Why Use Objects?

Tressa L. Fowler

Typical situation

Forecast

Observation

copyright 2009, UCAR, all rights reserved.

Traditional verification matches up points, then sums them up.

Many forecasts are more than the sums of their parts.

Pixels or Pictures?

Object verification is more like what humans do.

Objects recognize the spatial relationship between points.

Simple example

Observed Forecast

copyright 2009, UCAR, all rights reserved.

REAL - observed

Forecast 1 – Distorted view of reality

Forecast 2 – Another distorted view of reality

copyright 2009, UCAR, all rights reserved.

REAL - observed

Forecast 1 – Distorted view of reality

Forecast 2 – Another distorted view of reality

copyright 2009, UCAR, all rights reserved.

This is not really a new idea . . .

Analytic cubists "analyzed" natural forms and reduced the forms into basic geometric parts on the two-dimensional picture plane.

Analytic cubism was developed between 1908 and 1912 . . .

Comparing objects can tell you things about your forecast like . . .

This:

Instead of this:

30% Too Big

POD = 0.35

Shifted west 1 km

FAR = 0.7235

Rotated 15°

CSI = 0.1587

Peak Rain 1/2" too much

• In MET, object based verification is done using the MODE (Method for Object-Based Diagnostic Evaluation) tool.

- Define objects
- Compute attributes (e.g. area, centroid, axis angle, intensity)
- Merge objects (e.g. thunderstorm cells merge into line)
- Match forecast and observed objects
- Compare attributes between matches
- Output summary statistics

Now that you want to use objects to verify your forecasts,

here's Randy to tell you how to use MODE.