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Quantifying Photolysis Processes

Photolysis reaction: AB+hv—>A+B

Photolysis rates: d[f] = —J[AB]
hv
d[A] dB]| _
0 by = de |y, = A

Photolysis frequency (s1) J= |, F(A) o(A) o(1) di

(other names: photodissociation rate coefficient, J-value)




CALCULATION OF PHOTOLYSIS COEFFICIENTS

J(sY) = [ F) o) ¢(h) dir

F(L) = spectral actinic flux, quanta cm=2 st nm-
oc probability of photon near molecule.

o(A) = absorption cross section, cm? molec
oc probability that photon is absorbed.

d(1) = photodissociation quantum yield, molec quanta?
oc probability that absorbed photon causes dissociation.




Solar Spectrum
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Spectral Region For
Tropospheric Photochemistry
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Typical Vertical Optical Depths, T
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DIFFUSE LIGHT - CLEAN SKIES, SEA LEVEL
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RADIATIVE TRANSFER
CONCEPTS




Spectral Radiance, |

1(1,0,0) = N(hc/A) / (dt dA dw di)
units: Js1im2sr!nmt

incoming photons with energy hr = he/A

pass filter with wavelength range A — A+ dA

(old name = spectral Intensity)




INTEGRALS OVER ANGULAR INCIDENCE

Irradiance: The Actinic flux: The
radiation flux incident on photochemically active
a {hc:ﬂzc:ntal surface radiation flux in the earth's

atmosphere. This flux is
spherically integrated and
Is not dependent the
direction of the radiation.
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Absorption and Scattering

« Absorption — inelastic, loss of radiant energy:

@ >

e Scalftering — elastic, radiant energy Is conserved,
direction changes:

@
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SCATTERING PHASE FUNCTIONS

Small Particles (a) ) Large Particles (b)

—_— —_—
incident LIy e incident
beam ; beam

Size: smaller than one—tenth the wave— | Size: approximately one—fourth the wavelength of light
length of light A i ted i f : ;
Description: symmetric Oescription: scattering concentra in forward direction

Lerger Particles {z}

incident
beam

Size: larger than the wavelength of iight

Description: extreme cancentration of scattering in forward direction;
Jevelopment of maxima and minima of scattering at

widar angies
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The Radiative Transfer Equation

Propagation derivative | Beer-Lambert Scattering from

attenuation direct solar beam

FOOG_T/COSGOP(G,(I);GO,(I)O) n

R, 00,)P(0,0;0,0')d cos 6’ dp)
4t

Scattering from diffuse light
(multiple scattering)
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NUMERICAL SOLUTIONS TO RADIATIVE
TRANSFER EQUATION

Discrete ordinates
n-streams (n = even), angular distribution
exact as n—oo but speed o 1/n?
Two-stream family
delta-Eddington, many others
very fast but not exact
Monte Carlo
slow, but ideal for 3D problems
Others

matrix operator, Feautrier, adding-doubling,
successive orders, etc.
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Multiple Atmospheric Layers
Each Assumed to be Homogeneous

k-1

Must specify three optical properties:
Optical depth, A7
Single scattering albedo, @, = scatt./(scatt.+abs.)
Asymmetry factor, g: forward fraction ~ (1+g)/2

15



For each layer, must specify:

1. Vertical optical depth, 444, 2) = o(A, 2) n(z) Az

for molecules: 474, z) ~0 - 30

Rayleigh scatt. ~0.1- 1.0 ~ 4*
O, absorption ~ 0 - 30

for aerosols: 0.01-5.0
At(A,2) ~ 1@

for clouds: 1-1000
a~0
cirrus ~ 1-5
cumulonimbus ~ > 100
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For each layer, must specify:

2. Single scattering albedo, w,(4, z) = scatt./(scatt.+abs.)

range 0 - 1
pure scattering = 1.0
pure absorption = 0.0

for molecules, strongly A-dependent, depending on
absorber amount, esp. O,

for aerosols:
sulfate ~ 0.99
soot, organics ~ 0.8 or less,
not well known but probably higher
at shorter A, esp. in UV

for clouds: typically 0.9999 or larger (vis and UV)
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For each layer, must specify:

3. Asymmetry factor, g(4, z) = first moment of phase function

+1
range -1to+1 g= 1jP(@) cos®d(cos®)
pure back-scattering = -1 27
Isotropic or Rayleigh =0
pure forward scattering = +1

strongly dependent on particle size
for aerosols:, typically 0.5-0.7
for clouds, typically 0.7-0.9

Mie theory for spherical particles: can compute Az, @,, ¢
from knowledge of A, particle radius and complex index of refraction
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—AT fcos@
SIMPLE L&
2-STREAM  F (k) = Foo F (k +1)(1— e =%

METHOD:
3 Equations i o, F (k+D(1-e

for each layer + C (= o F (k)1 —-e ')

F(k+1)=FKe ™" + (1-floFk+1D1A-e %)+

=AT /coz B
)

—AT [ cos0*

+ 1- o Fk)X1-e ) +

—AT fcos0*

+ fo R A-e")

subject to the boundary conditions
attop (k=N): FoN)=F.cos8, and FL(N)=0
at bottom (k = 1): F1(1) = A[F,(1) + F1(1)]



AEROSOLS
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Many different types of aerosols

e Size distributions
« Composition (size-dependent)

Need to determine aerosol optical properties:

(A1) = optical depth
@, = single scattering albedo
P(®) = phase function or g = asymmetry factor
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Mie Scattering Theory

For spherical particles, given:

Complex index of refraction = m + Ik
Size parameter a=2a/1

Can compute:

Extinction efficiency Q.(r,A,n) xmr?
Scattering efficiency Q.(r,A,n) xmr?
Phase function P(®r,An) or

asymmetry factor g(r,A,n)
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Extinction Efficiency, Q.
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Phase function or Asymmetry factor, g

Asymmetry factor, g
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Single Scattering Albedo = Q.../Q.

Single Scattering Albedo, o,
n=15+0.01i
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Aerosol size distributions
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Optical properties of aerosol ensembles

Total extinction coefficient

K. (1) = T;zere(r,/i)n(r)d r

Total scattering coefficient

K,(2) = [ 2r°Q.(r, An(r)dr

Average single scattering albedo = @ (1) = K (1)/K_(1)

[a(r, A)ar*Q.(r, A)n(r)dr
Average asymmetry factor = 9(4) =>—;

jﬂrZQs(r,/l)n(r)dr

27



UV Actinic Flux Reduction - Slower Photochemistry
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Z, km

Aerosol Effects
NO, Photolysis Frequency
19N, April, noon, AOD =1 at 380 nm
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CLOUDS
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UNIFORM CLOUD LAYER

Above cloud: - high radiation because of
reflection

Below cloud: - lower radiation because of
attenuation by cloud

Inside cloud: - complicated behavior

— Top half: very high values (for high sun)
— Bottom half: lower values
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EFFECT OF UNIFORM CLOUDS ON ACTINIC FLUX

Altitude, km
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INSIDE CLOUDS:
Photon Path Enhancements
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Broken Clouds
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SPECTRAL EFFECTS OF PARTIAL CLOUD COVER

Actinic Flux Ratio (15/19 June)
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Frequency
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Biomodal distributions
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Independent Pixel Approximation

» Cloud free:
e S, =direct sun
» D, = diffuse light from sky
« G,=total=S, + D,

» Completely covered by clouds:
e S, =direct sun (probably very small)
« D, = diffuse light from base of cloud
e« G,=total=S; +D,;

» Mix: Clouds cover a fraction c of the sky
 If sun is not blocked: G =S, +cD; + (1-c)D,
 If sun is blocked: Gg =S, +cD, +(1-c)D,
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Photochemistry Inside Liquid Particles

-

—— Mie calculation, step 107
———— Geometrical optics limit
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Implementation in WRF-Chem

o Several radiative transfer options:

TUV (delta-Eddington, 140 A’S)

Fast-J (8-str Feautrier, 17 A’s)
Fast-TUV (delta-Eddington, 17 A’s, correction table)

e Sub-grid cloud overlap schemes

Max overlap if vertically contiguous, random otherwise
Other overlap schemes?
Agueous photochemistry enhancements?

e Aerosols:
mixing rules for index of refraction
Mie scattering integrated over size distributions, core-shell options
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