
WRF Software Architecture

John Michalakes, Head WRF Software Architecture

Michael Duda

Dave Gill

Outline

•  Introduction

•  Computing Overview

•  WRF Software Overview

Introduction – WRF Software Characteristics

•  Developed from scratch beginning around 1998, primarily Fortran and C

•  Requirements emphasize flexibility over a range of platforms, applications, users,

performance

•  WRF develops rapidly. First released Dec 2000; current release WRF v3.2 (April

2010); next release WRF v3.2.1 (August 2010)

•  Supported by flexible efficient architecture and implementation called the WRF

Software Framework

Introduction - WRF Software Framework Overview

•  Implementation of WRF Architecture

–  Hierarchical organization
–  Multiple dynamical cores
–  Plug compatible physics
–  Abstract interfaces (APIs) to external packages
–  Performance-portable

•  Designed from beginning to be adaptable to today’s computing

environment for NWP

http://box.mmm.ucar.edu/wrf/WG2/bench/

ARW solver

Physics Interfaces

Plug-compatible physics
Plug-compatible physics

Plug-compatible physics
Plug-compatible physics

Plug-compatible physics

NMM solver

Top-level Control,
Memory Management, Nesting,

Parallelism, External APIs

m
ed

ia
tio

n
dr

iv
er

m

od
el

Outline

•  Introduction

•  Computing Overview

•  WRF Software Overview

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Hardware: The Computer

•  The ‘N’ in NWP

•  Components

–  Processor

•  A program counter
•  Arithmetic unit(s)

•  Some scratch space (registers)

•  Circuitry to store/retrieve from memory device

•  Cache

–  Memory
–  Secondary storage

–  Peripherals

•  The implementation has been continually refined, but the basic idea hasn’t

changed much

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Hardware has not changed much…

~50,000 flop/s
48hr 12km WRF CONUS in 600 years

~5,000,000,000 flop/s
48 12km WRF CONUS in 52 Hours

6-way superscalar

36-bit floating point precision

~144 Kbytes

A computer in 1960

IBM 7090

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Dual core, 4.7 GHz chip

64-bit floating point precision

1.9 MB L2, 36 MB L3

Upto 16 GB per processor
IBM P6

A computer in 2008

…how we use it has

•  Fundamentally, processors haven’t changed much since 1960

•  Quantitatively, they haven’t improved nearly enough

–  100,000x increase in peak speed

–  100,000x increase in memory size
–  These are too slow and too small for even a moderately large NWP run today

•  We make up the difference with parallelism

–  Ganging multiple processors together to achieve 1011-12 flop/second

–  Aggregate available memories of 1011-12 bytes

~1,000,000,000,000 flop/s ~250 procs
48-h,12-km WRF CONUS in under 15 minutes

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Parallel Computing Terms -- Hardware

•  Processor:
–  A device that reads and executes instructions in sequence to

produce perform operations on data that it gets from a memory
device producing results that are stored back onto the memory
device

•  Node: One memory device connected to one or more processors.
–  Multiple processors in a node are said to share-memory and this

is “shared memory parallelism”
–  They can work together because they can see each other’s

memory
–  The latency and bandwidth to memory affect performance

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Parallel Computing Terms -- Hardware

•  Cluster: Multiple nodes connected by a network
–  The processors attached to the memory in one node can not see

the memory for processors on another node
–  For processors on different nodes to work together they must

send messages between the nodes. This is “distributed memory
parallelism”

•  Network:
–  Devices and wires for sending messages between nodes
–  Bandwidth – a measure of the number of bytes that can be

moved in a second
–  Latency – the amount of time it takes before the first byte of a

message arrives at its destination

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Parallel Computing Terms – System Software

•  Process:

–  A set of instructions to be executed on a processor

–  Enough state information to allow process execution to stop on a
processor and be picked up again later, possibly by another
processor

•  Processes may be lightweight or heavyweight

–  Lightweight processes, e.g. shared-memory threads, store very
little state; just enough to stop and then start the process

–  Heavyweight processes, e.g. UNIX processes, store a lot more
(basically the memory image of the job)

“The only thing one does directly with hardware is pay for it.”
 John’s Zeroth Law of Computing

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Parallel Computing Terms – System Software

•  Every job has at least one heavy-weight process.

–  A job with more than one heavy-weight process is a distributed-memory parallel job

–  Even on the same node, heavyweight processes do not share memory

•  Within a heavyweight process you may have some number of lightweight processes,

called threads.
–  Threads are shared-memory parallel; only threads in the same memory space can

work together.
–  A thread never exists by itself; it is always inside a heavy-weight process.

•  Heavy-weight processes are the vehicles for distributed memory parallelism

•  Threads (light-weight processes) are the vehicles for shared-memory parallelism

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Jobs, Processes, and Hardware

•  Message Passing Interface – MPI, referred to as the communication layer

•  MPI is used to start up and pass messages between multiple heavyweight

processes

–  The mpirun command controls the number of processes and how they are
mapped onto nodes of the parallel machine

–  Calls to MPI routines send and receive messages and control other
interactions between processes

–  http://www.mcs.anl.gov/mpi

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Jobs, Processes, and Hardware

•  OpenMP is used to start up and control threads within each process

–  Directives specify which parts of the program are multi-threaded

–  OpenMP environment variables determine the number of threads in each
process

–  http://www.openmp.org

•  OpenMP is usually activated via a compiler option

•  MPI is usually activated via the compiler name

•  The number of processes (number of MPI processes times the number of threads

in each process) usually corresponds to the number of processors

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

•  If the machine consists of 4 nodes, each with 4 processors, how many different ways can
you run a job to use all 16 processors?

–  4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 wrf.exe

‒  8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 wrf.exe

‒  16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
mpirun –np 16 wrf.exe

Examples

4 threads

1 MPI

4 threads

1 MPI

4 threads

1 MPI

4 threads

1 MPI

•  If the machine consists of 4 nodes, each with 4 processors, how many different ways can
you run a job to use all 16 processors?

‒  4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 wrf.exe

‒  8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 wrf.exe

‒  16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
mpirun –np 16 wrf.exe

Examples

2 threads
2 threads

2 MPI

2 threads
2 threads

2 MPI

2 threads
2 threads

2 MPI

2 threads
2 threads

2 MPI

•  If the machine consists of 4 nodes, each with 4 processors, how many different ways can
you run a job to use all 16 processors?

‒  4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 wrf.exe

‒  8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 wrf.exe

‒  16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
mpirun –np 16 wrf.exe

Examples

4 MPI

4 MPI 4 MPI

4 MPI

Application: WRF

•  WRF can be run serially or as a parallel job

•  WRF uses domain decomposition to divide total amount of work over parallel

processes

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Application: WRF

•  Since the process model has two levels (heavy-weight and light-weight = MPI and

OpenMP), the decomposition of the application over processes has two levels:

–  The domain is first broken up into rectangular pieces that are assigned to
heavy-weight processes. These pieces are called patches

–  The patches may be further subdivided into smaller rectangular pieces that are
called tiles, and these are assigned to threads within the process.

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Model domains are decomposed for parallelism on two-levels
Patch: section of model domain allocated to a distributed memory node,
this is the scope of a mediation layer solver or physics driver.

Tile: section of a patch allocated to a shared-memory processor within a
node; this is also the scope of a model layer subroutine.

Distributed memory parallelism is over patches; shared memory parallelism
is over tiles within patches

•  Single version of code for efficient execution on:

–  Distributed-memory
–  Shared-memory (SMP)
–  Clusters of SMPs
–  Vector and microprocessors

Parallelism in WRF: Multi-level Decomposition

Logical
domain

1 Patch, divided
into multiple tiles

Inter-processor
communication

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Distributed Memory Communications

Communication is required between patches when a
horizontal index is incremented or decremented on the right-
hand-side of an assignment.

On a patch boundary, the index may refer to a value that is
on a different patch.

Following is an example code fragment that requires
communication between patches

Note the tell-tale +1 and –1 expressions in indices for rr, H1,
and H2 arrays on right-hand side of assignment.

These are horizontal data dependencies because the
indexed operands may lie in the patch of a neighboring
processor. That neighbor’s updates to that element of the
array won’t be seen on this processor.

We have to communicate.

When"
Needed?"

Why?"

Dr Phil"

 (module_diffusion.F)

SUBROUTINE horizontal_diffusion_s (tendency, rr, var, . . .
. . .
 DO j = jts,jte
 DO k = kts,ktf
 DO i = its,ite
 mrdx=msft(i,j)*rdx
 mrdy=msft(i,j)*rdy
 tendency(i,k,j)=tendency(i,k,j)- &
 (mrdx*0.5*((rr(i+1,k,j)+rr(i,k,j))*H1(i+1,k,j)- &
 (rr(i-1,k,j)+rr(i,k,j))*H1(i ,k,j))+ &
 mrdy*0.5*((rr(i,k,j+1)+rr(i,k,j))*H2(i,k,j+1)- &
 (rr(i,k,j-1)+rr(i,k,j))*H2(i,k,j))- &
 msft(i,j)*(H1avg(i,k+1,j)-H1avg(i,k,j)+ &
 H2avg(i,k+1,j)-H2avg(i,k,j) &
)/dzetaw(k) &
)
 ENDDO
 ENDDO
 ENDDO
 . . .

Distributed Memory Communications

•  Halo updates

Distributed Memory MPI
Communications

memory on one processor memory on neighboring processor

*
+ *
*

* *

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

•  Halo updates
•  Periodic boundary updates
•  Parallel transposes
•  Nesting scatters/gathers

Distributed Memory (MPI)
Communications

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Distributed Memory (MPI)
Communications

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

•  Halo updates
•  Periodic boundary updates
•  Parallel transposes
•  Nesting scatters/gathers

•  Halo updates
•  Periodic boundary updates
•  Parallel transposes
•  Nesting scatters/gathers

Distributed Memory (MPI)
Communications

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

all y on
patch

all z on
patch

all x on
patch

•  Halo updates
•  Periodic boundary updates
•  Parallel transposes
•  Nesting scatters/gathers

Distributed Memory (MPI)
Communications

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

NEST:2.22 km INTERMEDIATE: 6.66 km

COARSE
Ross Island
6.66 km

Review – Computing Overview

APPLICATION
(WRF)

HARDWARE
(Processors, Memories, Wires)

SYSTEM
(UNIX, MPI, OpenMP)

Domain contains Patches contain Tiles

Job contains Processes contain Threads

Cluster contains Nodes contain Processors

Distributed
Memory
Parallel

Shared
Memory
Parallel

•  Introduction

•  Computing Overview

•  WRF Software Overview

Outline

•  Architecture

•  Directory structure

•  Model Layer Interface

•  Data Structures

•  I/O

WRF Software Overview

WRF Software Architecture

•  Hierarchical software architecture

–  Insulate scientists' code from parallelism and other architecture/implementation-specific
details

–  Well-defined interfaces between layers, and external packages for communications, I/O, and
model coupling facilitates code reuse and exploiting of community infrastructure, e.g. ESMF.

Registry

WRF Software Architecture

•  Driver Layer
–  Domains: Allocates, stores, decomposes, represents abstractly as single data objects
–  Time loop: top level, algorithms for integration over nest hierarchy

Registry

WRF Software Architecture

•  Driver Layer
–  Non package-specific access: communications and I/O
–  Utilities: for example module_wrf_error, which is used for diagnostic prints and error

stops, accessibility to run-time options

Registry

WRF Software Architecture

•  Mediation Layer
–  Provides to the Driver Layer

•  Solve routine, which takes a domain object and advances it one time step
•  I/O routines that Driver calls when it is time to do some input or output operation on a domain
•  Nest forcing, interpolation, and feedback routines

Registry

WRF Software Architecture

•  Mediation Layer
–  Provides to Model Layer

•  The sequence of calls for doing a time-step for one domain is known in Solve routine
•  Dereferences fields in calls to physics drivers and dynamics code
•  Calls to message-passing are contained here as part of Solve routine

Registry

WRF Software Architecture

•  Model Layer
–  Information about the model itself: machine architecture and implementation aspects abstracted out and

moved into layers above
–  Physics and Dynamics: contains the actual WRF model routines are written to perform some

computation over an arbitrarily sized/shaped subdomain

Registry

WRF Software Architecture

•  Model Layer
–  F77-esque: all state data objects are simple types, passed in through argument list from physics drivers
–  No I/O, comms, control: Model Layer routines don’t know anything about communication or I/O,

executed on one thread – they never contain a PRINT, WRITE, or STOP statement
–  Model Layer Subroutine Interface: “tile-callable”, no external COMMON, no decomposed heap data

Registry

WRF Software Architecture

•  Registry: an “Active” data dictionary

–  Tabular listing of model state and attributes
–  Large sections of interface code generated automatically
–  Scientists manipulate model state simply by modifying Registry, without further knowledge of

code mechanics
–  Special “cases” exist: chemistry, SST coupling

Registry

Call Structure Superimposed on Architecture

wrf (main/wrf.F)

integrate (frame)

KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
WSM5 (phys/module_mp_wsm5.F

solve_interface -> solve_em (dyn_em)

module_microphysics_driver (phys)

module_microphysics_drive (phys)

module_first_rk_step_part1 (dyn_em)

•  Architecture

•  Directory structure

•  Model Layer Interface

•  Data Structures

•  I/O

WRF Software Overview

WRF Model
Top-Level
Directory
Structure

WRF Design
and
Implementation
Doc, p 5

DRIVER
MEDIATION
MODEL

Makefile
README
README_test_cases
clean
compile
configure
Registry/
arch/
dyn_em/
dyn_nnm/
external/
frame/
inc/
main/
phys/
share/
tools/
run/
test/

build
scripts

source
code
directories

execution
directories

machine build rules
CASE input files

•  Architecture

•  Directory structure

•  Model Layer Interface

•  Data Structures

•  I/O

WRF Software Overview

WRF Model Layer Interface

OMP Config
Inquiry I/O API
Config
Module WRF Tile - callable

Subroutines

Solve DM comm

Th
re

ad
s

Data formats,
Parallel I/O

M
es

sa
ge

Pa
ss

in
g

Driver

Mediation Layer / Model Layer Interface

All state arrays passed through argument list as
simple (not derived) data types

Domain, memory, and run dimensions passed
unambiguously in three physical dimensions

Model layer routines are called from mediation
layer (physics drivers) in loops over tiles, which are
multi-threaded

WRF Model Layer Interface

OMP Config
Inquiry I/O API
Config
Module WRF Tile - callable

Subroutines

Solve DM comm

Th
re

ad
s

Data formats,
Parallel I/O

M
es

sa
ge

Pa
ss

in
g

Driver

Mediation Layer / Model Layer Interface

Restrictions on Model Layer subroutines:

No I/O, communication, no stops or aborts
(use wrf_error_fatal in frame/
module_wrf_error.F)

No common/module storage of decomposed
data (exception allowed for set-once/read-only
tables)

Spatial scope of a Model Layer call is one “tile”

WRF Model Layer Interface

•  Mediation layer / Model Layer Interface contract exists

•  Model layer routines are called from mediation layer in
loops over tiles, which are multi-threaded

•  All state arrays passed through argument list as simple
data types

WRF Model Layer Interface

•  Domain, memory, and run dimensions passed unambiguously in
three physical dimensions

•  Restrictions on model layer subroutines
–  No I/O, communication, no stops or aborts (use

wrf_error_fatal in frame/module_wrf_error.F)
–  No common/module storage of decomposed data (exception

allowed for set-once/read-only tables)
–  Spatial scope of a Model Layer call is one “tile”
–  Temporal scope of a call is limited by coherency

SUBROUTINE driver_for_some_physics_suite (
 . . .
!$OMP DO PARALLEL
 DO ij = 1, numtiles
 its = i_start(ij) ; ite = i_end(ij)
 jts = j_start(ij) ; jte = j_end(ij)
 CALL model_subroutine(arg1, arg2, . . .
 ids , ide , jds , jde , kds , kde ,
 ims , ime , jms , jme , kms , kme ,
 its , ite , jts , jte , kts , kte)
 END DO
 . . .

 END SUBROUTINE

WRF Model Layer Interface

 template for model layer subroutine

 SUBROUTINE model_subroutine (&
 arg1, arg2, arg3, … , argn, &
 ids, ide, jds, jde, kds, kde, & ! Domain dims
 ims, ime, jms, jme, kms, kme, & ! Memory dims
 its, ite, jts, jte, kts, kte) ! Tile dims

 IMPLICIT NONE

 ! Define Arguments (State and I1) data
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
 REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
 . . .
 ! Define Local Data (I2)
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
 . . .

WRF Model Layer Interface

 template for model layer subroutine

. . .
 ! Executable code; loops run over tile
 ! dimensions
 DO j = MAX(jts,jds), MIN(jte,jde-1)
 DO k = kts, kte
 DO i = MAX(its,ids), MIN(ite,ide-1)
 loc1(i,k,j) = arg1(i,k,j) + …
 END DO
 END DO
 END DO

WRF Model Layer Interface

 template for model layer subroutine

 SUBROUTINE model (&
 arg1, arg2, arg3, … , argn, &
 ids, ide, jds, jde, kds, kde, & ! Domain dims
 ims, ime, jms, jme, kms, kme, & ! Memory dims
 its, ite, jts, jte, kts, kte) ! Tile dims

 IMPLICIT NONE

 ! Define Arguments (S and I1) data
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
 REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
 . . .
 ! Define Local Data (I2)
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
 . . .
 ! Executable code; loops run over tile
 ! dimensions
 DO j = MAX(jts,jds), MIN(jte,jde-1)
 DO k = kts, kte
 DO i = MAX(its,ids), MIN(ite,ide-1)
 loc1(i,k,j) = arg1(i,k,j) + …
 END DO
 END DO
 END DO

•  Domain dimensions
•  Size of logical domain
•  Used for bdy tests, etc.

 template for model layer subroutine

 SUBROUTINE model (&
 arg1, arg2, arg3, … , argn, &
 ids, ide, jds, jde, kds, kde, & ! Domain dims
 ims, ime, jms, jme, kms, kme, & ! Memory dims
 its, ite, jts, jte, kts, kte) ! Tile dims

 IMPLICIT NONE

 ! Define Arguments (S and I1) data
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
 REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
 . . .
 ! Define Local Data (I2)
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
 . . .
 ! Executable code; loops run over tile
 ! dimensions
 DO j = MAX(jts,jds), MIN(jte,jde-1)
 DO k = kts, kte
 DO i = MAX(its,ids), MIN(ite,ide-1)
 loc1(i,k,j) = arg1(i,k,j) + …
 END DO
 END DO
 END DO

•  Domain dimensions
•  Size of logical domain
•  Used for bdy tests, etc.

•  Memory dimensions
•  Used to dimension dummy

arguments
•  Do not use for local arrays

 template for model layer subroutine

 SUBROUTINE model (&
 arg1, arg2, arg3, … , argn, &
 ids, ide, jds, jde, kds, kde, & ! Domain dims
 ims, ime, jms, jme, kms, kme, & ! Memory dims
 its, ite, jts, jte, kts, kte) ! Tile dims

 IMPLICIT NONE

 ! Define Arguments (S and I1) data
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
 REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
 . . .
 ! Define Local Data (I2)
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
 . . .
 ! Executable code; loops run over tile
 ! dimensions
 DO j = MAX(jts,jds), MIN(jte,jde-1)
 DO k = kts, kte
 DO i = MAX(its,ids), MIN(ite,ide-1)
 loc1(i,k,j) = arg1(i,k,j) + …
 END DO
 END DO
 END DO

•  Domain dimensions
•  Size of logical domain
•  Used for bdy tests, etc.

•  Memory dimensions
•  Used to dimension dummy

arguments
•  Do not use for local arrays

•  Tile dimensions
•  Local loop ranges
•  Local array dimensions

 template for model layer subroutine

 SUBROUTINE model (&
 arg1, arg2, arg3, … , argn, &
 ids, ide, jds, jde, kds, kde, & ! Domain dims
 ims, ime, jms, jme, kms, kme, & ! Memory dims
 its, ite, jts, jte, kts, kte) ! Tile dims

 IMPLICIT NONE

 ! Define Arguments (S and I1) data
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
 REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
 . . .
 ! Define Local Data (I2)
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
 . . .
 ! Executable code; loops run over tile
 ! dimensions
 DO j = MAX(jt,jds), MIN(jte,jde-1)
 DO k = kts, kte
 DO i = MAX(its,ids), MIN(ite,ide-1)
 loc1(i,k,j) = arg1(i,k,j) + …
 END DO
 END DO
 END DO

•  Domain dimensions
•  Size of logical domain
•  Used for bdy tests, etc.

•  Memory dimensions
•  Used to dimension dummy

arguments
•  Do not use for local arrays

•  Tile dimensions
•  Local loop ranges
•  Local array dimensions

•  Patch dimensions
•  Start and end indices of local

distributed memory subdomain
•  Available from mediation layer

(solve) and driver layer; not usually
needed or used at model layer

•  Architecture

•  Directory structure

•  Model Layer Interface

•  Data Structures

•  I/O

WRF Software Overview

Driver Layer Data Structures: Domain Objects

•  Driver layer
‒  All data for a domain is an object, a domain derived data type (DDT)
‒  The domain DDTs are dynamically allocated/deallocated
‒  Linked together in a tree to represent nest hierarchy; root pointer is
head_grid, defined in frame/module_domain.F

‒  Supports recursive depth-first traversal algorithm (frame/
module_integrate.F)

head_grid 1

4

3 2

•  Every Registry defined state, I1, and

namelist variable is contained inside the

DDT (locally known as a grid of type

domain), where each node in the tree

represents a separate and complete 3D

model domain/nest.

Model Layer Data Structures: F77

•  Model layer

–  All data objects are scalars and arrays of simple types only

–  Virtually all passed in through subroutine argument lists

–  Non-decomposed arrays and “local to a module” storage are
permitted with an initialization at the model start

Mediation Layer Data Structures: Objects + F77

•  Mediation layer

–  One task of mediation layer is to dereference fields from DDTs

–  Therefore, sees domain data in both forms, as DDT and as individual fields
which are components of the DDTs

•  The name of a data type and how it is referenced differs depending on the level of

the architecture

Data Structures

•  WRF Data Taxonomy
‒  State data
‒  Intermediate data type 1 (I1)
‒  Intermediate data type 2 (I2)
‒  Heap storage (COMMON or Module data)

Data Structures

•  WRF Data Taxonomy
‒  State data
‒  Intermediate data type 1 (I1)
‒  Intermediate data type 2 (I2)
‒  Heap storage (COMMON or Module data)

Defined in the
Registry

Data Structures

•  WRF Data Taxonomy
‒  State data
‒  Intermediate data type 1 (I1)
‒  Intermediate data type 2 (I2)
‒  Heap storage (COMMON or Module data)

Defined in
the physics
subroutines
on the
stack

Data Structures

•  WRF Data Taxonomy
‒  State data
‒  Intermediate data type 1 (I1)
‒  Intermediate data type 2 (I2)
‒  Heap storage (COMMON or Module)

Defined in the
module top,
typically
look-up tables
and routine
constants,
NO HORIZ
DECOMPOSED
DATA!
Common
blocks must
not leave the
Module.

Mediation/Model Layer Data Structures:
State Data

•  Duration: Persist between start and stop of a domain

•  Represented as fields in domain data structure

–  Memory for state arrays are dynamically allocated, only big enough to hold the
local subdomain’s (ie. patch’s) set of array elements

–  Always memory dimensioned
–  Declared in Registry using state keyword

•  Only state arrays can be subject to I/O and Interprocessor communication

Mediation/Model Layer Data Structures:
I1 Data

•  Persist for the duration of a single time step in solve

•  Represented as fields in domain data structure

–  Memory for I1 arrays are dynamically allocated, only big enough to hold the
local subdomain’s (ie. patch’s) set of array elements

–  Always memory dimensioned
–  Declared in Registry using I1 keyword

–  Typically tendency fields computed, used, and discarded at the end of every
time step

–  Are not used to impact I1 variables on a child domain

Model Layer Data Structures:
I2 Data

•  Persist for the duration of a call of the physics routine

•  NOT contained within the DDT structure (no declarations in the Registry)

–  Memory for I2 arrays are dynamically allocated on subroutine entry, and
automatically deallocated on exit

–  Local, intermediate dummy variables required for physics computations
–  If I2 arrays, then they are always tile dimensioned

–  Not declared in the Registry, not communicated, no IO, not passed back to the
solver, do not exist (retain their previous value) between successive physics
calls

Grid Representation in Arrays

•  Increasing indices in WRF arrays run

–  West to East (X, or I-dimension)

–  South to North (Y, or J-dimension)

–  Bottom to Top (Z, or K-dimension)

•  Storage order in WRF is IKJ (ARW) and IJK (NMM) but these are a WRF Model

convention, not a restriction of the WRF Software Framework (provides cache

coherency, but long vectors possible)

•  Output data has grid ordering independent of the ordering inside the WRF model

Grid Representation in Arrays

•  The extent of the logical or domain dimensions is always the "staggered" grid

dimension. That is, from the point of view of a non-staggered dimension (also

referred to as the ARW “mass points”), there is always an extra cell on the end of

the domain dimension

WRF Software Overview

•  Architecture

•  Directory structure

•  Model Layer Interface

•  Data Structures

•  I/O

WRF I/O

•  Streams: pathways into and out of model
–  History + auxiliary output streams (10 and 11 are reserved for nudging)
–  Input + auxiliary input streams (10 and 11 are reserved for nudging)
–  Restart, boundary, and a special Var stream

WRF I/O

•  Attributes of streams
–  Variable set

•  The set of WRF state variables that comprise one read or write on a
stream

•  Defined for a stream at compile time in Registry
–  Format

•  The format of the data outside the program (e.g. NetCDF), split
•  Specified for a stream at run time in the namelist

WRF I/O

•  Attributes of streams
–  Additional namelist-controlled attributes of streams

•  Dataset name
•  Time interval between I/O operations on stream
•  Starting, ending times for I/O (specified as intervals from start of run)

Outline - Review

•  Introduction
–  WRF started 1998, clean slate, Fortran + C
–  Targeted for research and operations

•  WRF Software Overview
–  Hierarchical software layers
–  Patches (MPI) and Tiles (OpenMP)
–  Strict interfaces between layers
–  Contract with developers
–  Data Structures
–  I/O

