
Running the WRF Preprocessing System

Michael Duda

Review

Briefly recall the programs in the WPS

Review

- geogrid (think geographical)
 - Define size/location of model domains and interpolate static terrestrial fields to simulation grids
- ungrib (think <u>un+grib</u>)
 - Extract meteorological fields from GRIB files
- metgrid (think meteorological)
 - Horizontally interpolate meteorological fields (from ungrib) to simulation grids (defined by geogrid)

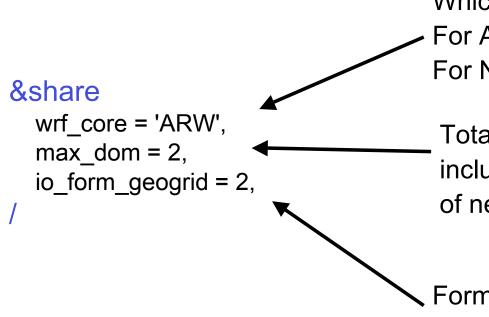
Overview

- How to run through the WPS for basic cases
 - Basic steps for running WPS
 - Geogrid
 - Ungrib
 - Metgrid
- WPS utility programs
- Common WPS mistakes

STEP 1: Edit namelist.wps

For geogrid, only the &share and &geogrid namelists need to be edited in namelist.wps

&share


```
wrf_core = 'ARW',
max_dom = 2,
io_form_geogrid = 2,
```

&geogrid

```
parent id
parent_grid_ratio = 1,
               = 1, 20,
i parent_start
j_parent_start
               = 1, 17,
               = 220, 181.
e_we
       = 175,
                      181.
e sn
geog_data_res = '5m',
                       '2m',
dx
                = 15000.
dy
                = 15000.
map proj
           = 'lambert',
           = 37.0,
ref lat
ref_lon
           = -97.0
truelat1
           = 45.0
           = 30.0.
truelat2
stand lon
           = -97.0
geog data path = '/data/static/geog/'
```


STEP 1: Edit namelist.wps

Which WRF core? For ARW, set to 'ARW' For NMM, set to 'NMM'

Total number of model domains, including nests, for ARW; number of nesting levels for NMM.

Format for geogrid output files; 2=netCDF is recommended.

See p. 3-8 and 3-37

STEP 1: Edit namelist.wps

&geogrid

dy = 15000,

 $e_we = 220, 181,$ $e_sn = 175, 181,$ dx = 15000,

geog_data_res = '5m', '2m',

See p. 3-9, 3-19, and 3-38

Nesting: Who is the parent?
What is the grid ratio for each nest? Where is it located in its parent?

Domain sizes: How many grid points does the domain have? What is the grid spacing?

Static data: What resolution of source data to interpolate from for each domain?

'30s', '2m', '5m', or '10m'?

STEP 1: Edit namelist.wps

&geogrid

. . .

```
map_proj = 'lambert',

ref_lat = 37.0,

ref_lon = -97.0,

truelat1 = 45.0,

truelat2 = 30.0,

stand_lon = -97.0,
```

Map projection: What projection to use? What are the parameters of the projection?

See p. 3-9 and 3-40

geog_data_path = '/data/static/geog/'

Static data: Where are the data directories (e.g., topo_30s) located?

See p. 3-41

STEP 2: Make sure GEOGRID.TBL is linked to the correct version of GEOGRID.TBL

- There are multiple GEOGRID.TBL files to support multiple dynamical cores in WRF
- GEOGRID.TBL.ARW must be used for ARW
- GEOGRID.TBL.NMM must be used for NMM

> ls geogrid/GEOGRID.TBL

GEOGRID.TBL -> GEOGRID.TBL.ARW

STEP 3: Run geogrid.exe

Parsed 11 entries in GEOGRID.TBL

Processing domain 1 of 2

Processing XLAT and XLONG

Processing MAPFAC

Processing F and E

Processing ROTANG

Processing LANDUSEF

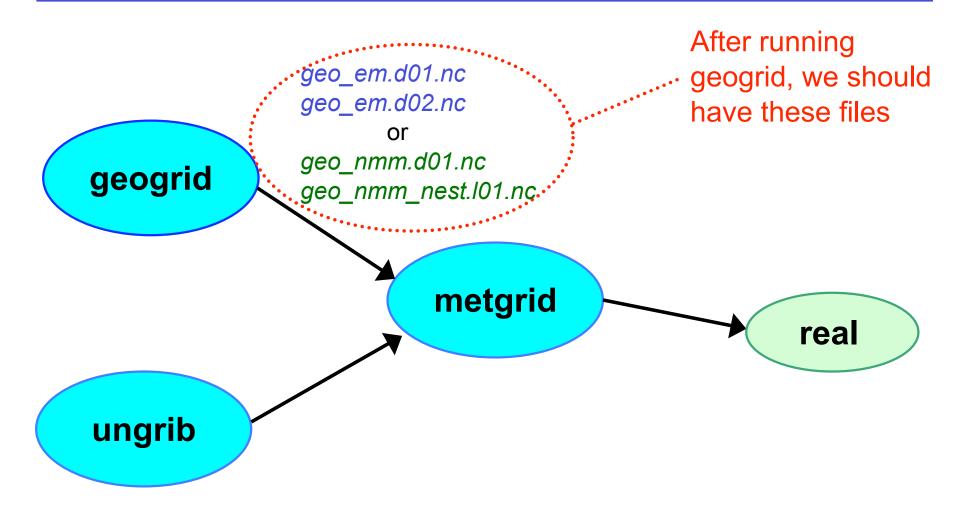
Calculating landmask from LANDUSEF

Processing HGT_M

Geogrid processes each domain individually. There will be one section of messages for each domain.

Calculating landmask from LANDUSEF
Processing HGT_M

will be written to the screen and to the screen and to the little street series.


Successful completion of geogrid.

STEP 4: Check that geogrid ran successfully

If geogrid ran sucessfully, this message should be printed:

If there was an error, check for an ERROR or WARNING message in the geogrid.log file, or for a system error, like "Segmentation fault".

STEP 1: Edit namelist.wps

For ungrib, only the &share and &ungrib namelists need to be edited

```
&share
```

```
wrf_core = 'ARW',

max_dom = 2,

start_date = '2006-04-01_00:00:00',

end_date = '2006-04-01_12:00:00',

interval_seconds = 21600

io_form_geogrid = 2,
```

&ungrib

```
out_format = 'WPS',
prefix = 'GFS',
```


STEP 1: Edit namelist.wps

&share

```
wrf_core = 'ARW',
max_dom = 2,
```

```
start_date = '2006-04-01_00:00:00',
end_date = '2006-04-01_12:00:00',
```

interval_seconds = 21600

io_form_geogrid = 2,

Data time range: Between which times should ungrib process GRIB data?

Data frequency: How many seconds between output files for ungrib?
E.g., 10800 s = 3 hrs

See p. 3-14, and 3-38

STEP 1: Edit namelist.wps

&ungrib
out_format = 'WPS',
prefix = 'GFS',

Intermediate file format: Which format to use for intermediate files? 'WPS', 'SI', or 'MM5' are possible; 'WPS' is recommended.

Intermediate file names: Gives prefix for intermediate files.

Prefix can include a path.

E.g., 'XZY' would give intermediate files named XYZ:*yyyy-mm-dd_hh*.

See p. 3-14, 3-23, and 3-41

STEP 2: Link the correct Vtable to the file name "Vtable" in the run directory

- Some Vtables are provided with WPS in the WPS/ungrib/Variable_Tables directory
 - E.g., Vtable.GFS, Vtable.SST, Vtable.ECMWF

See p. 3-15

- Ungrib always expects to find a file named Vtable in the run directory
 - > In -s ungrib/Variable_Tables/Vtable.GFS Vtable
 - > Is Vtable

Vtable -> ungrib/Variable_Tables/Vtable.GFS

STEP 3: Link GRIB files to the correct file names in the run directory

- Ungrib always expects GRIB files to be named
 GRIBFILE.AAA, GRIBFILE.AAB, GRIBFILE.AAC,
 etc., in the run directory
- The link_grib.csh script can be used to link GRIB files to these file names:
 - > link_grib.csh /data/GRIB/GFS/gfs*

See p. 3-15

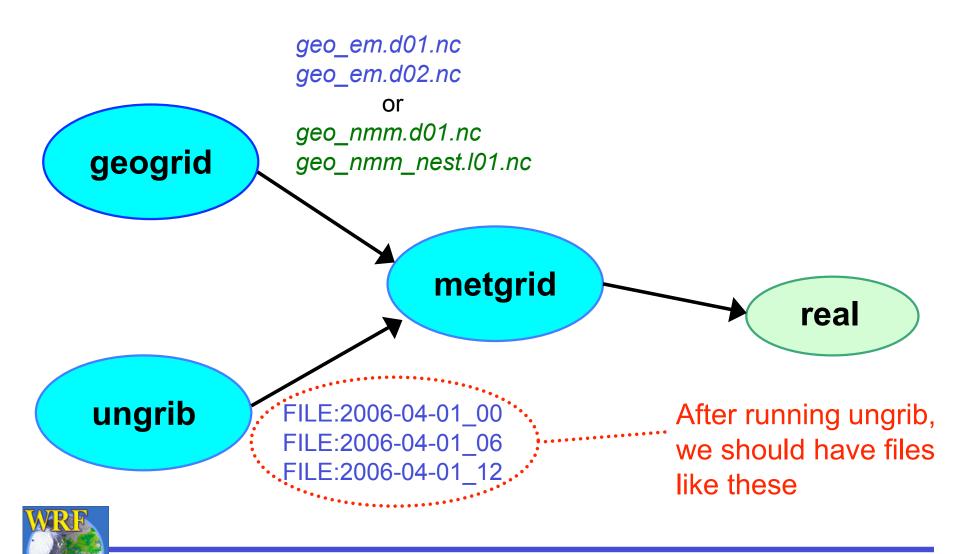
> Is GRIBFILE.*

GRIBFILE.AAA -> /data/GRIB/GFS/gfs_060401_00_00

STEP 4: Run ungrib.exe

Inventory for date = 2006-08-16 12:00:00

PRES	TT	טט	VV	RH	HGT	
2013.0	0	O	o	0	0	0
2001.0	X	X	x	X	0	X
1000.0	X	X	X	X	X	
975.0	X	X	X	x	X	
950.0	X	X	X	X	X	
925.0	X	X	X	X	X	
900.0	X	X	X	X	X	


STEP 5: Check that ungrib ran successfully

If ungrib ran successfully, this message should be printed:

If there was an error, check for error message in ungrib's printout or in the ungrid.log file.

Common errors are related to incorrect date specifications in the &share namelist, or because GRIB2 data was used with a version of WPS compiled without GRIB2 libraries.

STEP 1: Edit namelist.wps

For metgrid, only the &share and &metgrid namelists need to be edited

&share

STEP 1: Edit namelist.wps

&share

```
wrf_core = 'ARW',
max_dom = 2,
```

```
start_date = '2006-04-01_00:00:00', '2006-04-01_00:00:00', end_date = '2006-04-01_12:00:00', '2006-04-01_00:00:00',
```

```
interval_seconds = 21600
io_form_geogrid = 2,
```

Data time range: Time range to process *for each domain*. Usually, only the initial time is needed <u>for ARW nested domains</u>. Only coarse domain needed for NMM.

See p. 3-17 and 3-37

STEP 1: Edit namelist.wps

Intermediate file prefixes: Prefix (or prefixes) of intermediate files to interpolate to model domain. Should match prefix given to ungrib.

See p. 3-17 and 3-24

&metgrid

fg_name = 'GFS',

constants_name = 'SST:2006-04-01_00',

io_form_metgrid = 2,

Constant fields: Optional
 name of an intermediate file
 with fields to be used for
 every time period.

Metgrid I/O format: Which I/O format to use for metgrid output? 2=netCDF is recommended.

See p. 3-17, and 3-41

STEP 2: Make sure METGRID.TBL is linked to the correct version of METGRID.TBL

- There are multiple METGRID.TBL files to support multiple dynamical cores in WRF
- METGRID.TBL.ARW should be used for ARW
- METGRID.TBL.NMM should be used for NMM

> ls metgrid/METGRID.TBL

METGRID.TBL -> METGRID.TBL.ARW

STEP 3: Run metgrid.exe

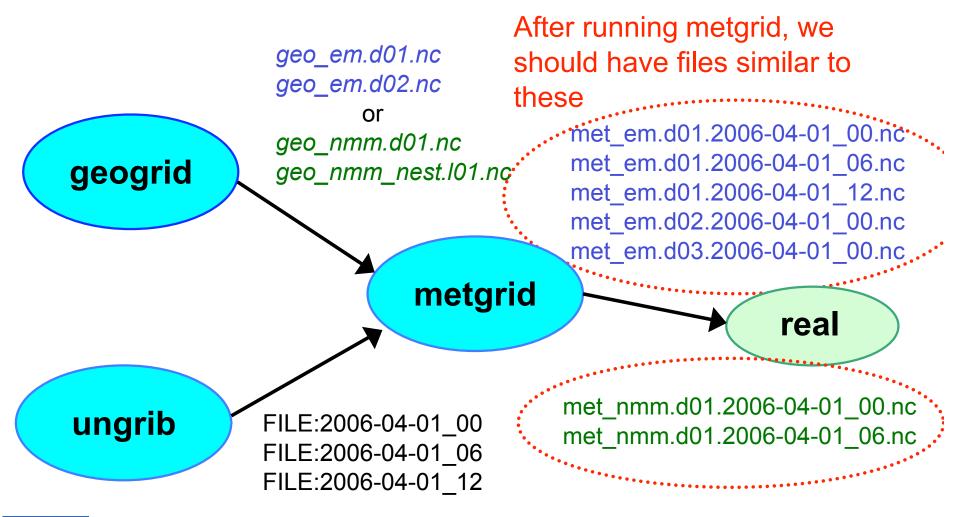
```
Processing domain 1 of 2
SST:2006-04-01_00 ◀
```

```
Processing 2006-04-01_00
GFS
Processing 2006-04-01_06
GFS
```

Processing 2006-04-01_12 GFS

Fields from constant files (given using constants_name) are processed before any time varying fields.

Metgrid processes all time period for one domain before processing for the next domain



STEP 4: Check that metgrid ran successfully

If metgrid ran successfully, this message should be printed:

If there was an error, check for an ERROR or WARNING message in the metgrid.log file, or for a system error, like "Segmentation fault".

Overview

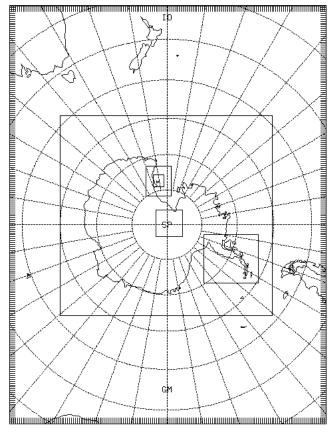
- How to run through the WPS for basic cases
 - Basic steps for running WPS
 - Geogrid
 - Ungrib
 - Metgrid
- WPS utility programs
- Common WPS mistakes

WPS Utility Programs

- Besides geogrid, ungrib, and metgrid, some simple utility programs are distributed with WPS:
 - For checking contents of intermediate format files
 - For listing contents of GRIB1 & GRIB2 files
 - To assist in locating domains
 - For computing 3d pressure field for ECMWF data
- Some programs use NCAR Graphics libraries for plotting
 - For these utilities, NCAR Graphics must be installed

WPS Utility Programs

The utility programs that come with WPS can be helpful when diagnosing problems with WPS output


- All utilities are found in the WPS/util directory
- Users are encouraged to make use of these utilities to examine WPS input and output files

Utility: plotgrids

The *plotgrids* program plots the location of grids defined in *namelist.wps*

- plotgrids can be used to iteratively refine the locations of grids.
- plotgrids uses the namelist.wps file only, so there is no need to run geogrid first!

Utility: rd_intermediate

The rd_intermediate lists information about the fields found in an intermediate-format file

```
FIELD = TT

UNITS = K DESCRIPTION = Temperature

DATE = 2000-01-24_12:00:00 FCST = 0.000000

SOURCE = unknown model from NCEP GRID 212

LEVEL = 200100.000000

I,J DIMS = 185, 129

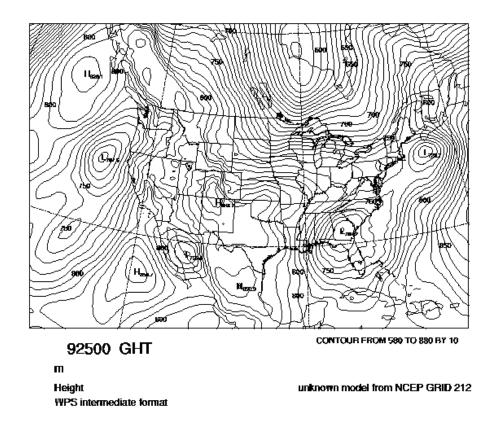
IPROJ = 1

REF_X, REF_Y = 1.000000, 1.000000

REF_LAT, REF_LON = 12.190000, -133.459000

DX, DY = 40.635250, 40.635250

TRUELAT1 = 25.000002


DATA(1,1)=295.910950
```


Utility: plotfmt

The plotfmt program plots the fields in the ungrib intermediate-formatted files

Utility: g1print and g2print

The *g1print* and *g2print* programs list the contents of a GRIB1 or GRIB2 file:

	Prod Disc	Cat	Param num	Lvl code	Lvl one	Lvl two	Name	Time	Fcst hour
1	0	3	5	100	100000	0	HGT	2006-08-16 12:00:00	00
2	0	3	5	100	97500	0	HGT	2006-08-16_12:00:00	00
3	0	3	5	100	95000	0	HGT	2006-08-16_12:00:00	00
4	0	3	5	100	92500	0	HGT	2006-08-16_12:00:00	00
5	0	3	5	100	90000	0	HGT	2006-08-16_12:00:00	00
6	0	3	5	100	85000	0	HGT	2006-08-16_12:00:00	00
7	0	3	5	100	80000	0	HGT	2006-08-16_12:00:00	00
8	0	3	5	100	75000	0	HGT	2006-08-16_12:00:00	00
9	0	3	5	100	70000	0	HGT	2006-08-16_12:00:00	00
10	0	3	5	100	65000	0	HGT	2006-08-16_12:00:00	00

Utility: calc_ecmwf_p

The calc_ecmwf_p utility creates intermediate files with a pressure (and possibly GHT and RH) field

FILE:2009-08-27 00

PSFC / LOGSFP SOILHGT / SOILGEO TT SPECHUMD

calc_ecmwf_p.exe

PRES:2009-08-27_00

PRESSURE RH GHT

emcwf_coeffs

0	0.000000	0.000000	0.0000	
1	2.000040	0.000000	0.0200	0.0100
2	3.980832	0.000000	0.0398	0.0299
3	7.387186	0.000000	0.0739	0.0568
4	12.908319	0.000000	0.1291	0.1015
5	21.413612	0.000000	0.2141	0.1716
6	33.952858	0.000000	0.3395	0.2768
7	51.746601	0.000000	0.5175	0.4285
8	76.167656	0.000000	0.7617	0.6396
9	108.715561	0.000000	1.0872	0.9244

See p. 3-28

Overview

- How to run through the WPS for basic cases
 - Basic steps for running WPS
 - Geogrid
 - Ungrib
 - Metgrid
- WPS utility programs
- Common WPS mistakes

Common WPS Mistakes

1) All 3-d fields must have same number of levels in metgrid

```
WRF_DEBUG: Warning DIM 4 , NAME

num_metgrid_levels REDIFINED by var GHT 27

26 in wrf_io.F90 line 2347

ERROR: Error in ext_pkg_write_field
```

- This is usually corrected by ensuring that all 3-d meteorological fields have surface level data
- Try setting debug_level=1000 in &share namelist, and checking metgrid.log for a table showing which fields are on which levels

Common WPS Mistakes

- 2) When using a regional data set (e.g., NAM), ensure that model domain is completely covered by the data
 - The metgrid program will stop if the model domain has grid points that are not covered by data
- 3) For native vertical coordinate data sets (e.g., RUCb, ECMWF), ensure that both pressure and geopotential height fields are available

