Why Verify Spatial Scales?

Neighborhood and Scale-separation Approaches

David Ahijevych

National Center for Atmospheric Research

Boulder, CO Email: ahijevyc@ucar.edu

slides adapted from Gilleland and others

Challenge of Higher Resolution Models

Resolving smaller features

3-km WRF, 2009

- For traditional verification,
 - a 1 grid-point error is same as a 10 grid-point error.

Giving Credit for a Close Forecast

Filter Methods

Neighborhood

"fuzzy" (Ebert, 2008, Meteor. Appl.)
upscaling - smoothing - Fractions Skill Score
Above what scale
does forecast have skill?

Scale-Separation

Band-pass (e.g. Fourier, Wavelet)

Compare skill or power

at each scale

Neighborhood Methods Smoothing

Minimum, Maximum, Median, Mean

Neighborhood Methods Fractional Coverage

Fraction = 6/25 = 0.24

Fraction = 6/25 = 0.24

Intensity threshold exceeded where squares are blue

copyright 2009, UCAR, all rights reserved.

slide from Mittermaier

Defining fractional coverage scores

P is the fractional event frequency within the neighborhood

n = number of points in the whole domain

$$\frac{1}{n} \sum_{i=1}^{n} \left(P_{f cst} - P_{obs} \right)^2$$

Fractions Brier Score

Roberts and Lean (2008)

$$1 - \frac{\frac{1}{n} \sum_{i=1}^{n} (P_{f cst} - P_{obs})^{2}}{\frac{1}{n} \sum_{i=1}^{n} (P_{f cst})^{2} + \frac{1}{n} \sum_{i=1}^{n} (P_{obs})^{2}}$$

Fractions Skill Score

Roberts and Lean (2008)

Table courtesy of E Ebert.

$$FSS_{useful} = 0.5 + \frac{P_{obs}}{2}$$

Fractions Skill Score must exceed this to be better than random forecast $\overline{P_{obs}}$ is the observed frequency of the event over the full domain

- In MET, Neighborhood methods are in grid_stat tool.
- Smoothing filters in MET:
 - Minimum
 - Maximum
 - Median
 - Mean
- Fractional coverage
 - Fractions Brier Score
 - Fractions Skill Score
- See Ebert (2008) for a good summary and comparison of these techniques (and references).

Slide from E Ebert. See Ebert (2008) for full references.

Fuzzy method	Matching strategy*	Decision model for useful forecast
Upscaling (Zepeda-Arce et al. 2000; Weygandt et al. 2004)	NO-NF	Resembles obs when averaged to coarser scales
Minimum coverage (Damrath 2004)	NO-NF	Predicts event over minimum fraction of region
Fuzzy logic (Damrath 2004), joint probability (Ebert 2002)	NO-NF	More correct than incorrect
Fractions skill score (Roberts and Lean 2007)	NO-NF	Similar frequency of forecast and observed events
Area-related RMSE (Rezacova et al. 2006)	NO-NF	Similar intensity distribution as observed
Practically perfect hindcast (Brooks et al. 1998)	NO-NF	Resembles a forecast based on perfect knowledge of observations
Pragmatic (Theis et al. 2005)	SO-NF	Can distinguish events and non-events
CSRR (Germann and Zawadzki 2004)	SO-NF	High probability of matching observed value
Multi-event contingency table (Atger 2001)	SO-NF	Predicts at least one event close to observed event

*NO-NF = neighborhood observation-neighborhood forecast, SO-NF = single observation-neighborhood forecast

Fourier

- Skamarock (2004), MWR **132**:3019-3032
- Harris et al. (2001), J Hydrometeorol. 2:406-418
- Tustison *et al.* (2001), JGR **106**(D11): 11775-11784
- and many more...

Wavelet

- Briggs and Levine (1997), MWR 125:1329-1341
- Casati et al. (2004). [In MET wavelet_stat tool]

Intensity Scale (IS) (Casati et al., 2004)

1. Create binary fields for a threshold

Intensity Scale (IS) (Casati et al., 2004)

1. Create binary fields for a threshold

Intensity Scale (IS) (Casati et al., 2004)

Subtract binary fields for a threshold

binary difference

copyright 2009, UCAR, all rights reserved.

Intensity Scale (IS) (Casati et al., 2004)

- Create binary fields for a threshold
- Apply wavelet decomposition to binary difference
- Calculate mean squared error MSE for each 3. scale i
- Find MSE for a random forecast based on the sample climatology
- Intensity-scale Skill Score $IS \ skill \ score_j = 1 \frac{MSE_j}{MSE_{random}}$ 5. 6. n+1
- Repeat for multiple thresholds

Intensity-Scale Skill Score

Thank you...Questions?

References

Casati B, G Ross, and DB Stephenson, 2004. A new intensity-scale approach for the verification of spatial precipitation forecasts. *Meteorol. Appl.* **11**:141--154.

Ebert EE, 2008. Fuzzy verification of high resolution gridded forecasts: A review and proposed framework. *Meteorol. Appl.*, **15**:51--64. DOI: 10.1002/met.25.

See also, http://www.ral.ucar.edu/projects/icp