WRFDA Overview

Hans Huang

Acknowledge:

NCAR/MMM/DAG
NCAR/RAL/JNT/DATC
USWRP, NSF-OPP, NCAR
AFWA, KMA, CWB, CAA, EUMETSAT, AirDat

Outline of Talk

- Introduction to data assimilation.
- Basics of modern data assimilation.
- Demonstration with a simple system.
- · WRFDA overview.

Why data assimilation?

- Initial conditions
- Calibration and validation
- Observing system design, monitoring and assessment
- Reanalysis
- Better understanding:
 - Data assimilation methods
 - Model errors
 - Data errors
 - Physical process interactions
 - **—** ...

Modern weather forecast (Bjerknes, 1904)

- A sufficiently accurate knowledge of the state of the atmosphere at the initial time
- A sufficiently accurate knowledge of the laws according to which one state of the atmosphere develops from another.

Vilhelm Bjerknes (1862–1951)

- Analysis: using observations and other information, we can specify the atmospheric state at a given initial time: "Today's Weather"
- Forecast: using the equations, we can calculate how this state will change over time: "Tomorrow's Weather"

Observations y^0 , $\sim 10^5$ - 10^6

Model state x, $\sim 10^7$

Assimilation methods

- Empirical methods
 - Successive Correction Method (SCM)
 - Nudging
 - Physical Initialisation (PI), Latent Heat Nudging (LHN)
- Statistical methods
 - Optimal Interpolation (OI)
 - 3-Dimensional VARiational data assimilation (3DVAR)
 - 4-Dimensional VARiational data assimilation (4DVAR)
- Advanced methods
 - Extended Kalman Filter (EKF)
 - Ensemble Kalman Filter (EnFK)

Outline of Talk

- Introduction to data assimilation.
- Basics of modern data assimilation.
- Demonstration with a simple system.
- · WRFDA overview.

The analysis problem for a given time

Consider a scalar x.

The background (normally a short-range forecast):

$$x^b = x^t + b$$
.

The observation:

$$x^r = x^t + r$$
.

The error statistics are assumed to be known:

 $\langle b \rangle = 0$, mean error (unbiased),

 $\langle r \rangle = 0$, mean error (unbiased),

 $\langle b^2 \rangle = B$, background error variance,

 $\langle r^2 \rangle = R$, observation error variance,

 $\langle br \rangle = 0$, no correlation between b and r,

where <-> is ensemble average.

BLUE: the Best Liner Unbiased Estimate

The analysis: $x^a = x^t + a$.

Search for the best estimate: $x^a = \alpha x^b + \beta x^r$

Substitute the definitions, we have:

$$\alpha+\beta=1$$
.

$$< a > = 0$$

The variance:

$$A = \langle a^2 \rangle = B - 2\beta B + \beta^2 (B + R)$$

To determine
$$\beta$$
: $\frac{dA}{d\beta} = -2B + 2\beta + \beta^2 (B+R) = 0$

we have
$$\beta = \frac{B}{B+R}$$

The analysis:
$$x^a = x^b + \frac{B}{B+R} (x^r - x^b)$$

The analysis error variance: $A^{-1} = B^{-1} + R^{-1}$

The analysis:
$$x^a = x^b + \frac{B}{B+R} \left(x^r - x^b \right)$$

$$0 < \frac{B}{B+R} < 1$$

The analysis value should be between background and observation.

$$\lim_{B\to 0} x^a = x^b$$

If B is too small, observations are less useful.

$$\lim_{R\to 0} x^a = x^r$$

If R can be tuned, analysis can fit observations as close as one wants!

The analysis error variance: $A^{-1} = B^{-1} + R^{-1}$

A < B Statistically, analyses are better than background.

A < R Statistically, analyses are better than observations!

3D-Var

The analysis is obtained by minimizing the cost function J, defined as:

$$J = \frac{1}{2} \left(x - x^b \right)^T B^{-1} \left(x - x^b \right) + \frac{1}{2} \left(x - x^r \right)^T R^{-1} \left(x - x^r \right)$$

The gradient of J with respect to x:

$$J'=B^{-1}\left(x-x^{b}\right)+R^{-1}\left(x-x^{r}\right)$$

At the minimum, J'=0, we have:

$$x^a = x^b + \frac{B}{B+R} \left(x^r - x^b \right)$$

the same as BLUE.

Sequential data assimilation (I)

True states : ..., x_{i-1}^t , x_i^t , x_{i+1}^t , ...

Observations: ..., x_{i-1}^r , x_i^r , x_{i+1}^r , ...

Forecasts : ..., x_{i-1}^f , x_i^f , x_{i+1}^f , ...

Analyses : ..., x_{i-1}^a , x_i^a , x_{i+1}^a , ...

Sequential data assimilation (II)

Forecast model:

$$x_{i+1}^t = M(x_i^t) + q_i$$

Where q_i is the model error.

As q_i is unknown and x_i^a is the best estimate of x_i^t the forecast model usually takes the form:

$$x_{i+1}^f = M\left(x_i^a\right)$$

OI (and 3DVAR):

$$x_i^a = x_i^f + \frac{B}{B+R} \left(x_i^r - x_i^f \right)$$

Sequential data assimilation (III)

4DVAR analysis is obtained by minimizing the cost function J, defined as:

$$J(x_{i}) = \frac{1}{2} \left(x_{i} - x_{i}^{f}\right)^{T} B^{-1} \left(x_{i} - x_{i}^{f}\right)$$

$$+ \frac{1}{2} \sum_{k=0}^{K} \left[M_{k-1}(x_{i}) - x_{i+k}^{r}\right]^{T} R^{-1} \left[M_{k-1}(x_{i}) - x_{i+k}^{r}\right]$$

where, K is the assimilation window and

$$M_{-1}(x_i) = x_i$$

$$M_0(x_i) = M(x_i)$$

$$M_{k-1}(x_i) = \underbrace{M(M(...M(x_i)...))}_{k}$$

Sequential data assimilation (IV) 4DVAR (continue)

The gradient of J with respect to x:

$$J' = B^{-1} \left(x_i - x_i^f \right) + \sum_{k=0}^K \prod_{j=0}^{K-1} M_{i+j}^T R^{-1} \left[M_{k-1} \left(x_i \right) - x_{i+k}^r \right]$$

where, M_{i+j}^T is the adjoint model of M at time step i+j.

Sequential data assimilation (V)

Extended Kalman Filters:

True states:
$$x_{i+1}^t = M(x_i^t) + q_i^t$$

Model states:
$$x_{i+1}^f = M(x_i^a)$$

Forecast error:
$$x_{i+1}^f - x_{i+1}^t = M(x_i^a) - M(x_i^t) - q_i \approx M_i(x_i^a - x_i^t) - q_i$$

Forecast error covariance matrix:

$$P_{i+1}^{f} = \left\langle \left(x_{i+1}^{f} - x_{i+1}^{t} \right) \left(x_{i+1}^{f} - x_{i+1}^{t} \right)^{T} \right\rangle$$

$$\approx \mathbf{M}_{i} \left\langle \left(x_{i}^{a} - x_{i}^{t} \right) \left(x_{i}^{a} - x_{i}^{t} \right)^{T} \right\rangle \mathbf{M}_{i}^{T} + \left\langle q_{i} \ q_{i}^{T} \right\rangle$$

$$= \mathbf{M}_{i} P_{i}^{a} \mathbf{M}_{i}^{T} + Q_{i}$$

Sequential data assimilation (VI)

Extended Kalman Filters (continue):

For the analysis step:

$$K_{i} = P_{i}^{f} \left(P_{i}^{f} + R \right)^{-1}$$

$$x_{i}^{a} = x_{i}^{f} + K_{i} \left(x_{i}^{r} - x_{i}^{f} \right)$$

$$P_{i}^{a} = \left(I - K_{i} \right) P_{i}^{f}$$

For the forecast step:

$$x_{i+1}^f = M\left(x_i^a\right)$$

$$P_{i+1}^f = \mathbf{M}_i P_i^a \mathbf{M}_i^T + Q_i$$

(Ensemble KF use ensembles to calculate P^f)

Sequential data assimilation (VII)

From scalar to vector:

Number of grid points $\approx 10^7$:

$$x \rightarrow \mathbf{x}$$

$$x^b \rightarrow x^b$$

Dimension of **B**, **P** $\approx 10^7 \text{ x } 10^7$

Number of observations, 10^6 :

$$x^r \to \mathbf{y}^o$$

 $x - x^r \to H(\mathbf{x}) - \mathbf{y}^b$

Dimension of $\mathbf{R} \approx 10^6 \text{x} \cdot 10^6$

Sequential data assimilation (VIII)

OI:

$$\mathbf{x}_{i}^{a} = \mathbf{x}_{i}^{f} + \mathbf{B}\mathbf{H}^{T} \left(\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R}\right)^{-1} \left[\mathbf{y}^{o} - H\left(\mathbf{x}_{i}^{f}\right)\right]$$

$$\mathbf{x}_{i+1}^{f} = M\left(\mathbf{x}_{i}^{a}\right)$$

4D-Var:

$$J(\mathbf{x}_{i}) = \frac{1}{2} \left(\mathbf{x}_{i} - \mathbf{x}_{i}^{f}\right)^{T} \mathbf{B}^{-1} \left(\mathbf{x}_{i} - \mathbf{x}_{i}^{f}\right)$$

$$+ \frac{1}{2} \sum_{k=0}^{K} \left[H(M_{k-1}(\mathbf{x}_{i})) - \mathbf{y}_{i+k}^{o}\right]^{T} \mathbf{R}^{-1} \left[H(M_{k-1}(\mathbf{x}_{i})) - \mathbf{y}_{i+k}^{o}\right]$$

$$J' = \mathbf{B}^{-1} \left(\mathbf{x}_{i} - \mathbf{x}_{i}^{f}\right) + \sum_{k=0}^{K} \prod_{i=1}^{K-1} \mathbf{M}_{i+j}^{T} \mathbf{H}^{T} \mathbf{R}^{-1} \left[H[M_{k-1}(\mathbf{x}_{i})] - \mathbf{y}_{i+k}^{o}\right]$$

Sequential data assimilation (IX)

The Extended Kalman Filter:

For the analysis step *i*:

$$\mathbf{K}_{i} = \mathbf{P}_{i}^{f} \mathbf{H}_{i}^{T} \left(\mathbf{H}_{i} \mathbf{P}_{i}^{f} \mathbf{H}_{i}^{T} + \mathbf{R} \right)^{-1}$$

$$\mathbf{X}_{i}^{a} = \mathbf{X}_{i}^{f} + \mathbf{K}_{i} \left[\mathbf{y}^{o} - H \left(\mathbf{X}_{i}^{f} \right) \right]$$

$$\mathbf{P}_{i}^{a} = \left(\mathbf{I} - \mathbf{K}_{i} \mathbf{H}_{i} \right) \mathbf{P}_{i}^{f}$$

For the forecast step, from i to i+1:

$$\mathbf{X}_{i+1}^f = M(\mathbf{X}_i^a)$$

$$\mathbf{P}_{i+1}^f = \mathbf{M}_i \mathbf{P}_i^a \mathbf{M}_i^T + \mathbf{Q}_i$$

(Ensemble KF use ensembles to calculate P^a and P^f)

Sequential data assimilation (X)

EKF

$$\mathbf{K}_{i} = \mathbf{P}_{i}^{f} \mathbf{H}_{i}^{T} \left(\mathbf{H}_{i} \mathbf{P}_{i}^{f} \mathbf{H}_{i}^{T} + \mathbf{R} \right)^{-1}$$

$$\mathbf{x}_{i}^{a} = \mathbf{x}_{i}^{f} + \mathbf{K}_{i} \left[\mathbf{y}^{o} - H \left(\mathbf{x}_{i}^{f} \right) \right]$$

$$\mathbf{P}_{i}^{a} = \left(\mathbf{I} - \mathbf{K}_{i} \mathbf{H}_{i}\right) \mathbf{P}_{i}^{f}$$

$$\mathbf{X}_{i+1}^f = M\left(\mathbf{X}_i^a\right)$$

$$\mathbf{P}_{i+1}^f = \mathbf{M}_i \mathbf{P}_i^a \mathbf{M}_i^T + \mathbf{Q}_i$$

(Ensemble KF use ensembles to calculate P^a and P^f)

$$\begin{pmatrix} \mathbf{B} = \mathbf{P}_{i+1}^f \end{pmatrix} \text{ EKF} \to \text{OI or VAR}$$
$$\begin{pmatrix} \mathbf{K} = \mathbf{B}\mathbf{H}^T \begin{pmatrix} \mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R} \end{pmatrix}^{-1} \end{pmatrix}$$

OI or VAR

$$\mathbf{x}_{i}^{a} = \mathbf{x}_{i}^{f} + \mathbf{K} \left[\mathbf{y}^{o} - H \left(\mathbf{x}_{i}^{f} \right) \right]$$
$$\mathbf{x}_{i+1}^{f} = M \left(\mathbf{x}_{i}^{a} \right)$$

Issues on data assimilation

- Observations y^o
- Observation operator *H*
- Observation errors **R**
- Backgound \mathbf{x}^b
- Size of **B**: statistical model and tuning
- Minimization algorithm (Quasi-Newton; Conjugate Gradient; ...)
- \mathbf{M} and \mathbf{M}^T : development and validity
- Size of \mathbf{P}^f and \mathbf{P}^a : simplifications
- Model errors **Q**

H - Observation operator

H maps variables from "model space" to "observation space"

- Interpolations from model grids to observation locations
- Extrapolations using PBL schemes
- Time integration using full NWP models
- Transformations of model variables (u, v, T, q, p_s , etc.) to "indirect" observations (e.g. satellite radiance, radar radial winds, etc.)
 - Simple relations like PW, radial wind, refractivity, ...
 - Radar reflectivity Z = Z(T, IWC, LWC, RWC, SWC)
 - Radiative transfer models $L(v) \approx \int_0^\infty B(v, T(z)) \left[\frac{dTR(v)}{dz} \right] dz$
 - Precipitation using simple or complex models
 - ...

!!! Need H, \mathbf{H} and \mathbf{H}^{T} , not \mathbf{H}^{-1} !!!

Outline of Talk

- Introduction to data assimilation.
- Basics of modern data assimilation.
- Demonstration with a simple system.
- WRFDA overview.

The Lorenz 1964 equation

Nonlinear equation (NL):

$$x_{i+1} = ax_i - x_i^2 = M(x_i)$$

Depending on a, three types of solution are found; steady state; limited cycle; chaotic.

Tangent Linear equations (TL):

$$x_{i+1}^{tl} = \left(a - 2x_i^{bs}\right) x_i^{tl} = \mathbf{M}_i x_i^{tl}$$

(linearized around basic state x_i^{bs})

Adjoint equation (AD):

$$x_i^{ad} = \left(a - 2x_i^{bs}\right) x_{i+1}^{ad} = \mathbf{M}_i^T x_{i+1}^{ad}$$

Note here for this simple case we have

$$\mathbf{M}_i = \mathbf{M}_i^T = \left(a - 2x_i^{bs}\right)$$

Issues on data assimilation for the system based on the Lorenz 64 equation

- Observation operator $H = H = H^T = 1$
- Estimate of the true states generated (with model error!)
- Observation errors $x^o x^t = \sigma_o G$
- Size of B is 1, but $B = \sigma_b^2$ still needs attention
- Model errors Q: $q_i = \sigma_m G$ When "true" states are generated; but we assume Q = B/4
- Size of P^f or P^a is 1.
- M and M^T : no eort in development but their validity is still a major problem (model, assimilation window length, ...)
- Gaussian statistics

Too simple?

Try: Lorenz63 model

Try: 1-D advection equation

Try: 2-D shallow water equation

• • •

Try: ARW!!!

Outline of Talk

- Introduction to data assimilation.
- Basics of modern data assimilation.
- Demonstration with a simple system.
- WRFDA overview...

WRFDA is a Data Assimilation system built within the WRF software framework, used for application in both research and operational environments....

WRFDA in WRF Modeling System

WRFDA

- Goal: Community WRF DA system for
 - regional/global,
 - research/operations, and
 - deterministic/probabilistic applications.
- Techniques:
 - 3D-Var
 - 4D-Var (regional)
 - Ensemble DA,
 - Hybrid Variational/Ensemble DA.
- **Model:** WRF (ARW, NMM, Global)
- Support:
 - NCAR/ESSL/MMM/DAG
 - NCAR/RAL/JNT/DATC
- **Observations:** Conv.+Sat.+Radar (+bogus)

The WRFDA Program

- NCAR staff (DAG,DATC): 20FTE, ~10 projects.
- Non-NCAR collaborators (AFWA, KMA, CWB, BMB, etc): ~10FTE.
- Community users: ~30 (more in 10,000 general WRF downloads?).

WRFDA Observations

In-Situ:

- Surface (SYNOP, METAR, SHIP, BUOY).
- Upper air (TEMP, PIBAL, AIREP, ACARS, TAMDAR).

• Remotely sensed retrievals:

- Atmospheric Motion Vectors (geo/polar).
- SATEM thickness.
- Ground-based GPS Total Precipitable Water/Zenith Total Delay.
- SSM/I oceanic surface wind speed and TPW.
- Scatterometer oceanic surface winds.
- Wind Profiler.
- Radar radial velocities and reflectivities.
- Satellite temperature/humidity/thickness profiles.
- GPS refractivity (e.g. COSMIC).

Radiative Transfer (RTTOV or CRTM):

- HIRS from NOAA-16, NOAA-17, NOAA-18, METOP-2
- AMSU-A from NOAA-15, NOAA-16, NOAA-18, EOS-Aqua, METOP-2
- AMSU-B from NOAA-15, NOAA-16, NOAA-17
- MHS from NOAA-18, METOP-2
- AIRS from EOS-Aqua
- SSMIS from DMSP-16

- -TC bogus.
- -Global bogus.

WRFDA 3/4D-Var

www.mmm.ucar.edu/wrf/users/wrfda

Issues on data assimilation (covered by this tutorial)

- Observations y^o
- Observation errors **R**
- Observation operator *H*
- Backgound \mathbf{x}^b
- Size of **B**: statistical model and tuning
- Minimization algorithm (Quasi-Newton; Conjugate Gradient; ...)
- M and M^T : development and validity
- Size of \mathbf{P}^f and \mathbf{P}^a : simplifications

• Model errors **Q**