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Quantifying Photolysis Processes

2

Photolysis reaction: AB + hν A + B

Photolysis frequency (s-1)    J =   ∫λ

 

F(λ) σ(λ) φ(λ)
 

dλ

(other names: photodissociation rate coefficient, J-value)

Photolysis rates:



CALCULATION OF PHOTOLYSIS COEFFICIENTS

J (s-1)   =   ∫λ

 

F(λ) σ(λ) φ(λ)
 

dλ

F(λ) = spectral actinic flux, quanta cm-2 s-1 nm-1

∝
 

probability of photon near molecule.

σ(λ) = absorption cross section, cm2 molec-1

∝
 

probability that photon is absorbed.

φ(λ) = photodissociation quantum yield, molec quanta-1

∝
 

probability that absorbed photon causes dissociation.
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Solar Spectrum

UNEP, 2002

O2 and O3 absorb
all UV-C (λ<280 nm)
before it reaches the 
troposphere
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Spectral Region For 
Tropospheric Photochemistry
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Typical Vertical Optical Depths, τ
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Direct transmission = exp(-τ)
Diffuse transmission can be much larger



DIFFUSE LIGHT - CLEAN SKIES, SEA LEVEL
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RADIATIVE  TRANSFER 
CONCEPTS
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Spectral Radiance, I

I(λ,θ,φ) = N(hc/λ) / (dt dA dω
 

dλ) 
units:  J s-1 m-2 sr-1 nm-1

(old name = spectral Intensity)



INTEGRALS OVER ANGULAR INCIDENCE
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Absorption and Scattering

• Absorption – inelastic, loss of radiant energy:

• Scattering – elastic, radiant energy is conserved, 
direction changes:
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SCATTERING PHASE FUNCTIONS
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The Radiative Transfer Equation

 

cos θ
dI (τ, θ, φ )

dτ
 =  − I (τ , θ, φ)  +  

ω o

4 π
F∞ e − τ/ cos θo P( θ, φ; θo , φ o )   +

+  
ω o

4π
I( τ, θ ' , φ ' )P (θ, φ; θ ' , φ ' )−1

+1∫0
2π∫ d cos θ ' dφ '

Propagation derivative Beer-Lambert 
attenuation

Scattering from
direct solar beam

Scattering from diffuse light
(multiple scattering)
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NUMERICAL SOLUTIONS TO RADIATIVE 
TRANSFER EQUATION

• Discrete ordinates
 n-streams  (n = even), angular distribution
 exact as n→∞

 
but speed ∝

 
1/n2

• Two-stream family
 delta-Eddington, many others
 very fast but not exact

• Monte Carlo
 slow, but ideal for 3D problems

• Others
 matrix operator, Feautrier, adding-doubling, 

successive orders, etc.
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Multiple Atmospheric Layers 
Each Assumed to be Homogeneous

Optical depth, Δτ
Single scattering albedo,  ωo = scatt./(scatt.+abs.)
Asymmetry factor, g:    forward fraction ~  (1+g)/2

Must specify three optical properties:
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For each layer, must specify:

1. Vertical optical depth, Δτ(λ, z)  =  σ(λ, z) n(z) Δz

for molecules: Δτ(λ, z) ~ 0 - 30
Rayleigh scatt. ~ 0.1 - 1.0 ~ λ-4

O3 absorption ~ 0 - 30

for aerosols: 0.01 - 5.0      
Δτ(λ, z) ~ λ-α

for clouds:  1-1000  
α ~ 0
cirrus ~ 1-5
cumulonimbus ~ > 100
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For each layer, must specify:

2.  Single scattering albedo, ωo (λ, z) = scatt./(scatt.+abs.)

range 0 - 1
pure scattering = 1.0
pure absorption = 0.0

for molecules, strongly λ-dependent, depending on
absorber amount, esp. O3

for aerosols: 
sulfate ~ 0.99
soot, organics ~ 0.8 or less, 
not well known but probably higher 

at shorter λ, esp. in UV

for clouds:  typically 0.9999 or larger (vis and UV)
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For each layer, must specify:

3.  Asymmetry factor, g(λ, z) = first moment of phase function

range -1 to + 1
pure back-scattering = -1
isotropic or Rayleigh = 0
pure forward scattering = +1

strongly dependent on particle size
for aerosols:, typically 0.5-0.7
for clouds, typically 0.7-0.9

Mie theory for spherical particles: can compute Δτ, ωo , g 
from knowledge of λ, particle radius and complex index of refraction

∫
+

−

ΘΘΘ=
1

1

)d(coscos)(
2
1 Pg



SIMPLE
2-STREAM
METHOD:
3 Equations 
for each layer



AEROSOLS
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Many different types of aerosols

• Size distributions
• Composition (size-dependent)

Need to determine aerosol optical properties:

τ(λ) = optical depth 
ωo = single scattering albedo
P(Θ) = phase function or g = asymmetry factor
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Mie Scattering Theory

For spherical particles, given:

Complex index of refraction = m + ik
Size parameter  α = 2πr/λ

Can compute:

Extinction efficiency   Qe (r,λ,n)    x πr2

Scattering efficiency   Qs (r,λ,n)    x πr2

Phase function P(Θ,r,λ,n)     or 
asymmetry factor   g(r,λ,n)
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Extinction Efficiency, Qext

n = 1.55 + 0.01i
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Phase function or Asymmetry factor, g

Asymmetry factor, g 
n = 1.5 + 0.01 i
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Single Scattering Albedo = Qscatt /Qext

Single Scattering Albedo, ω o 

n = 1.5 + 0.01 i
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Aerosol size distributions
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Optical properties of aerosol ensembles

Total extinction coefficient  = 

Total scattering coefficient  =

Average single scattering albedo =

Average asymmetry factor =
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UV Actinic Flux Reduction Slower Photochemistry

28Madronich, Shetter, Halls, Lefer, AGU’07

Mexico City



Aerosol Effects 
NO2 Photolysis Frequency 

19N, April, noon, AOD = 1 at 380 nm
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CLOUDS

30



UNIFORM CLOUD LAYER

• Above cloud: - high radiation because of 
reflection

• Below cloud: - lower radiation because of 
attenuation by cloud

• Inside cloud: - complicated behavior
– Top half: very high values (for high sun)
– Bottom half: lower values
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EFFECT OF UNIFORM CLOUDS ON ACTINIC FLUX

340 nm, sza = 0 deg., 
cloud between 4 and 6 km
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INSIDE CLOUDS: 
Photon Path Enhancements

Cumulonimbus, od=400
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Broken Clouds
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SPECTRAL EFFECTS OF PARTIAL CLOUD COVER

Crafword et al., 2003



PARTIAL CLOUD COVER 
Biomodal distributions

Crafword et al., 2003
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Independent Pixel Approximation 

Cloud free:
• So = direct sun
• Do = diffuse light from sky
• Go = total = So + Do

Completely covered by clouds:
• S1 = direct sun (probably very small)
• D1 = diffuse light from base of cloud
• G1 = total = S1 + D1

Mix:  Clouds cover a fraction c of the sky
• If sun is not blocked:  GNB = So + cD1 + (1-c)Do
• If sun is blocked: GB = S1 + cD1 + (1-c)Do
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Photochemistry Inside Liquid Particles

clouds

aerosol

Mayer and Madronich, 2004



Implementation in WRF-Chem

• Several radiative transfer options:
TUV (delta-Eddington, 140 λ’s)
Fast-J (8-str Feautrier, 17 λ’s)
Fast-TUV (delta-Eddington, 17 λ’s, correction table)

• Sub-grid cloud overlap schemes
Max overlap if vertically contiguous, random otherwise
Other overlap schemes?
Aqueous photochemistry enhancements?

• Aerosols:
mixing rules for index of refraction
Mie scattering integrated over size distributions, core-shell options

39
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