# Hybrid (3D-VAR /ETKF) Data Assimilation System

#### Meral Demirtas

National Center for Atmospheric Research

WRF Tutorial, WRF-Data Assimilation 21<sup>st</sup> July 2009, Boulder, Colorado

### An outline of this presentation

- ♦ *Why* do we need a hybrid data assimilation system?
- ♦ What are the basic ingredients of a hybrid system?
- ♦ How have we implemented hybrid (3DVAR -ETKF) system at the Data Assimilation Testbed Center (DATC)?
- ♦ *What* we have found: Highlights of preliminary results
- ♦ Summary and conclusions
- ♦ An introduction for the hybrid practice session

## Why do we need a hybrid system?

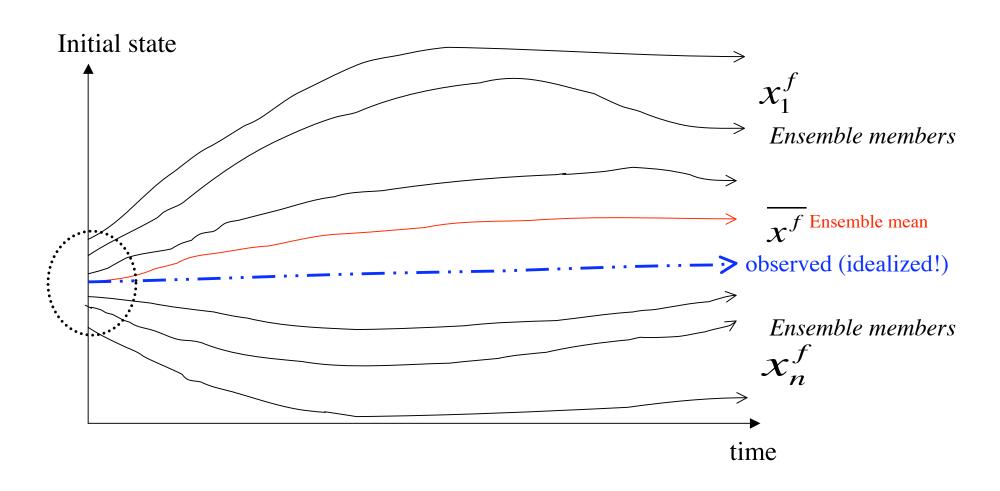
- The WRF 3D-VAR system uses only *climatological* (static) background error covariances.
- Flow-dependent covariance through ensemble is needed.
- Hybrid combines *climatological* and *flow-dependent* background error covariances.
- It can be adapted to an existing 3D-VAR system.
- Hybrid can be robust for small size ensembles.

# What are the basic ingredients of a hybrid system?

- 1. Ensemble forecasts: WRF-ensemble forecasts
- 2. A mechanism to update ensemble perturbations: Ensemble Transform Kalman Filter (ETKF)
- 3. A data assimilation system: WRF 3D-VAR

It sounds simple...:-)

# Ensembles to address uncertainties in the initial state



### **Ensemble Formulation Basics**

Assume the following ensemble forecasts:

$$X^f = (x_1^f, x_2^f, x_3^f, \dots, x_N^f)$$

Ensemble mean: 
$$\bar{x}^f = \frac{1}{N} \sum_{i=1}^{N} x_n^f$$

Ensemble perturbations:  $\delta x_n^f = x_n^f - x^f$ 

Ensemble perturbations in vector form:

$$\delta X^f = (\delta x_1^f, \delta x_2^f, \delta x_3^f, \dots, \delta x_N^f)$$
  $n = 1, N$ 

### *How* to update ensemble perturbations?

ETKF technique updates ensemble perturbations by rescaling innovations with a transformation matrix (*Wang and Bishop 2003*).

$$\chi^a = \chi^f T$$

Transformation matrix (solved by Kalman Filter Theory)

$$\mathbf{T} = \mathbf{C}(\Gamma + \mathbf{I})^{-1/2}\mathbf{C}^{T}$$
 Bishop et al. (2001)

C: is the column matrix that contains the orthonormal eigenvectors

 $\Gamma$ : is the diagonal matrix that contains the eigenvalues

**I**: is the identity matrix

# *How* to improve the under estimation of the analysis-error variance?

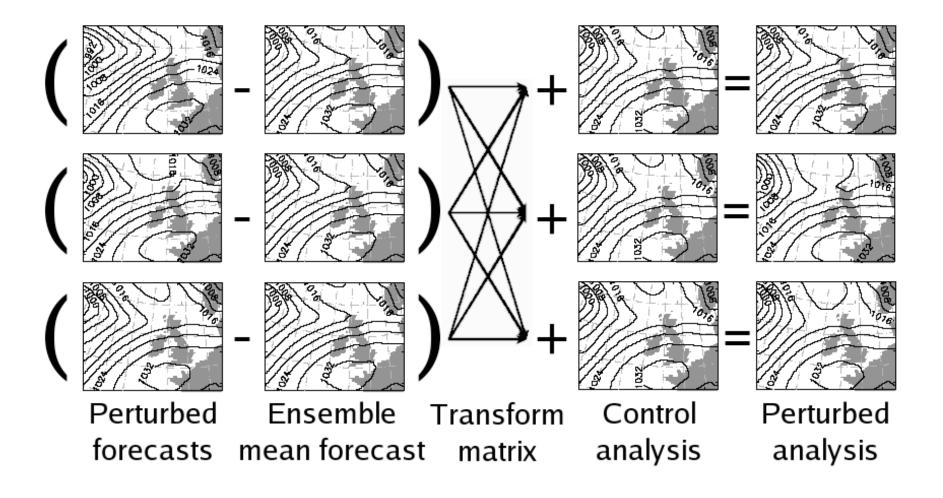
The background-error variance estimated from the spread of ensembles should be consistent with the background error-variance estimated from the differences between the ensemble mean and observations. Wang and Bishop (2003) has introduced an adaptive *inflation factor*,  $\prod$ , to ameliorate this problem:

$$\mathbf{X}_{i} = \mathbf{X}_{i}^{f} \mathbf{T}_{i} \boldsymbol{\Pi}_{i}$$

$$\boldsymbol{\Pi}_{i} = \sqrt{c_{1}, c_{2}, ..., c_{i}} \quad \text{where} \quad \boldsymbol{c}_{i} = \frac{\operatorname{tr}\left\langle \tilde{\mathbf{d}}_{i} \tilde{\mathbf{d}}_{i}^{T} \right\rangle - N_{obs}}{\operatorname{tr}(\mathbf{\Gamma})}$$

$$\tilde{\mathbf{d}}_{i} = \mathbf{R}^{-1/2} \left( \mathbf{y}_{i} - \mathbf{H} \boldsymbol{\overline{\mathbf{x}}}_{i}^{b} \right)$$

### Schematic illustration of the ETKF technique



Courtesy of Bowler et al. (2008)

## Pros and Cons of ETKF Technique

### • Desirable aspects:

- ETKF is fast (computations are done in model ensemble perturbation subspace).
- It is suitable for generating ensemble initial conditions.
- It updates initial condition perturbations.

#### • Less desirable aspects:

 ETKF does not localize, therefore it does not represent sampling error efficiently. It may need very high inflation factors.

## Hybrid: Combine 3D-VAR and ETKF

- Flow-dependent covariance through ensembles.
- Coupling wind, temperature and moisture fields.
- Hybrid can be more robust for small size ensembles.
- It can be adapted to an existing 3D-VAR system.
- It is less computationally expensive compared to other ensemble filters.

### The hybrid formulation....

Ensemble covariance is implemented into the 3D-VAR cost function via *extended control variables*: (Wang et. al. 2008)

$$J(x_{1},\alpha) = \beta_{1} \frac{1}{2} x_{1}^{T} B^{-1} x_{1} + \beta_{2} \frac{1}{2} \alpha^{T} C^{-1} \alpha + \frac{1}{2} (y^{o'} - Hx')^{T} R^{-1} (y^{o'} - Hx')$$

$$x' = x_{1}^{'} + \sum_{k=1}^{K} (\alpha_{k} \circ x_{k}^{e})$$
Conserving total variance requires: 
$$\frac{1}{\beta_{1}} + \frac{1}{\beta_{2}} = 1$$

C: correlation matrix for ensemble covariance localization

$$x_1$$
 3D-VAR increment  $\beta_1$  Weighting coefficient for static 3D-VAR covariance  $x$  Total increment including hybrid  $\beta_2$  Weighting coefficient for ensemble covariance

## Hybrid Horizontal Localization

Ensemble covariance horizontal localization is done through recursive filters. Preconditioning designed as: (Wang et. al. 2008)

• 3D-VAR part

$$\chi'_1 = U_1 v_1$$
 where  $U_1 \approx B^{1/2}$  B is the 3D-VAR static covariance matrix.

• Ensemble part

$$\alpha = U_2 v_2$$
 where  $U_2 \approx C^{1/2}$  C is the ensemble correlation matrix which defines ensemble covariance localization.

## Hybrid Vertical Localization

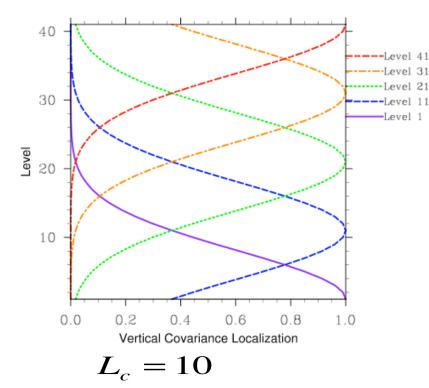
- Spurious sampling error are not confined to horizontal error correlations, it affects vertical too.
- Hybrid alpha control variables can be made 3D to alleviate spurious vertical correlations.
- Two approaches are considered for specifying vertical localization function:
  - i. Empirical function (as in horizontal).
  - ii. Use vertical background error covariances to define localization.
- Initial studies use "empirical function (as in horizontal)".
- An EOF decomposition of the vertical component of the localization matrix is performed to reduce size of alpha CV.

### Empirical Vertical Covariance Localization

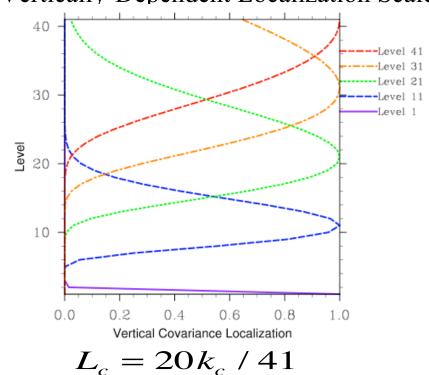
Apply Gaussian Vertical Covariance Localization function:

$$\rho(k - k_c) = \exp\left[-\left(k - k_c\right)^2 / L_c^2\right]$$

Example 1: Constant Localization Scale



Example 2: Vertically-Dependent Localization Scale



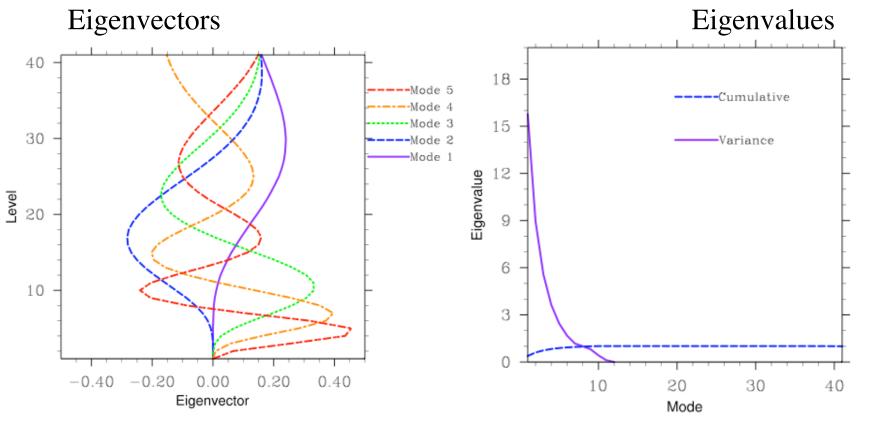
Courtesy of Dale Barker

### Covariance Localization Decomposition

Example: Gaussian Localization with variable localization scale:

$$\rho(k - k_c) = \exp\left[-\left(k - k_c\right)^2 / L_c^2\right]$$

$$L_c = 20k_c / 41$$

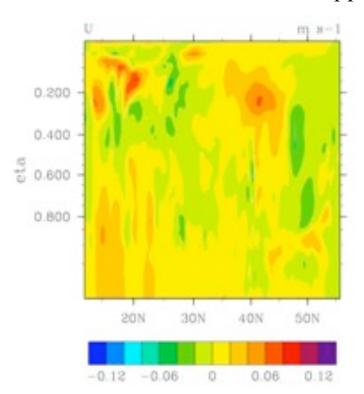


75% data compression via use of EOFs for covariance localization.

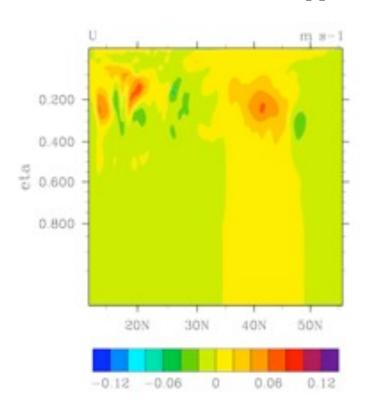
Courtesy of Dale Barker

## Vertical cross-section of analysis increments (single-observation based)

No vertical localization applied

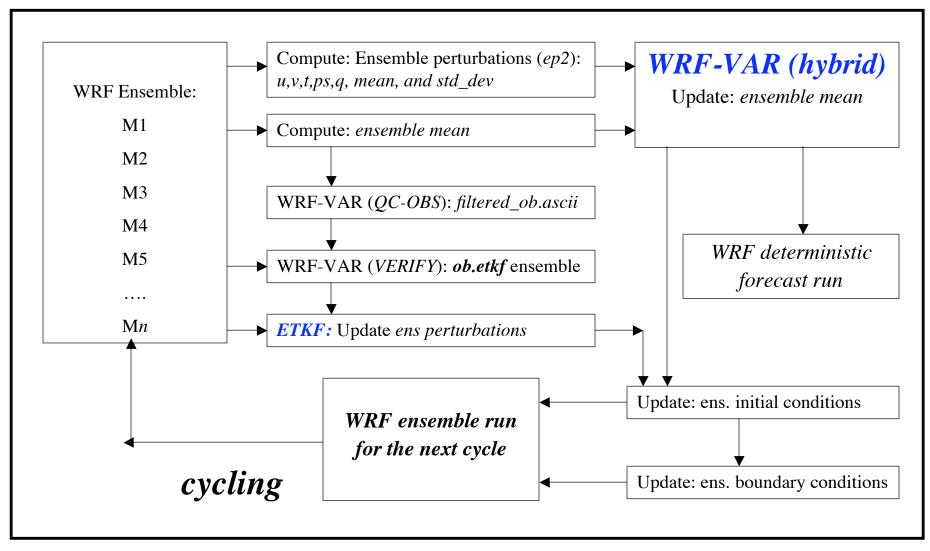


#### Vertical localization applied



Courtesy of Dale Barker

## **How** have we implemented hybrid (3DVAR -ETKF) system at the (DATC)?



(Demirtas et al. 2009)

### A few notes on hybrid settings

- alpha\_corr\_scale=1500km (Default)
- je\_factor (\(\beta\_1\) = 2.0
- jb\_factor (β<sub>2</sub>)=je\_factor/(je\_factor -1)=2.0
- alphacv\_method=2 (ensemble perturbations on model space)
- ensdim\_alpha=10 (ensemble size)

N.B. Conservation of total variance requires:  $\frac{1}{\beta_1} + \frac{1}{\beta_2} = 1$ 

# The DATC Hybrid System Application Experiment Set-up

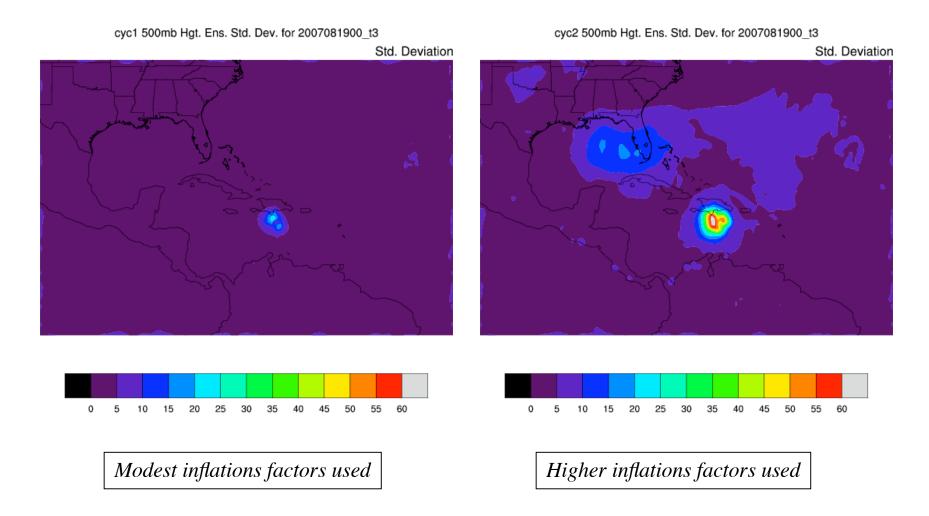
- Ensemble size: 10
- Test Period: 15th August 15th September 2007
- Cycle frequency: 3 hours
- Observations: GTS conventional observations
- Deterministic ICs/BCs: Down-scaled GFS forecasts
- Ensemble ICs/BCs: Produced by adding spatially correlated Gaussian noise to GFS forecasts (*Torn et al. 2006*).
  - (WRF-VAR and some additional tools.)
- Horizontal resolution: 45km
- Number of vertical levels: 57
- Model top: 50 hPa

(For details see: Demirtas et al. 2009)

# What we have found: Highlights of preliminary results

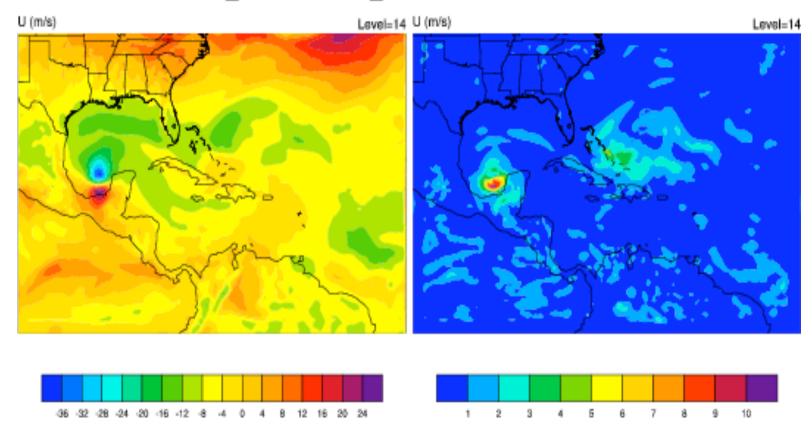
### Ensemble spread: 500 hPa height (m) std. dev.

#### WRF t+3 valid at 2007081900

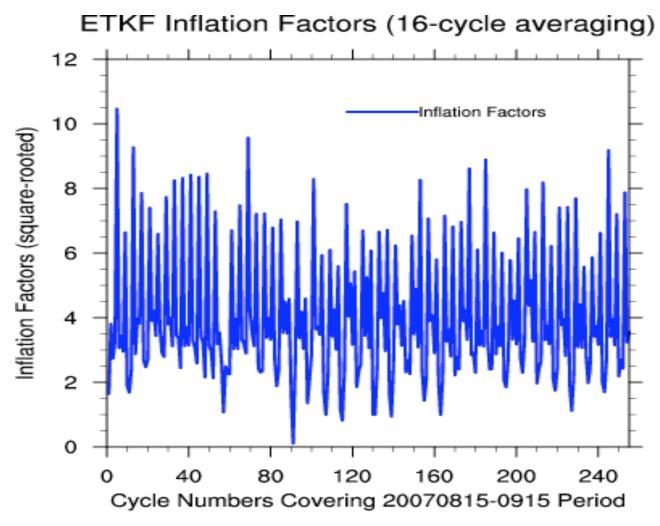


### Ensemble Mean and Std. Deviation (spread)

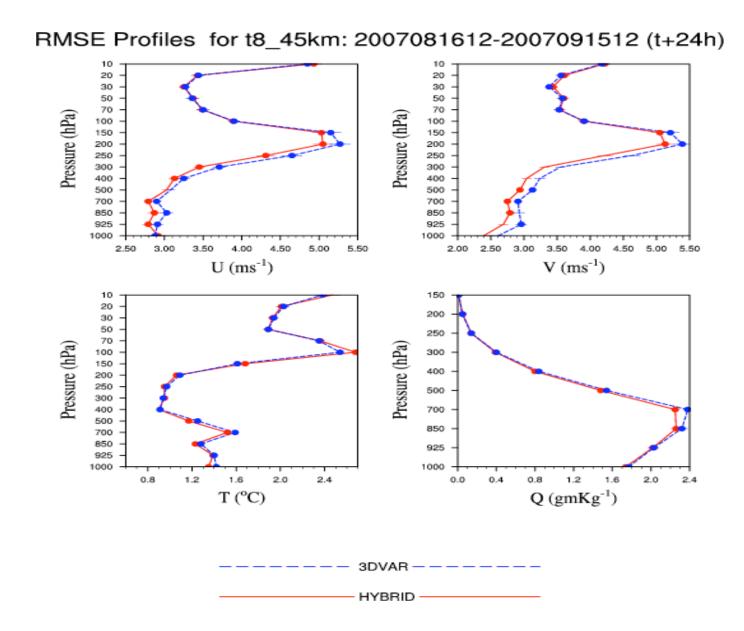
ens\_mean and std\_deviation for 2007082200



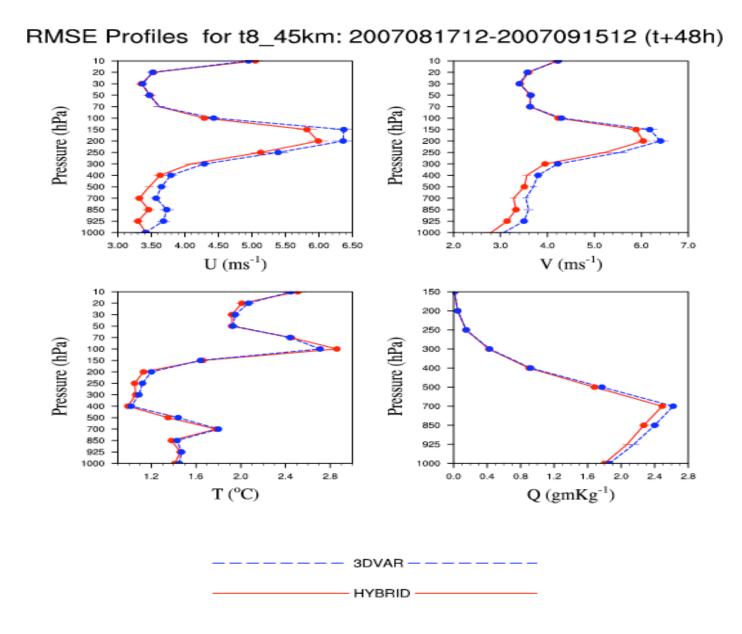
## Inflation Factors (from 3-hourly cycling)



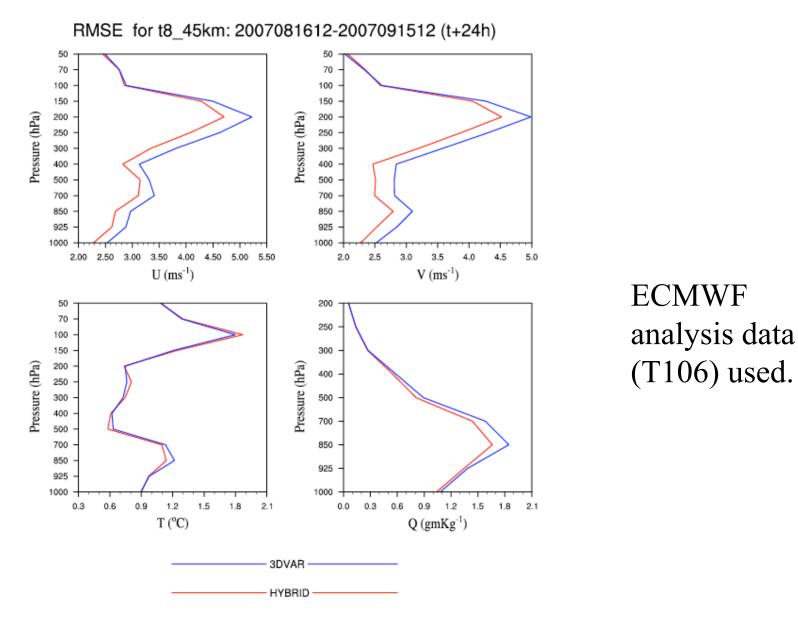
Stable, no-smoothing has been applied yet.



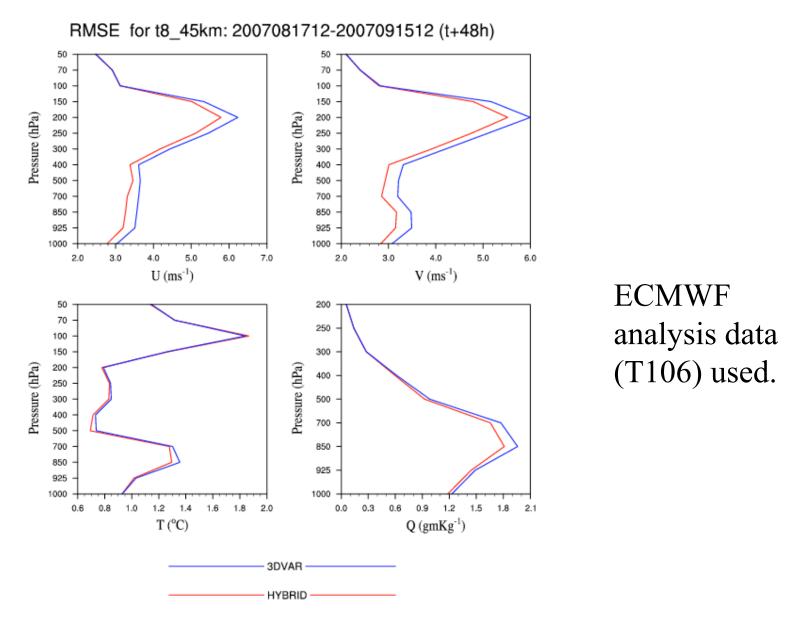
Hybrid gives better RMSE scores for wind compared to 3D-VAR.



Hybrid gives better RMSE scores for wind compared to 3D-VAR.

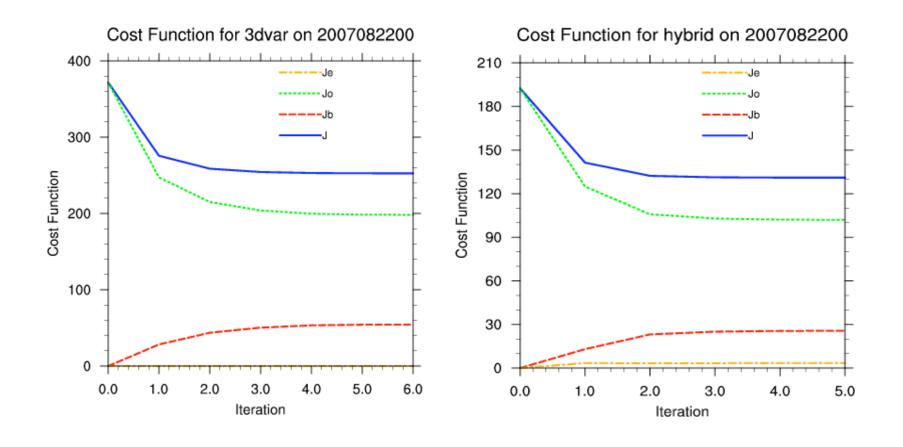


Hybrid gives better RMSE scores for wind compared to 3D-VAR.



Hybrid gives better RMSE scores for wind compared to 3D-VAR.

## Cost function: 3DVAR and Hybrid



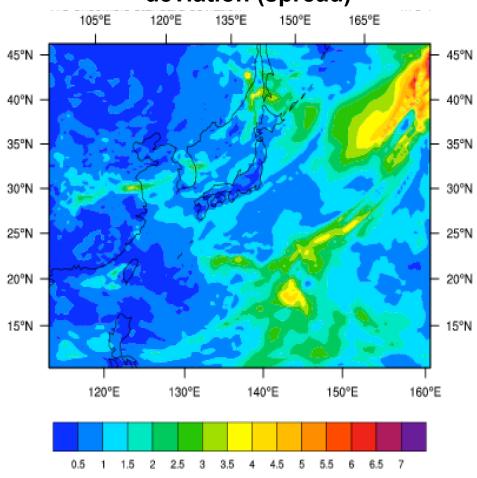
Cost function is smaller in hybrid.

# Preliminary results from JME applications (snapshots)

### Joint Mesoscale Ensemble (JME) Applications

- 10 to 20 WRF physics configurations
- Capability for WRF-Var to update mean and/or individual members
- Capability for ETKF perturbations
- Lateral boundary conditions from global ensemble (GFS)
- Research on multi-parameter and stochastic approaches
- WRF-Var used to compute innovations.

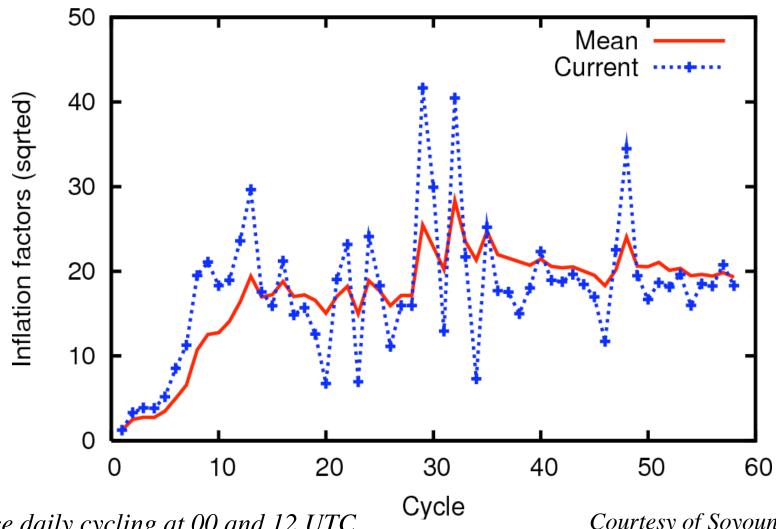
## 10-m wind speed ensemble standard deviation (spread)



Courtesy of Josh Hacker

### Inflation Factors Generated by JME

ETKF with NewPI, 4-cycle averaging



Twice daily cycling at 00 and 12 UTC

Courtesy of Soyoung Ha

#### Referred references

Bishop, C. H., B. J. Etherton, S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Weather Rev., 129, 420–436.

Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, S. E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 134, 703–722.

Demirtas, M., D. Barker, Y. Chen, J. Hacker, X-Y. Huang, C. Snyder, and X. Wang, 2009: A Hybrid Data Assimilation System (Ensemble Transform Kalman Filter and WRF-VAR) Based Retrospective Tests With Real Observations. Preprints, the AMS 23<sup>rd</sup> WAF/19<sup>th</sup> NWP Conference, Omaha, Nebraska.

Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited area ensemble Kalman filters. *Mon. Wea. Rev.*, **134**, 2490-2502.

Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. *J. Atmos. Sci.*, **60**, 1140-1158.

Wang, X., D. Barker, C. Snyder, T. M. Hamill, 2008: A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part I: observing system simulation experiment. *Mon. Wea. Rev.*, 136, 5116-5131.

# What is on the menu for the hybrid practice session

#### Computation:

- Computing ensemble mean.
- Extracting ensemble perturbations (EP).
- Running WRF-VAR in "hybrid" mode.
- Displaying results for: ens\_mean, std\_dev, ensemble perturbations, hybrid increments, cost function and, etc.
- If time permits, tailor your own test by changing hybrid settings; testing different values of "je\_factor" and "alpha\_corr\_scale" parameters.

#### Scripts to use:

Some NCL scripts to display results.

### Brief information for the chosen case

#### **Ensemble size: 10**

#### **Domain info:**

- time step=240,
- e\_we=122,
- e sn=110,
- e vert=42,
- dx=45000,
- dy=45000,

#### Input data provided (courtesy of JME Group):

- WRF ensemble forecasts valid at 2006102800
- Observation data (ob.ascii) for 2006102800
- 3D-VAR "be.dat" file

Thanks for attending.....