PHOTOLYSIS

Sasha Madronich National Center for Atmospheric Research Boulder Colorado USA NCAR

Quantifying Photolysis Processes

Photolysis reaction:

$$AB + hv \rightarrow A + B$$

Photolysis rates:

$$\frac{\mathrm{d[AB]}}{\mathrm{d}t}\Big|_{hv} = -J[AB]$$

$$\frac{\mathrm{d[A]}}{\mathrm{d}t}\Big|_{hv} = \frac{\mathrm{d[B]}}{\mathrm{d}t}\Big|_{hv} = +J[AB]$$

Photolysis frequency (s⁻¹) $J = \int_{\lambda} F(\lambda) \sigma(\lambda) \phi(\lambda) d\lambda$

(other names: photodissociation rate coefficient, J-value)

CALCULATION OF PHOTOLYSIS COEFFICIENTS

$$J(s^{-1}) = \int_{\lambda} F(\lambda) \sigma(\lambda) \phi(\lambda) d\lambda$$

- $F(\lambda)$ = spectral actinic flux, quanta cm⁻² s⁻¹ nm⁻¹ ∞ probability of photon near molecule.
- $\sigma(\lambda)$ = absorption cross section, cm² molec⁻¹ ∞ probability that photon is absorbed.
- $\phi(\lambda)$ = photodissociation quantum yield, molec quanta⁻¹ ∞ probability that absorbed photon causes dissociation.

Solar Spectrum

Spectral Region For Tropospheric Photochemistry

Typical Vertical Optical Depths, au

DIFFUSE LIGHT - CLEAN SKIES, SEA LEVEL

RADIATIVE TRANSFER CONCEPTS

Spectral Radiance, I

 $I(\lambda,\theta,\phi) = N(hc/\lambda) / (dt dA d\omega d\lambda)$ units: J s⁻¹ m⁻² sr⁻¹ nm⁻¹

INTEGRALS OVER ANGULAR INCIDENCE

Actinic flux: The photochemically active radiation flux in the earth's atmosphere. This flux is spherically integrated and is not dependent the direction of the radiation.

$$E = \int_{0}^{2\pi^{\frac{\pi}{2}}} \int_{0}^{\pi} I(\theta, \varphi) \cos \theta \sin \theta \, d\theta \, d\varphi$$

$$F = \int_{0}^{\pi} \int_{0}^{2\pi} I(\theta, \varphi) \sin \theta \, \mathrm{d} \varphi \, \mathrm{d} \theta$$

Watts m⁻²

Watts m⁻² or quanta s⁻¹ cm⁻²

Absorption and Scattering

Absorption – inelastic, loss of radiant energy:

 Scattering – elastic, radiant energy is conserved, direction changes;

SCATTERING PHASE FUNCTIONS

The Radiative Transfer Equation

Scattering from diffuse light (multiple scattering)

NUMERICAL SOLUTIONS TO RADIATIVE TRANSFER EQUATION

Discrete ordinates

n-streams (n = even), angular distribution exact as $n \rightarrow \infty$ but speed $\propto 1/n^2$

- Two-stream family
 delta-Eddington, many others
 very fast but not exact
- Monte Carlo slow, but ideal for 3D problems
- Others

matrix operator, Feautrier, adding-doubling, successive orders, etc.

Multiple Atmospheric Layers Each Assumed to be Homogeneous

Must specify three optical properties:

Optical depth, $\Delta \tau$

Single scattering albedo, $\omega_0 = scatt./(scatt. + abs.)$

Asymmetry factor, g: forward fraction ~ (1+g)/2

For each layer, must specify:

1. Vertical optical depth, $\Delta \tau(\lambda, z) = \sigma(\lambda, z) n(z) \Delta z$

for molecules:
$$\Delta \tau(\lambda, z) \sim 0 - 30$$

Rayleigh scatt. ~ $0.1 - 1.0 \sim \lambda^{-4}$

 O_3 absorption ~ 0 - 30

$$\Delta \tau(\lambda, z) \sim \lambda^{-\alpha}$$

for clouds: 1-1000

$$\alpha \sim 0$$

cirrus ~ 1-5

cumulonimbus ~> 100

For each layer, must specify:

2. Single scattering albedo, $\omega_o(\lambda, z) = \text{scatt./(scatt.+abs.)}$

```
range 0 - 1

pure scattering = 1.0

pure absorption = 0.0
```

for molecules, strongly λ -dependent, depending on absorber amount, esp. O_3

for aerosols:

sulfate ~ 0.99 soot, organics ~ 0.8 or less, not well known but probably higher at shorter λ, esp. in UV

for clouds: typically 0.9999 or larger (vis and UV)

For each layer, must specify:

3. Asymmetry factor, $g(\lambda, z)$ = first moment of phase function

range -1 to + 1
$$g = \frac{1}{2} \int_{-1}^{+1} P(\Theta) \cos \Theta \, \mathrm{d}(\cos \Theta)$$
 pure back-scattering = -1 isotropic or Rayleigh = 0 pure forward scattering = +1

strongly dependent on particle size for aerosols:, typically 0.5-0.7 for clouds, typically 0.7-0.9

Mie theory for spherical particles: can compute $\Delta \tau$, ω_o , g from knowledge of λ , particle radius and complex index of refraction

SIMPLE 2-STREAM METHOD: 3 Equations for each layer

$$F_o(k) = F_o(k+1)e^{-\Delta\tau/\cos\theta_o}$$

$$F_{\downarrow}(k) = F_{\downarrow}(k+1)e^{-\Delta\tau/\cos\theta^*} + f\omega_{o}F_{o}(k+1)(1-e^{-\Delta\tau/\cos\theta_{o}}) +$$

+
$$f\omega_{o}F_{\downarrow}(k+1)(1-e^{-\Delta\tau/\cos\theta^{*}})$$

+
$$(1-f)\omega_{o}F_{\uparrow}(k)(1-e^{-\Delta\tau/\cos\theta^{*}})$$

$$F_{\uparrow}(k+1) = F_{\uparrow}(k)e^{-\Delta\tau/\cos\theta^*} + (1-f)\omega_{o}F_{o}(k+1)(1-e^{-\Delta\tau/\cos\theta_{o}}) +$$

+
$$(1-f)\omega_{o}F_{\uparrow}(k)(1-e^{-\Delta\tau/\cos\theta^{*}})$$
 +

+
$$f\omega_{o}F_{\downarrow}(k)(1-e^{-\Delta\tau/\cos\theta^{*}})$$

subject to the boundary conditions

at top
$$(k = N)$$
: $F_o(N) = F_\infty \cos \theta_0$ and $F \downarrow (N) = 0$

at bottom
$$(k = 1)$$
: $F \uparrow (1) = A[F_o(1) + F \downarrow (1)]$

AEROSOLS

Many different types of aerosols

- Size distributions
- Composition (size-dependent)

Need to determine aerosol optical properties:

 $\tau(\lambda)$ = optical depth ω_{0} = single scattering albedo $P(\Theta)$ = phase function or g = asymmetry factor

Mie Scattering Theory

For spherical particles, given:

Complex index of refraction = m + ikSize parameter $\alpha = 2\pi r/\lambda$

Can compute:

Extinction efficiency
$$Q_e(r,\lambda,n) \propto \pi r^2$$

Scattering efficiency
$$Q_{\rm s}(r,\lambda,n) \propto \pi r^2$$

Phase function
$$P(\Theta,r,\lambda,n)$$
 or asymmetry factor $g(r,\lambda,n)$

Extinction Efficiency, Qext

Phase function or Asymmetry factor, g

Single Scattering Albedo = $Q_{\text{scatt}}/Q_{\text{ext}}$

Aerosol size distributions

Optical properties of aerosol ensembles

Total extinction coefficient =
$$K_e(\lambda) = \int_0^\infty \pi r^2 Q_e(r,\lambda) n(r) dr$$

Total scattering coefficient =
$$K_s(\lambda) = \int_0^\infty \pi r^2 Q_s(r,\lambda) n(r) dr$$

Average single scattering albedo =
$$\varpi_o(\lambda) = K_s(\lambda)/K_e(\lambda)$$

Average asymmetry factor =
$$\overline{\overline{g}}(\lambda) = \frac{\int\limits_0^\infty g(r,\lambda)\pi r^2 Q_s(r,\lambda)n(r)\,\mathrm{d}\,r}{\int\limits_0^\infty \pi r^2 Q_s(r,\lambda)n(r)\,\mathrm{d}\,r}$$

UV Actinic Flux Reduction → **Slower Photochemistry**

Aerosol Effects NO₂ Photolysis Frequency 19N, April, noon, AOD = 1 at 380 nm

CLOUDS

UNIFORM CLOUD LAYER

Above cloud: - high radiation because of reflection

- Below cloud: lower radiation because of attenuation by cloud
- Inside cloud: complicated behavior
 - Top half: very high values (for high sun)
 - Bottom half: lower values

EFFECT OF UNIFORM CLOUDS ON ACTINIC FLUX

$$- od = 100$$
 $- od = 10$
 $- od = 0$

Actinic flux, quanta cm⁻² s⁻¹

INSIDE CLOUDS:Photon Path Enhancements

Cumulonimbus, od=400

Broken Clouds

SPECTRAL EFFECTS OF PARTIAL CLOUD COVER

PARTIAL CLOUD COVER Biomodal distributions

Independent Pixel Approximation

Cloud free:

- S_0 = direct sun
- D_0 = diffuse light from sky
- $G_o = \text{total} = S_o + D_o$

Completely covered by clouds:

- S_1 = direct sun (probably very small)
- D_1 = diffuse light from base of cloud
- $G_1 = \text{total} = S_1 + D_1$

➤ Mix: Clouds cover a fraction c of the sky

• If sun is not blocked: $G_{NB} = S_o + cD_1 + (1-c)D_o$

• If sun is blocked: $G_B = S_1 + cD_1 + (1-c)D_0$

Photochemistry Inside Liquid Particles

Implementation in WRF-Chem

Several radiative transfer options:

```
TUV (delta-Eddington, 140 \lambda's)
Fast-J (8-str Feautrier, 17 \lambda's)
Fast-TUV (delta-Eddington, 17 \lambda's, correction table)
```

Sub-grid cloud overlap schemes

Max overlap if vertically contiguous, random otherwise Other overlap schemes?
Aqueous photochemistry enhancements?

Aerosols:

mixing rules for index of refraction

Mie scattering integrated over size distributions, core-shell options