MEGAN and WRF-CHEM

Christine Wiedinmyer, Alex Guenther, Tiffany Duhl National Center for Atmospheric Research

Tanarit Sakulyanontvittya *University of Colorado / Environ*

Serena Chung
Washington State University

Jerome Fast
Pacific Northwest National Laboratory

Emissions for Chemical Transport Models

- Point
- Area
- Mobile
 - On-road
 - Off-road
- Fire
- Biogenic

Biogenic Emissions Modeling: MEGAN

MEGAN:

Model of Emissions of Gases and Aerosols from Nature

- Guenther et. al., Atmospheric Chemistry and Physics, 2006
 - · Other papers forthcoming
- 134 emitted chemical species
 - Isoprene
 - Monoterpenes
 - Oxygenated compounds
 - Sesquiterpenes
 - Nitrogen oxide
- 1 km² resolution
- Input files available at: http://cdp.ucar.edu

Online version of MEGAN in WRF-CHEM currently same as offline version 2.04

MEGAN Framework: Calculation of emissions

$$EM = \varepsilon \bullet \gamma_{CE} \bullet \gamma_{age} \bullet \gamma_{SM} \bullet \rho$$

$$\gamma_{CE} = \gamma_{LAI} \bullet \gamma_P \bullet \gamma_T$$

EM: Emission (µg m⁻² hr⁻¹)

ε: Emission Factor (μg m⁻² hr⁻¹)

γ_{CE}: Canopy Factor

 γ_{age} : Leaf Age Factor

 γ_{SM} : Soil Moisture Factor

ρ: Loss and Production within plant canopy

 γ_{LAI} : Leaf Area Index Factor

γ_P: PPFD Emission Activity Factor (light-dependence)

 γ_T : Temperature Response Factor

(Guenther et al., 2006)

Current MEGAN Code in WRF-CHEM

$$EM = \varepsilon \bullet \gamma_{CE} \bullet \gamma_{age} \bullet \gamma_{SM} \bullet \rho$$

$$\gamma_{CE} = \gamma_{LAI} \bullet \gamma_P \bullet \gamma_T$$

- The algorithm and data for γ SM and ρ are not yet ready. They are assigned to 1.0
- The light dependent factor is only applied to fractions of emission factors based on biological function of plants.
- Only maps of isoprene emission factors are used
 - All other species are assigned an emission factor by PFT
- No explicit canopy model
 - Xuemei Wang has implemented canopy model in one version

MEGAN Framework: Canopy Factor calculations

For isoprene:

Follow equation 14 of Guenther et al. (2006):

$$\gamma_T = \frac{E_{OPT} * C_{T2} * \exp(C_{T1} * x)}{(C_{T2} - C_{T1} * (1 - \exp(C_{T2} * x)))}$$

Where

$$x = \frac{\left[(1/T_{opt}) - (1/T_{hr}) \right]}{0.00831}$$

$$E_{OPT} = 1.75 * (\exp(0.08 * (T_{daily} - 297))$$

$$T_{opt} = 313 + (0.6 * (T_{daily} - 297))$$

 T_{hr} = hourly air temperature (K)

T_{daily} = daily average air temperature (K) representative of model simulation period

$$C_{T1} = 80$$

 $C_{T2} = 200$

For Monoterpenes:

From Guenther et al., 1995

$$\gamma_T = \exp[\beta \bullet (T - T_s)]$$

MEGAN Framework: Canopy Factor calculations

 $\gamma_{\rm p}$ = the dependence of emissions on light This is based on equations 11-13 of Guenther et al. (2006). Where:

 $\gamma_p = 0$ when $a \le 0, a \ge 180$

$$\gamma_P = \sin(a) * \left[2.46 * 0.9 * \phi^3 * \left(1 + 0.0005 * (P_{daily} - 400) \right) \right]$$
when
 $0 < a < 180$

Where

 ϕ = above canopy PPFD transmission (non-dimensional) P_{daily} = daily average above canopy PPFD ($\mu mol \ m^{-2} \ s^{-1}$) a = solar angle (degree)

$$\phi = \frac{P_{ac}}{\sin(a) * P_{toa}}$$

 $\phi = \frac{P_{ac}}{\sin(a) * P_{toa}}$ where $P_{ac} = \text{above canopy PPFD (μmol m-2 s-1)}$ $P_{toa} = \text{PPFD at the top of atmosphere (μmol m-2 s-1)}$

$$P_{ac} = DSW * (4.66 \frac{\mu mol}{m^2 s}) * 0.5$$

$$P_{toa} = 3000 + 99 * \cos[2 * 3.14 - (DOY - 10) / 365]$$

where DOY = day of year

MEGAN Framework: Canopy Factor calculations

 γ_{LAI} = the dependence of the emissions on Leaf Area Index.

$$\gamma_{LAI} = 0.49 * LAIc / [(1+0.2* LAIc^2)^{0.5}]$$

Where:

LAIc = leaf area index of the current month (or the month that is being simulated)

Emission Factors for Isoprene

Fig. 5. Monthly normalized isoprene emission rates estimated with MEGAN for 2003. Rates are normalized by the emission estimated for standard LAI ($=5 \, \mathrm{m}^2 \, \mathrm{m}^{-2}$) and leaf age (80% mature leaves). These normalized rates illustrate the variations associated with changes in only LAI and leaf age; i.e. all other model drivers are held constant.

Table 1: Input parameters for MEGANv2.0, including class of compound (1-20), base emission factors (mg m⁻² hr⁻¹) for broadleaf trees (EF_{BT}), Needleaf Trees (EF_{NT}), Shrubs (EF_{SHR}), and Crops/Grasses (EF_{CG}). β is the dimensionless parameter used to calculate γ_T for compounds other than isoprene. The light dependent fraction (LDF) is the fraction of the total emissions that should have a light dependency assigned.

ClassName	Class ID	EF _{BT}	EF _{NT}	EF _{SHR}	EF _{GC}	β	Leaf Age Case	LDF
Isoprene	1	13000	2000	11000	400	0.09	5	1
MBO	2	5	100	8	0.1	0.09	5	1
Myrcene	3	20	75	22	0.3	0.09	2	0.05
Sabinene	4	45	70	50	0.7	0.09	2	0.1
limonene	5	45	100	52	0.7	0.09	2	0.05
carene <3->	6	18	160	25	0.3	0.09	2	0.05
ocimene <trans beta=""></trans>	7	90	60	85	1	0.09	2	0.8
pinene <beta-></beta->	8	90	300	100	1.5	0.09	2	0.1
pinene <alpha-></alpha->	9	180	450	200	2	0.09	2	0.1
farnescene <alpha-></alpha->	10	60	30	50	0.9	0.15	3	0.8
caryophyllene <beta-></beta->	11	60	75	65	1.2	0.15	3	0.8
Methanol	12	400	400	400	400	0.09	4	0
Acetone	13	100	100	100	100	0.11	1	0
Acetaldehyde and ethanol	14	120	120	120	120	0.13	1	0
formic acid, formaldehyde, acetic acid	15	70	70	70	70	0.09	1	0
methane	16	300	300	300	300	0.05	1	0.75
nitrogen gases: NO, NH3, N2O	17	5	5	41	200	0.07	1	0
other monoterpenes	18	87.2	180.4	108.2	4.81	0.09	2	0.1
other sesquiterpenes	19	107.7	125.4	104.4	1.83	0.15	3	0.8
other VC	20	969.2	969.2	969.2	969.2	0.09	1	0.75

Values can be edited in module_data_megan.F

MEGAN Input file

Includes emission factors, LAI, plant functional type fractions, and climatological temperature and solar radiation for each model grid cell

Preprocessed prior to WRF-chem simulation*

Process 3:

Speciation of Emissions to pre-determined Mechanism: *Current Options include: CBMZ, SAPRC99, SAPRCII, RADM2, RACM*

Return emissions to model

MEGAN INPUT FILE

- MEGAN input file needs to be preprocessed before model simulation
 - Documentation being developed
 - Currently requires geographic processing software
- File must include:
 - Model Grid information
 - Normalized Isoprene Emission factor*
 - From NCAR Community Data Portal
 - Values from downloaded grid converted from g/km2/hr to mole/km2/hr
 - Monthly LAI
 - From NCAR Community Data Portal
 - Plant Functional Type (PFT)
 - From NCAR Community Data Portal
 - Average monthly temperature and downward solar radiation
 - Currently only uses grid-specific isoprene emission factors
 - •User may edit variables in module_data_megan2.F

Monthly Temperature and Solar Radiation

- NCEP NARR (<u>NCEP North American Regional Reanalysis</u>)
 http://www.cdc.noaa.gov/cdc/data.narr.html
- Temperature and Solar Radiation data:
 http://www.cdc.noaa.gov/PublicData/tables/monthly.html
- For Downward Solar Radiation:
 http://gswp2.tkl.iis.u-tokyo.ac.jp/gswp2/free/ddc.html

MEGAN vs. BEIS3.11

BEIS 3.0

MEGAN

Isoprene Emission

BEIS3.0 (ISOPRENE mass) July Monthly Average

 $Max = 4358 \text{ g/km}^2\text{-hr}$

Total average emission = 7417 tons hr⁻¹

Isoprene Emission

MEGANV2.02 EF-S06 (ISOPRENE mass) July Monthly Average

 $Max = 10542 \text{ g/km}^2\text{-hr}$

Total average emission = 12145 tons hr-1

Still Working on MEGAN implementation

- -Input processing and documentation
- -Evaluation of code/output
- -WRF-Chem v3 being validated

Christine Wiedinmyer christin@ucar.edu
*Limited support available

Preparing MEGAN Input file

- MEGAN file is space-delimited
- File contains:
 - Grid information (i,j)
 - Isoprene Emission Factor for each grid cell
 - PFT percentage (broadleaf trees, needleleaf trees, shrubs, herbaceous)
 - Monthly LAI
 - Monthly air temperature
 - Monthly downward solar radiation

Preparing MEGAN input file

Right now, methods use ArcGIS software

- Download raster files from http://cdp.ucar.edu
- Create polygon file of model domain/grid
 - Include i,j cell numbers
- Perform zonal statistics on rasters from cdp
 - Use mean value of isoprene EF, PFTs, monthly LAI
- Find monthly-averaged air temperature and downward solar radiation
 - Interpret mean of each grid cell for each month
- Combine all information into one file
- Format for input to model

actions Hierarchy: MEGAN (Model of Emissions of Gases and Aerosols from Nature) > MEGAN Version 2.0 > Input > ESRI_GRID_30sec >

EF

-level access

You may either download a file by clicking on it (hyperlink in the first column, if available), or add files to your Data Cart to prepare a multi-files request.

1-3 of 3 datafiles

start from file #: 0 +1 and display 20 files per page (max: 100) (NEW: optional filename match:) go

My Data Cart: ▶Add selected files to Data Cart | ▶Empty Data Cart | ▶Go to Data Cart .

File	Metadata	Format	Туре	Size	Add to Data Cart	OPeNDAP
EF.zip				180783419	□ NCAR DISK	
ef21.zip				726388093	□ NCAR DISK	
efmt21.zip				1039497882	☐ NCAR DISK	

NEW: Select All Files: O NCAR DISK O Deselect All Files

1-3 of 3 datafiles

User: christin | CDP Home | Help Page | Contact Us | 🚔 My Data Cart | 🚔 My Data Requests | Privacy Policy | Terms of Use

Portal Software Version 4.4 © UCAR, all rights reserved.

NCAR Community Data Portal, sponsored by

Preparing MEGAN input file

Fields of file:

COL,ROW,EF_ISO2,LAI1,LAI2,LAI3,LAI4,LAI5,LAI6_1,LAI7_1,LAI8,LAI9, LAI10,LAI11,LAI12,pft_bt,pft_nt,pft_shr,pft_gc,T1,T2,T3,T4,T5,T6,T7,T 8,T9,T10,T11,T12,DSW1,DSW2,DSW3,DSW4,DSW5,DSW6,DSW7,D SW8,DSW9,DSW10,DSW11,DSW12

Format:

```
'(2(I5," "),41(E11.2E2," "))'
```