

The WRF Preprocessing System: Description of General Functions

Michael Duda

Purpose of this Lecture

In this lecture, our goals are to:

- 1) Understand the purpose of the WPS
- 2) Learn what each component of the WPS does
- 3) Understand why the components work as they do

- The details of actually running the WPS are covered in the second WPS lecture
- Advanced usage of the WPS is covered in the third lecture

WRF Modeling System Flowchart

WRF Modeling System Flow Chart

Purpose of the WPS

The purpose of the WPS is to prepare input to WRF for real-data simulations:

- Defines simulation domain and ARW nested domains
- Computes latitude, longitude, map scale factors, and Coriolis parameters at every grid point
- Interpolates time-invariant terrestrial data to simulation gr (e.g., terrain height and soil type)
- Interpolates time-varying meteorological fields from anoth model onto simulation domains

WPS Program Flowchart

The geogrid program

geogrid: think geographical

The geogrid program

- For WRF model domains, geogrid defines:
 - Map projection (all domains must use the same projection)
 - Geographic location of domains
 - Dimensions of domains
- Geogrid provides values for static (time-invariant) fields at each model grid point
 - Compute latitude, longitude, map scale factor, and Coriolis parameters at each grid point
 - Horizontally interpolate static terrestrial data (e.g., topograph height, land use category, soil type, vegetation fraction, monthly surface albedo)

Geogrid: Defining model domains

- First, we choose a map projection to use for the domains; why?
 - The real earth is (roughly) an ellipsoid
 - But WRF computational domains are defined by rectangle in the plane
- NMM uses a rotated latitude-longitude projection
- ARW can use any of the following projections:
 - Lambert conformal
 - 2. Mercator
 - 3. Polar stereographic
 - 4. Latitude-longitude (for global domain, *must* choose this!)

ARW Projections: Lambert Conformal

- Well-suited for mid-latitudes
- Domain cannot contain either pole
- Domain cannot be periodic in west-east direction
- Either one or two true latitudes may be specified
 - If two are given, the order doesn't matter

Lambert Conformal

ARW Projections: Mercator

- Well-suited for low-latitudes
- May be used for "channel" domain (periodic domain in west-east direction)
- A single true latitude is specified
 - Cylinder intersects the earth's surface at +/- truelat

135°W

90°W

45°W

90°E

ARW Projections: Polar Stereographic

- Good for high-latitude domains, especially if domain must contain a pole
- A single true latitude is specified

ARW Projections: Cylindrical Equidistant

- Required for global domains
- Can be used for regional domains
- Can be used in its normal or rotated aspect

ARW Projections: Rotating the Lat-Ion Grid

In certain cases, it may be desirable or necessary to rotate the poles of the projection away from the poles of the earth

- When placing a nest over a rectification within filtered region
- When using the lat-lon projection for limited area grids

See p. 3

Computational grid

Geographic grid

NMM Projection: Rotated Lat-Lon

- Can be used for any region
 - Polar, equatorial, mid-latitude
- Earth is rotated so that geographic location of interest is located at 0° lat, 0° lon
 - User simply specifies geographic point to appear in the center of the domain

Geogrid: Defining Model Domains

- Define projection of domains using a subset of the following parameters
 - MAP_PROJ: 'lambert', 'mercator', 'polar', 'lat-lon', or 'rotated_ll'
 - TRUELAT1: First true latitude
- TRUELAT2: Second true latitude (only for Lambert conformed)
 - **POLE_LAT, POLE_LON**: Location of North Pole in WRF computational grid (only for 'lat-lon')
 - STAND_LON: The meridian parallel to y-axis
 - All parameters reside in the file namelist.wps

*ARW only

See p. 3-9 and 3-40

Geogrid: Defining ARW Domains

Geogrid: Defining NMM Domains

Geogrid: Defining Model Domains

- Define the area covered (dimensions and location) by coarse domain using the following:
 - REF_LAT, REF_LON: The (lat,lon) location of a known location in the domain (by default, the center point of the domain)
 - DX, DY: Grid distance where map factor = 1
 - For Lambert, Mercator, and polar stereographic: meters
 - For (rotated) latitude-longitude: **degrees**
 - E_WE: Number of velocity points in west-east direction for ARW; number of mass points in odd rows for NMM
 - E_SN: Number of velocity points in south-north direction for ARW; number of rows for NMM

See p. 3-12 and 3-39

Geogrid: Defining ARW Domains

Geogrid: Nesting Basics

- A nested domain is a domain that is wholly contained within its parent domain and that receives information from its parent, and that mandle also feed information back to its parent
 - A nested domain has exactly one parent
 - A domain may have one or more children
- 2-way nests on the same nesting level must not overlap in coverage!

Geogrid: Nesting Example

Example configuration – 4 domains

Each domain is assigned a domain is ID #

Nesting structure shown as a tree for the domains at left

Geogrid: Defining Nested Domains

- Define the dimensions and location of nested domains using:
 - PARENT_ID: Which domain is the parent?
 - PARENT_GRID_RATIO: What is the ratio of grid spacing parent to grid spacing in this nest?
 - I_PARENT_START: i-coordinate in parent of this nest's lower-left corner
 - J_PARENT_START: j-coordinate in parent of this nest's lower-left corner
 - E_WE: Number of velocity points in west-east direction
 - E_SN: Number of velocity points in south-north direction

See p. 3-18 and 3-38

Geogrid: Defining Nested Domains

The grid spacing of domain 2 is determined by g spacing of domain 1 and the parent_grid_rat.

NB: For NMM, the parent_grid_ratio is always 3!

Geogrid: Nesting example

Assuming *parent_grid_ratio* = 3

Geogrid: Interpolating Static Fields

- Given definitions of all computational grids, geogrid interpolates terrestrial, time-invariant fields
 - Topography height
 - Land use categories
 - Soil type (top layer & bottom layer)
 - Annual mean soil temperature
 - Monthly vegetation fraction
 - Monthly surface albedo

Geogrid: Interpolating Static Fields

In general, source data are given on a different projection from the model grid

Geogrid: Interpolation Options

- 4-point bilinear
- 16-point overlapping parabolic
- 4-point average (simple or weighted)
- 16-point average (simple or weighted)
- Grid cell average
- Nearest neighbor
- Breadth-first search

See p. 3-51

Why have so many interpolation options?

- Different interpolators work best for different fields and different relative grid resolutions
 - Some interpolators preserve positive definiteness
 - Some interpolators produce "smoother" fields
 - Some interpolators are best suited for discrete or categorical fields
 - Some are good when going from a fine grid to a coarse g
- Having a choice of how to interpolate fields is good!
 - We'll see in the third WPS lecture how several different options can be used for different regions of the same field

Geogrid: Program Flexibility

- The GEOGRID.TBL file determines
 - Which fields will be produced by geogrid
 - What sources of data will be used
 - How the data will be interpolated/smoothed
 - 4. Any derived fields (e.g., dominant cat., df/dx)
- Acceptable defaults exist in GEOGRID.TBL, so user will not generally need to edit the file (but more on this in the third WPS lecture!)

Geogrid: Program Flexibility

- geogrid is flexible enough to ingest and interpolate new static fields
 - handles either continuous or categorical fields
- New data sets must be written to simple bina format
- User needs to add an entry to the file GEOGRID.TBL

Geogrid: Program Output

- The parameters defining each domain, plus interpolated static fields, are written using the WRF I/O API
 - One file per domain for ARW
 - One file per *nesting level* for NMM
- Filenames: geo_em.d0n.nc , or

```
geo_nmm.d01.nc, geo_nmm_nest.l0k.nc
```

(where *n* is the domain ID # and *k* is the nest level)

Example:

```
geo_em.d01.ncgeo_nmm.d01.ncgeo_em.d02.nc (nest)geo_nmm_nest.l01.nc (nest level)geo_em.d03.nc (nest)geo_nmm_nest.l02.nc (nest level)
```


Geogrid: Example Output Fields

The ungrib program

ungrib: think un+grib

What is a GRIB file, anyway?

- GRIB is a WMO standard file format for storing regularly-distributed (e.g., gridded) fields
 - "General Regularly-distributed Information in Binary"
- Fields within a GRIB file are compressed with a lossy compression
 - Think of truncating numbers to a fixed number of digits
- A record-based format
- Fields in a file are identified only by code numbers
 - These numbers must be referenced against an external tak to determine the corresponding field

The ungrib program

- Read GRIB Edition 1 and GRIB Edition 2 files
- Extract meteorological fields
- If necessary, derive required fields from related ones
 - E.g., Compute RH from T, P, and Q
- Write requested fields to an intermediate file format

Ungrib: Vtables

How does ungrib know which fields to extract?

Using Vtables (think: Variable tables)

- Vtables are files that give the GRIB codes for fields to be extracted from GRIB input files
- One Vtable for each source of data
- Vtables are provided for: NAM 104, NAM 212, GFS, AGRMET, and others

Ungrib: Example Vtable

Ungrib: GRIB2 Vtable Entries

metgrid	GRIB2	GRIB2	GRIB2	GRIB2
Description	Discp +	Catgy 	Param 	Level +
Temperature	0 0	0 1 2	0 2	100 100
	1 0	1 2	1 2 1 3	100 100
Relative Humidity	0	1	1	100
Height	0	3	5	100
Temperature	0 0	0 1	0 1	103 103
U at 10 m	1 0	2	1 2	103
V at 10 m	i O	2	3	103
Surface Pressure	0	3	0	1
Sea-level Pressure Soil Moist 0-10 cm below grn layer (Up)	0 2	3	I 192	101 106
Soil Moist 10-40 cm below grn layer (op)	2	0	192	106
Soil Moist 40-100 cm below grn layer	2	0	192	106
Soil Moist 100-200 cm below gr layer	2	0	192	106
Soil Moist 10-200 cm below gr layer T 0-10 cm below ground layer (Upper)	2 0	0 0	192 0	106 106
T 10-40 cm below ground layer (Upper)	1 0	0	I 0	106
T 40-100 cm below ground layer (Upper)	0	0	j O	106
T 100-200 cm below ground layer (Bottom)		0	0	106
T 10-200 cm below ground layer (Bottom) Ice flag	0 0	0 2	0 0	106
Land/Sea flag (1=land, 0 or 2=sea)	2	1 0	I 0	1 1 1
Terrain field of source analysis	2	0	7	1
Skin temperature (can use for SST also)	0	0	0	1
Water equivalent snow depth	0 2	1 3	13 0	<u> </u>
Dominant soil type cat. (not in GFS file) Dominant land use cat. (not in GFS file)	2	0	198	1
+	+			+

Ungrib: Vtables

What if a data source has no existing Vtable?

Create a Vtable

- Get a listing of GRIB codes for fields in the source
 - Check documentation from originating center or use utility such as wgrib, g1print, g2print
- Use existing Vtable as a template
- Check documentation in Chapter 3 of the Users' Guide for more information about Vtables

See p. 3-32

Ungrib: Intermediate File Format

- After extracting fields listed in Vtable, ungrib writes those fields to intermediate format
- For meteorological data sets not in GRIB formate the user may write to intermediate format direction.
 - Allows WPS to ingest new data sources; basic programming required of user
 - Simple intermediate file format is easily read/writte using routines from WPS (read_met_module.F and write_met_module.F)

Ungrib: Program Output

- Output files named FILE: YYYY-MM-DD_HH
 - YYYY is year of data in the file; MM is month; DL day; HH is hour
 - All times are UTC
- Example:

FILE:2007-07-24_00

FILE:2007-07-24_06

FILE:2007-07-24_12

ungrib can also write intermediate files in the MM5 or WRF SI format! (To allow for use of GRIB2 data with MM5, for example)

Ungrib: Obtaining GRIB Data

- Where does one get GRIB data?
 - User's responsibility
 - Some free data are available from NCAR and NCEP. See
 - http://www.mmm.ucar.edu/wrf/users/
 - > under the "Downloads" tab:
 - Some NCEP data in the past year
 - NCEP operational data available daily

The *metgrid* program

metgrid: think meteorological

The *metgrid* program

- Horizontally interpolate meteorological data (extracted by ungrib) to simulation domains (defined by geogrid)
 - Masked interpolation for masked fields
- Rotate winds to WRF grid
 - i.e., rotate so that U-component is parallel to x-axis
 V-component is parallel to y-axis

Metgrid: ARW Grid Staggering

- For ARW, wind U-component interpolated to "ι staggering
- Wind V-component interpolated to "v" staggering
- Other meteorological fields interpolated to "θ" staggering by default (can change this!)

A single ARW cell, with "u", " and "θ" points labeled.

Metgrid: NMM Grid Staggering

- For NMM, wind U- and V-components interpolated to "V" staggering
- Other meteorological fields interpolated to "H" staggering by default (can change this!)

An NMM grid showing "V", and "H" points.

Metgrid: Interpolation Options*

- 4-point bilinear
- 16-point overlapping parabolic
- 4-point average (simple or weighted)
- 16-point average (simple or weighted)
- Grid cell average
- Nearest neighbor
- Breadth-first search

Metgrid: Masked Interpolation

- Masked fields may only have valid data at a subset of grid points
 - E.g., SST field only valid on water points
- When metgrid interpolates masked fields, it must know which points are invalid (masked)
 - Can use separate mask field (e.g., LANDSEA)
 - Can rely on special values (e.g., 1×10³⁰) in field itself to identify masked grid points

Metgrid: Masked Interpolation

- = valid source data
- = masked/invalid data

Suppose we need to interpolate to point X

- Using red points as valid data can give a bad interpolated value!
- Masked interpolation only uses valid blue points to interpolate to X

Not every interpolation option can handle masked points; we'll address this issue in the third lecture

Example: Masked Interpolation

Skin temperature field interpolated from GFS 0.5-deg field with no mask using a sixteen-point interpolator.

Skin temperature field interpolar using masks: GFS water points interpolated to model water point GFS land points interpolated to model land points.

Metgrid: Wind Rotation

- Input wind fields (U-component + V-component) are either:
 - Earth-relative: U-component = westerly component; V-component = southerly component
 - Relative to source grid: U-component (V-component)
 parallel to source model x-axis (y-axis)
- WRF expects wind components to be relative to the simulation grid

Metgrid: Wind Rotation Example

A wind vector, shown in terms of its U and V components with respect to the source grid.

The same vector, in terms of its U and V components with respect to the WRF simulation grid.

This process may require *two* rotations: one from source grid to earth grid and a second from earth grid to WRF grid

Metgrid: Constant Fields

- For short simulations, some fields may be constant
 - E.g., SST or sea-ice fraction
- Use namelist option constants_name option to specify such fields:
 - CONSTANTS NAME = 'SST FILE: 2007-07-24 00'

Metgrid: Program Flexibility

- metgrid is capable of interpolating both isoba and native vertical coordinate data sets
- User may specify interpolation methods and related options in the METGRID.TBL file
 - METGRID.TBL file similar in format to the file GEOGRID.TBL

Metgrid: Program Output

- For coarse domain, one file per time period
 - In ARW, we also get the first time period for all nested gri
- Files contain static fields from geogrid plus interpolated meteorological fields
- Filenames:

```
ARW: met_em.d0n. YYYY-MM-DD_HH:mm:ss.nc (where n is the domain ID #)
```

NMM: met_nmm.d01.*YYYY-MM-DD_HH:mm:ss*.n

Metgrid: Example Output

WPS Summary

And finally...

Vertical interpolation to WRF eta levels is performed in the *real* or *real_nmm* program

Questions?

