The terrain profile is set in the initialization code.

The thermodynamic sounding and the initial wind field is read from the ascii file WRFV2/test/em hill2d x/input sounding

The 2D solution is computed by integrating the 3D model with 3 points in periodic direction y; without an initial perturbation in y the solution remains y-independent.

Setting the terrain heights

```
In WRFV2/dyn em/module initialize hill2d x.F
              SUBROUTINE init domain rk ( grid, &
              hm = 100.
                          mountain height and half-width
              xa = 5.0
              icm = ide/2 ← _____ mountain position in domain
                                  (central gridpoint in x)
             DO j=jts,jte
             DO i=its,ite ! flat surface
Set height,
             ht(i,j) = 0.
field \longrightarrow ht(i,j) = hm/(1.+(float(i-icm)/xa)**2)
               ht(i,j) = hm1*exp(-((float(i-icm)/xa1)**2)) &
                            *( (cos(pii*float(i-icm)/xal1))**2 )
               phb(i,1,j) = q*ht(i,j)
               php(i,1,j) = 0. ← lower boundary condition
               ph0(i,1,j) = phb(i,1,j)
             ENDDO
             ENDDO
July 2007
```

Setting the Initial Condition

In WRFV2/dyn em/module initialize hill2d x.F

```
SUBROUTINE init domain rk ( grid, &
! get the sounding from the ascii sounding file, first get dry sounding and
! calculate base state
                                                          Base state
 write(6,*) ' getting dry sounding for base state '
                                                        Dry sounding
 dry sounding = .true.
 CALL get sounding( zk, p in, pd in, theta, rho, u, v, qv, dry sounding, &
                     nl max, nl in, .true.)
. . .
  calculate full state for each column - this includes moisture.
                                                          Full state
 write(6,*) ' getting moist sounding for full state '
                                                          Moist sounding
 dry sounding = .false. <
 CALL get sounding( zk, p in, pd in, theta, rho, u, v, qv, dry sounding, &
                     nl max, nl in, .false. )
. . .
```

Sounding File Format

File: WRFV2/test/em_quarter_ss/input_sounding

line 1	surface Pressure (mb) 1000.00	surface potential Temperature (K)	Surface vapor mixing ratio (g/kg)		
	250.00	300.45	14.00	-7.88	-3.58
	750.00	301.25	14.00	-7.88 -6.94	-0.89
each	1250.00	302.47	13.50	-6.9 4 -5.17	1.33
successive	1750.00	303.93	11.10	-3.17 -2.76	2.84
line is a	2250.00	305.31	9.06	0.01	3.47
point in the	2750.00	306.81	7.36	2.87	3.49
sounding	3250.00	308.46	5.95	5.73	3.49
	3750.00	310.03	4.78	8.58	3.49
	4250.00	311.74	3.82	11.44	3.49
	4750.00	313.48	3.01	14.30	3.49
	height (m)	potential temperature (K)	vapor	U (west-east) velocity (m/s)	V
July 2007				(()

2D squall line simulation Squall-Line Simulations, T = 3600 s

 $dx = dz = 250 \text{ m}, \ v = 300 \text{ m}^2/\text{s}$

Run 2D squall line simulation

squall2d_x is (x,z), squall2d_y is (y,z); both produce the same solution.

From WRFV2 – compile em_squall2d_x; From WRFV2/test/em_squall2d_x – run ideal.exe, run wrf.exe

Initialization code is in

WRFV2/dyn_em/module_initialize_squall2d_x.F This code also introduces the initial perturbation.

The thermodynamic sounding and hodograph is in the ascii input file WRFV2/test/em squall2d x/input sounding

3D supercell simulation

Height coordinate model

 $(dx=dy=2\ km,\,dz=500\ m,\,dt=12\ s,\,160\ x\ 160\ x\ 20\ km\ domain\)$ Surface temperature, surface winds and cloud field at 2 hours

Run 3D supercell simulation

From WRFV2 – compile em_quarter_ss; From WRFV2/test/em_quarter_ss – run ideal.exe, run wrf.exe

Initialization code is in

WRFV2/dyn_em/module_initialize_quarter_ss.F

The thermodynamic sounding and hodograph is read from the ascii input file

WRFV2/test/em_quarter_ss/input_sounding

The initial perturbation (warm bubble) is hardwired in the initialization code.

Setting the initial perturbation

In WRFV2/dyn em/module initialize quarter ss.F

```
SUBROUTINE init domain rk ( grid, &
                    thermal perturbation to kick off convection
                                                                   horizontal radius of the
                    DO J = jts, min(jde-1,jte)
                      yrad = dy*float(j-nyc)/10000.
                                                                   perturbation is 10 km, centered
                      yrad = 0.
                                                                   at (x,y) gridpoints (nxc, nyc)
                      DO I = its, min(ide-1,ite)
                        xrad = dx*float(i-nxc)/10000.
                        xrad = 0.
                        DO K = 1, kte-1
                  ! put in preturbation theta (bubble) and recalc density. note,
                  ! the mass in the column is not changing, so when theta changes,
                  ! we recompute density and geopotential
                          zrad = 0.5*(ph 1(i,k,j)+ph 1(i,k+1,j) &
                                                                        vertical radius of the
                                     +phb(i,k,j)+phb(i,k+1,j))/q
                          zrad = (zrad-1500.)/1500.
                                                                        perturbation is 1500 m
                          RAD=SQRT(xrad*xrad+yrad*yrad*zrad*zrad)
                          IF (RAD <= 1.) THEN
perturbation added
                           T 1(i,k,j)=T 1(i,k,j)+delt*COS(.5*PI*RAD)**2
to initial theta field
                                                                                maximum amplitude
                             T 2(i,k,j)=T 1(i,k,j)
                             qvf = 1. + 1.61*moist 1(i,k,j,P QV)
                                                                                of the perturbation
                             alt(i,k,j) = (r d/p1000mb)*(t 1(i,k,j)+t0)*qvf* &
                                          (((p(i,k,j)+pb(i,k,j))/p1000mb)**cvpm)
                             al(i,k,j) = alt(i,k,j) - alb(i,k,j)
                          ENDIF
                        ENDDO
```

Moist Baroclinic Wave Simulation

Height coordinate model (dx = 100 km, dz = 250 m, dt = 600 s) Surface temperature, surface winds, cloud and rain water

Open Channel Baroclinic Wave Simulation

Day 5, dt = 600 s, dx = dy = 100 km, 14000 x 8000 km

Run Moist Baroclinic Wave Simulation

From WRFV2 – compile em_b_wave; From WRFV2/test/em_b_wave – run ideal.exe, run wrf.exe

Initialization code is in WRFV2/dyn_em/module_initialize_b_wave.F

The initial jet (y,z) is read from the binary input file WRFV2/test/em_b_wave/input_jet

The initial perturbation is hardwired in the initialization code.

Moist Baroclinic Wave Simulation

Default configuration in

WRFV2/test/em_b_wave/namelist.input runs the dry jet in a periodic channel with dimension (4000 x 8000 x 16 km) (x,y,z).

Turning on any microphysics (mp_physics > 0 in namelist.input) puts moisture into the basic state.

Switching from periodic to open boundary conditions along with lengthening the channel produces a baroclinic wave train.

The initial jet only works for dy = 100 km and 81 grid points in the y (south-north) direction.

(Straka et al, IJNMF, 1993)

2D channel (x, z; 51.2 x 6.4 km)

Initial state: theta = 300 K (neutral) + perturbation (max = 16.2 K)

Eddy viscosity = 75 m**2/s**2 (constant)

Initial state, potential temperature (c.i. = 1 K)

July 2007

July 2007

Default case, dx = 100 m, 5th order upwind advection, uses namelist.input.100m

dx = 200 m, 5th order upwind advection, use namelist.input.200m

dx = 400 m, 5th order upwind advection, use namelist.input.400m

5th order upwind advection, use namelist.input.200m and input_sounding.um=20

use namelist.input.100m with 2nd order advection and input_sounding.um=20

use namelist.input.200m with 2nd order advection and input_sounding.um=20

From WRFV2 – compile em_grav2d_x; From WRFV2/test/em_grav2d_x – run ideal.exe, run wrf.exe

Initialization code is in WRFV2/dyn em/module initialize grav2d x.F

The initial cold bubble is hardwired in the initialization code.