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Accounting for Uncertainty
• Observational
• Model

– Model parameters
– Physics
– Verification scores

• Sampling
– Verification statistic is a realization of a random

process.
– What if the experiment were re-run under identical

conditions?
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Hypothesis Testing and
Confidence Intervals

• Hypothesis testing
– Given a null hypothesis (e.g., no bias), is there enough

evidence to reject it?
– One- or two-sided, but test is against a single null

hypothesis.

• Confidence intervals
– Related to hypothesis tests, but more useful.
– How confident are we that the true value of the statistic (e.g.,

bias) is different from a particular value?
– Interpretation for most frequentist intervals is a bit awkward.
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Confidence Intervals (CI’s)
• Parametric

– Assume the observed sample is a realization from
a known population distribution with possibly
unknown parameters (e.g., normal).

– Normal approximation CI’s are most common.
– Quick and easy.

• Nonparametric
– Assume the distribution of the observed sample is

representative of the population distribution.
– Bootstrap CI’s are most common.
– Can be computationally intensive, but easy

enough.
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Normal Approximation CI’s
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• ϴ is the statistic of interest

   (e.g., the forecast mean),
•          is the (estimated) standard error for
the statistic, ϴ, and
• zv is the v-th quantile of the standard normal
distribution.

(1-α)100% Normal CI for ϴ
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Normal Approximation CI’s
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Note: Normal
distribution is
symmetric so that

                      ,

and therefore
normal CI’s are
symmetric.
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Example: Let       be independent and
identically distributed (iid) sample from a
normal distribution with variance       .

  Then,                    is an estimate of the mean

of the sample.  And a (1-α)100% CI is given by

Normal Approximation CI’s
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Normal Approximation CI’s
• Numerous verification statistics can take this
approximation in some form or another.  In other
cases (e.g., forecast/observation variance, linear
correlation), different parametric CI’s can be used
that still rely on the underlying sample’s being iid
normal.

• Contingency table verification scores such as
probability of detection (POD) and false alarm ratio
(FAR) also have normal approximation CI’s (for
large enough sample sizes).
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Normal Approximation CI’s
• Check the validity of the

• independence assumption.

• (partial) autocorrelation function,

• time series plots

•Effect is to reduce “effective” sample size

  (i.e., increase variability)

• normal assumption

• qq-plots,

•automatic tests exist too.

(cf. Gilleland, 2008)
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Bootstrap CI’s

1. Resample with replacement from the
sample,   .

2. Calculate the verification statistic(s) of
interest from the resample in step 1.

3. Repeat steps 1 and 2 many times, say B
times, to obtain a sample of the verification
statistic(s).

4. Estimate (1-α)100% CI’s from the sample in
step 3.
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IID Bootstrap Algorithm



copyright 2009, UCAR, all rights
reserved.

Bootstrap CI’s

1. Resample with replacement from the sample, 
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For example, suppose n=4, so
we have     .

One replicate sample might be
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Bootstrap CI’s

1. Resample with replacement from the
sample,   .

2. Calculate the verification statistic(s) of
interest from the resample in step 1.

 
X
1
,K,X

n

IID Bootstrap Algorithm

For example, if we are interested in the
mean and variance, then for the replicate
sample from the last slide, we would
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Bootstrap CI’s

1. Resample with replacement from the sample, 
  .

2. Calculate the verification statistic(s) of interest from
the resample in step 1.

3. Repeat steps 1 and 2 many times, say B times, to
obtain a sample of the verification statistic(s).

B should be small enough for the algorithm to be as fast
as possible, and large enough to get an accurate
result.

In MET, B can be changed with the “n_boot_rep”
argument.  Setting n_boot_rep=0 turns
bootstrapping off.
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Bootstrap CI’s
IID Bootstrap Algorithm: Types of CI’s

1. Percentile Method CI’s*

2. Bias-corrected and adjusted (BCa)*

3. ABC

4. Basic bootstrap CI’s

5. Normal approximation

6. Bootstrap-t

*1 and 2 are available In MET
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• Block bootstrapping is one way to obtain
bootstrap CI’s for dependent samples.

• Same as IID Bootstrap, but resample blocks
of contiguous data points.

• Use percentile method for CI’s.
• Block sizes should be substantially larger

than the correlation length, but substantially
smaller than the sample size.  Usually, one
takes the greatest integer below the square
root of the sample size.

Bootstrap CI’s
Block Bootstrap Algorithm
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Non-overlapping (NBB)

Moving (MBB)

Circular (CBB)

Bootstrap CI’s
Block Bootstrap Algorithm: Blocks
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Bootstrap CI’s
Block Bootstrap Algorithm: Blocks
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For example, with n=6, and l=2:
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• Same as IID Bootstrap algorithm, but
first model the dependence in the data,
then in step 1, take random samples
from the model instead of the data.

• Generally preferable to block bootstrap.
• Stronger assumptions about the sample

than block bootstrap.
• Use percentile method for CI’s.

Bootstrap CI’s
Parametric Bootstrap Algorithm:
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Main MET bootstrap parameters to configure:
1. n_boot_rep

A value of zero turns off bootstrapping
2. boot_interval

0 = BCa
1 = percentile

3. boot_rep_prop
Default is 1 (i.e., m=n)

Bootstrap CI’s
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Main MET bootstrap parameters to configure:
boot_rep_prop
• Let m be the size of each replicate sample.
• Default for boot_rep_prop is 1 (i.e., m=n),

which is best for most problems.
• m<n may be appropriate (e.g., if population

distribution is heavy-tailed.

Bootstrap CI’s
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Bootstrap CI’s
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Practical Considerations
• Point-stat is quicker than Grid-stat, so bootstrap is

quicker with Point-stat.
• May be prohibitively computationally inefficient to

bootstrap over an entire field (i.e., over several
thousand points), but can also bootstrap the statistics
for each field over time.  Measures the (between-
field) uncertainty of the estimates over time, rather
than the within field uncertainty.

• Normal approximation intervals are quick, and
generally accurate.  Check the normality assumption!

• Check whether the samples (for either type of
interval) are independent or not.
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Thank you.  Questions?

For more information, see:
Developmental Testbed Center, 2008. Model

Evaluation Tools Version 1.1 (METv1.1) User’s
Guide.  Available at: http://www.dtcenter.org/met/

Gilleland E, 2008.  Confidence intervals for forecast
verification. Submitted as an NCAR Technical
Note.  Available at:
http://www.ral.ucar.edu/~ericg/Gilleland2008.pdf


