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Introduction – WRF Software Characteristics 

•  Developed from scratch beginning around 1998, primarily Fortran and C 

•  Requirements emphasize flexibility over a range of platforms, applications, users, 

performance 

•  WRF develops rapidly. First released Dec 2000; current release WRF v3.2 (April 

2010); next release WRF v3.2.1 (August 2010) 

•  Supported by flexible efficient architecture and implementation called the WRF 

Software Framework 



Introduction - WRF Software Framework Overview 

•  Implementation of  WRF Architecture 

–  Hierarchical organization 
–  Multiple dynamical cores 
–  Plug compatible physics 
–  Abstract interfaces (APIs) to external packages 
–  Performance-portable 

•  Designed from beginning to be adaptable to today’s computing 

environment for NWP 

http://box.mmm.ucar.edu/wrf/WG2/bench/ 

ARW solver 

Physics Interfaces 

Plug-compatible physics 
Plug-compatible physics 

Plug-compatible physics 
Plug-compatible physics 

Plug-compatible physics 

NMM solver 

Top-level Control, 
Memory Management, Nesting,  

Parallelism, External APIs  
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Hardware: The Computer 

•  The ‘N’ in NWP 

•  Components 

–  Processor 

•  A program counter 
•  Arithmetic unit(s) 

•  Some scratch space (registers) 

•  Circuitry to store/retrieve from memory device 

•  Cache 

–  Memory 
–  Secondary storage 

–  Peripherals 

•  The implementation has been continually refined, but the basic idea hasn’t 

changed much 
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Hardware has not changed much… 

~50,000 flop/s 
48hr 12km WRF CONUS in 600 years 

~5,000,000,000 flop/s 
48 12km WRF CONUS in 52 Hours 

6-way superscalar 

36-bit floating point precision 

~144 Kbytes 

A computer in 1960 

IBM 7090 
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Dual core, 4.7 GHz chip 

64-bit floating point precision 

1.9 MB L2, 36 MB L3 

Upto 16 GB per processor 
IBM P6 

A computer in 2008 



…how we use it has 

•  Fundamentally, processors haven’t changed much since 1960 

•  Quantitatively, they haven’t improved nearly enough 

–  100,000x increase in peak speed 

–  100,000x increase in memory size 
–  These are too slow and too small for even a moderately large NWP run today 

•  We make up the difference with parallelism 

–  Ganging multiple processors together to achieve 1011-12 flop/second 

–  Aggregate available memories of 1011-12 bytes 

~1,000,000,000,000 flop/s ~250 procs 
48-h,12-km WRF CONUS in under 15 minutes 
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Parallel Computing Terms -- Hardware 

•  Processor:  
–  A device that reads and executes instructions in sequence to 

produce perform operations on data that it gets from a memory 
device producing results that are stored back onto the memory 
device 

•  Node: One memory device connected to one or more processors.  
–  Multiple processors in a node are said to share-memory and this 

is “shared memory parallelism” 
–  They can work together because they can see each other’s 

memory 
–  The latency and bandwidth to memory affect performance 
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Parallel Computing Terms -- Hardware 

•  Cluster: Multiple nodes connected by a network 
–  The processors attached to the memory in one node can not see 

the memory for processors on another node 
–  For processors on different nodes to work together they must 

send messages between the nodes. This is  “distributed memory 
parallelism” 

•  Network:  
–  Devices and wires for sending messages between nodes 
–  Bandwidth – a measure of the number of bytes that can be 

moved in a second 
–  Latency – the amount of time it takes before the first byte of a 

message arrives at its destination 
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Parallel Computing Terms – System Software 

•  Process:  

–  A set of instructions to be executed on a processor 

–  Enough state information to allow process execution to stop on a 
processor and be picked up again later, possibly by another 
processor 

•  Processes may be lightweight or heavyweight 

–  Lightweight processes, e.g. shared-memory threads, store very 
little state; just enough to stop and then start the process 

–  Heavyweight processes, e.g. UNIX processes, store a lot more 
(basically the memory image of the job) 

“The only thing one does directly with hardware is pay for it.” 
                                            John’s Zeroth Law of Computing 
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Parallel Computing Terms – System Software 

•  Every job has at least one heavy-weight process.  

–  A job with more than one heavy-weight process is a distributed-memory parallel job  

–  Even on the same node, heavyweight processes do not share memory 

•  Within a heavyweight process you may have some number of lightweight processes, 

called threads. 
–  Threads are shared-memory parallel; only threads in the same memory space can 

work together.  
–  A thread never exists by itself; it is always inside a heavy-weight process. 

•  Heavy-weight processes are the vehicles for distributed memory parallelism 

•  Threads (light-weight processes) are the vehicles for shared-memory parallelism 
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Jobs, Processes, and Hardware 

•  Message Passing Interface – MPI, referred to as the communication layer 

•  MPI is used to start up and pass messages between multiple heavyweight 

processes 

–  The mpirun command controls the number of processes and how they are 
mapped onto nodes of the parallel machine 

–  Calls to MPI routines send and receive messages and control other 
interactions between processes 

–  http://www.mcs.anl.gov/mpi  
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Jobs, Processes, and Hardware 

•  OpenMP is used to start up and control threads within each process  

–  Directives specify which parts of the program are multi-threaded 

–  OpenMP environment variables determine the number of threads in each 
process 

–  http://www.openmp.org  

•  OpenMP is usually activated via a compiler option 

•  MPI is usually activated via the compiler name 

•  The number of processes (number of MPI processes times the number of threads 

in each process) usually corresponds to the number of processors 
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•  If the machine consists of 4 nodes, each with 4 processors, how many different ways can 
you run a job to use all 16 processors? 

–  4 MPI processes, each with 4 threads 

setenv OMP_NUM_THREADS 4 
mpirun –np 4 wrf.exe 

‒  8 MPI processes, each with 2 threads 

setenv OMP_NUM_THREADS 2 
mpirun –np 8 wrf.exe 

‒  16 MPI processes, each with 1 thread 

setenv OMP_NUM_THREADS 1 
mpirun –np 16 wrf.exe 

Examples 

4 threads 

1 MPI 

4 threads 

1 MPI 

4 threads 

1 MPI 

4 threads 

1 MPI 



•  If the machine consists of 4 nodes, each with 4 processors, how many different ways can 
you run a job to use all 16 processors? 

‒  4 MPI processes, each with 4 threads 

setenv OMP_NUM_THREADS 4 
mpirun –np 4 wrf.exe 

‒  8 MPI processes, each with 2 threads 

setenv OMP_NUM_THREADS 2 
mpirun –np 8 wrf.exe 

‒  16 MPI processes, each with 1 thread 
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mpirun –np 16 wrf.exe 

Examples 
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•  If the machine consists of 4 nodes, each with 4 processors, how many different ways can 
you run a job to use all 16 processors? 

‒  4 MPI processes, each with 4 threads 

setenv OMP_NUM_THREADS 4 
mpirun –np 4 wrf.exe 

‒  8 MPI processes, each with 2 threads 

setenv OMP_NUM_THREADS 2 
mpirun –np 8 wrf.exe 

‒  16 MPI processes, each with 1 thread 

setenv OMP_NUM_THREADS 1 
mpirun –np 16 wrf.exe 

Examples 

4 MPI 

4 MPI 4 MPI 

4 MPI 



Application:  WRF 

•  WRF can be run serially or as a parallel job 

•  WRF uses domain decomposition to divide total amount of work over parallel 

processes  
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Application:  WRF 

•  Since the process model has two levels (heavy-weight and light-weight = MPI and 

OpenMP), the decomposition of the application over processes has two levels: 

–  The domain is first broken up into rectangular pieces that are assigned to 
heavy-weight processes. These pieces are called patches 

–  The patches may be further subdivided into smaller rectangular pieces that are 
called tiles, and these are assigned to threads within the process. 
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Model domains are decomposed for parallelism on two-levels 
Patch: section of model domain  allocated to a distributed memory  node, 
this is the scope of a mediation layer solver or physics driver. 

Tile: section of a patch allocated to a shared-memory processor within a 
node; this is also the scope of a model layer subroutine. 

Distributed memory parallelism is over patches; shared memory parallelism 
is over tiles within patches 

•  Single version of code for efficient execution on: 

–  Distributed-memory 
–  Shared-memory (SMP) 
–  Clusters of SMPs 
–  Vector and microprocessors 

Parallelism in WRF: Multi-level Decomposition 

Logical 
domain 

1 Patch, divided 
into multiple tiles 

Inter-processor 
communication 
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Distributed Memory Communications 

Communication is required between patches when a 
horizontal index is incremented or decremented on the right-
hand-side of an assignment.   

On a patch boundary, the index may refer to a value that is 
on a different patch. 

Following is an example code fragment that requires 
communication between patches 

Note the tell-tale +1 and –1 expressions in indices for rr, H1, 
and H2  arrays on right-hand side of assignment.  

These are horizontal data dependencies because the 
indexed operands may lie in the patch of a neighboring 
processor. That neighbor’s updates to that element of the 
array won’t be seen on this processor. 

We have to communicate.  

When"
Needed?"

Why?"

Dr Phil"



                      (module_diffusion.F ) 

SUBROUTINE horizontal_diffusion_s (tendency, rr, var, . . . 
. . . 
   DO j = jts,jte 
   DO k = kts,ktf 
   DO i = its,ite 
      mrdx=msft(i,j)*rdx 
      mrdy=msft(i,j)*rdy 
      tendency(i,k,j)=tendency(i,k,j)-                          & 
           (mrdx*0.5*((rr(i+1,k,j)+rr(i,k,j))*H1(i+1,k,j)-      & 
                      (rr(i-1,k,j)+rr(i,k,j))*H1(i  ,k,j))+     & 
            mrdy*0.5*((rr(i,k,j+1)+rr(i,k,j))*H2(i,k,j+1)-      & 
                      (rr(i,k,j-1)+rr(i,k,j))*H2(i,k,j  ))-     & 
            msft(i,j)*(H1avg(i,k+1,j)-H1avg(i,k,j)+             & 
                       H2avg(i,k+1,j)-H2avg(i,k,j)              & 
                                )/dzetaw(k)                     & 
           ) 
   ENDDO 
   ENDDO 
   ENDDO 
 . . . 

Distributed Memory Communications 



•  Halo updates 

Distributed Memory MPI 
Communications 

memory on one processor memory on neighboring processor 

* 
+ * 
* 

* * 
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•  Halo updates 
•  Periodic boundary updates 
•  Parallel transposes 
•  Nesting scatters/gathers 

Distributed Memory (MPI) 
Communications 
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Distributed Memory (MPI) 
Communications 
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•  Halo updates 
•  Periodic boundary updates 
•  Parallel transposes 
•  Nesting scatters/gathers 

Distributed Memory (MPI) 
Communications 
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all y on 
patch 

all z on 
patch 

all x on 
patch 



•  Halo updates 
•  Periodic boundary updates 
•  Parallel transposes 
•  Nesting scatters/gathers 

Distributed Memory (MPI) 
Communications 
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NEST:2.22 km INTERMEDIATE: 6.66 km 

COARSE 
Ross Island 
6.66 km 



Review – Computing Overview 

APPLICATION 
(WRF) 

HARDWARE 
(Processors, Memories, Wires) 

SYSTEM 
(UNIX, MPI, OpenMP) 

Domain contains Patches contain Tiles 

Job contains Processes contain Threads 

Cluster contains Nodes contain Processors 

Distributed  
Memory 
Parallel 

Shared 
Memory 
Parallel 
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•  Architecture 

•  Directory structure 

•  Model Layer Interface 

•  Data Structures 

•  I/O 

WRF Software Overview 



WRF Software Architecture 

•  Hierarchical software architecture 

–  Insulate scientists' code from parallelism and other architecture/implementation-specific 
details 

–  Well-defined interfaces between layers, and external packages for communications, I/O, and 
model coupling facilitates code reuse and exploiting of community infrastructure, e.g. ESMF. 

Registry 



WRF Software Architecture 

•  Driver Layer 
–  Domains: Allocates, stores, decomposes, represents abstractly as single data objects 
–  Time loop: top level, algorithms for integration over nest hierarchy 

Registry 



WRF Software Architecture 

•  Driver Layer 
–  Non package-specific access:  communications and I/O 
–  Utilities: for example module_wrf_error, which is used for diagnostic prints and error 

stops, accessibility to run-time options 

Registry 



WRF Software Architecture 

•  Mediation Layer 
–  Provides to the Driver Layer 

•  Solve routine, which takes a domain object and advances it one time step 
•  I/O routines that Driver calls when it is time to do some input or output operation on a domain 
•  Nest forcing, interpolation, and feedback routines 

Registry 



WRF Software Architecture 

•  Mediation Layer 
–  Provides to Model Layer 

•  The sequence of calls for doing a time-step for one domain is known in Solve routine 
•  Dereferences fields in calls to physics drivers and dynamics code 
•  Calls to message-passing are contained here as part of Solve routine 

Registry 



WRF Software Architecture 

•  Model Layer 
–  Information about the model itself: machine architecture and implementation aspects abstracted out and 

moved into layers above 
–  Physics and Dynamics: contains the actual WRF model routines are written to perform some 

computation over an arbitrarily sized/shaped subdomain 

Registry 



WRF Software Architecture 

•  Model Layer 
–  F77-esque: all state data objects are simple types, passed in through argument list from physics drivers 
–  No I/O, comms, control: Model Layer routines don’t know anything about communication or I/O, 

executed on one thread – they never contain a PRINT, WRITE, or STOP statement 
–  Model Layer Subroutine Interface: “tile-callable”, no external COMMON, no decomposed heap data 

Registry 



WRF Software Architecture 

•  Registry: an “Active” data dictionary 

–  Tabular listing of model state and attributes  
–  Large sections of interface code generated automatically 
–  Scientists manipulate model state simply by modifying Registry, without further knowledge of 

code mechanics  
–  Special “cases” exist: chemistry, SST coupling 

Registry 



Call Structure Superimposed on Architecture 

wrf  (main/wrf.F) 

integrate (frame) 

KFCPS  (phys/module_ra_kf.F 
KFCPS  (phys/module_ra_kf.F 
KFCPS  (phys/module_ra_kf.F 
KFCPS  (phys/module_ra_kf.F 
KFCPS  (phys/module_ra_kf.F 
KFCPS  (phys/module_ra_kf.F 
WSM5  (phys/module_mp_wsm5.F 

solve_interface -> solve_em (dyn_em) 

module_microphysics_driver (phys) 

module_microphysics_drive (phys) 

module_first_rk_step_part1 (dyn_em) 



•  Architecture 

•  Directory structure 

•  Model Layer Interface 

•  Data Structures 

•  I/O 

WRF Software Overview 



WRF Model 
Top-Level 
Directory 
Structure 

WRF Design 
and 
Implementation 
Doc, p 5 

DRIVER 
MEDIATION 
MODEL 

Makefile 
README 
README_test_cases 
clean 
compile 
configure 
Registry/ 
arch/ 
dyn_em/ 
dyn_nnm/ 
external/ 
frame/ 
inc/ 
main/ 
phys/ 
share/ 
tools/ 
run/ 
test/ 

build 
scripts 

source 
code 
directories 

execution 
directories 

machine build rules 
CASE input files 



•  Architecture 

•  Directory structure 

•  Model Layer Interface 

•  Data Structures 

•  I/O 
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unambiguously in three physical dimensions 

Model layer routines are called from mediation 
layer (physics drivers) in loops over tiles, which are 
multi-threaded 



WRF Model Layer Interface 
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Mediation Layer / Model Layer Interface 

Restrictions on Model Layer subroutines: 

No I/O, communication, no stops or aborts 
(use wrf_error_fatal in frame/
module_wrf_error.F) 

No common/module storage of  decomposed 
data (exception allowed for set-once/read-only 
tables) 

Spatial scope of  a Model Layer call is one “tile” 



WRF Model Layer Interface 

•  Mediation layer / Model Layer Interface contract exists 

•  Model layer routines are called from mediation layer in 
loops over tiles, which are multi-threaded 

•  All state arrays passed through argument list as simple 
data types 



WRF Model Layer Interface 

•  Domain, memory, and run dimensions passed unambiguously in 
three physical dimensions 

•  Restrictions on model layer subroutines 
–  No I/O, communication, no stops or aborts (use 

wrf_error_fatal in frame/module_wrf_error.F) 
–  No common/module storage of decomposed data (exception 

allowed for set-once/read-only tables) 
–  Spatial scope of a Model Layer call is one “tile” 
–  Temporal scope of a call is limited by coherency 



SUBROUTINE driver_for_some_physics_suite (  
    . . . 
!$OMP DO PARALLEL 
   DO ij = 1, numtiles 
      its = i_start(ij) ; ite = i_end(ij) 
      jts = j_start(ij) ; jte = j_end(ij) 
      CALL model_subroutine( arg1, arg2, . . . 
           ids , ide , jds , jde , kds , kde , 
           ims , ime , jms , jme , kms , kme , 
           its , ite , jts , jte , kts , kte ) 
   END DO 
    . . . 

 END SUBROUTINE 

WRF Model Layer Interface 



           template for model layer subroutine        

 SUBROUTINE model_subroutine ( &  
   arg1, arg2, arg3, … , argn,   & 
   ids, ide, jds, jde, kds, kde, &  ! Domain dims 
   ims, ime, jms, jme, kms, kme, &  ! Memory dims 
   its, ite, jts, jte, kts, kte  )  ! Tile dims 

 IMPLICIT NONE 

 ! Define Arguments (State and I1) data 
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . . 
 REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . . 
  . . . 
 ! Define Local Data (I2) 
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . . 
  . . . 

WRF Model Layer Interface 



           template for model layer subroutine        

. . . 
 ! Executable code; loops run over tile  
 ! dimensions 
 DO j = MAX(jts,jds), MIN(jte,jde-1) 
   DO k = kts, kte 
     DO i = MAX(its,ids), MIN(ite,ide-1) 
       loc1(i,k,j) = arg1(i,k,j) + … 
     END DO 
   END DO 
 END DO 

WRF Model Layer Interface 



           template for model layer subroutine        

 SUBROUTINE model ( &  
   arg1, arg2, arg3, … , argn,   & 
   ids, ide, jds, jde, kds, kde, &  ! Domain dims 
   ims, ime, jms, jme, kms, kme, &  ! Memory dims 
   its, ite, jts, jte, kts, kte  )  ! Tile dims 

 IMPLICIT NONE 

 ! Define Arguments (S and I1) data 
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . . 
 REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . . 
  . . . 
 ! Define Local Data (I2) 
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . . 
  . . . 
 ! Executable code; loops run over tile  
 ! dimensions 
 DO j = MAX(jts,jds), MIN(jte,jde-1) 
   DO k = kts, kte 
     DO i = MAX(its,ids), MIN(ite,ide-1) 
       loc1(i,k,j) = arg1(i,k,j) + … 
     END DO 
   END DO 
 END DO 

•  Domain dimensions 
•  Size of logical domain 
•  Used for bdy tests, etc. 
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 SUBROUTINE model ( &  
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   ims, ime, jms, jme, kms, kme, &  ! Memory dims 
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  . . . 
 ! Define Local Data (I2) 
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  . . . 
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 DO j = MAX(jts,jds), MIN(jte,jde-1) 
   DO k = kts, kte 
     DO i = MAX(its,ids), MIN(ite,ide-1) 
       loc1(i,k,j) = arg1(i,k,j) + … 
     END DO 
   END DO 
 END DO 

•  Domain dimensions 
•  Size of logical domain 
•  Used for bdy tests, etc. 

•  Memory dimensions 
•  Used to dimension dummy 

arguments 
•  Do not use for local arrays 



           template for model layer subroutine        

 SUBROUTINE model ( &  
   arg1, arg2, arg3, … , argn,   & 
   ids, ide, jds, jde, kds, kde, &  ! Domain dims 
   ims, ime, jms, jme, kms, kme, &  ! Memory dims 
   its, ite, jts, jte, kts, kte  )  ! Tile dims 

 IMPLICIT NONE 

 ! Define Arguments (S and I1) data 
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . . 
 REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . . 
  . . . 
 ! Define Local Data (I2) 
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . . 
  . . . 
 ! Executable code; loops run over tile  
 ! dimensions 
 DO j = MAX(jts,jds), MIN(jte,jde-1) 
   DO k = kts, kte 
     DO i = MAX(its,ids), MIN(ite,ide-1) 
       loc1(i,k,j) = arg1(i,k,j) + … 
     END DO 
   END DO 
 END DO 

•  Domain dimensions 
•  Size of logical domain 
•  Used for bdy tests, etc. 

•  Memory dimensions 
•  Used to dimension dummy 

arguments 
•  Do not use for local arrays 

•  Tile dimensions 
•  Local loop ranges 
•  Local array dimensions 



           template for model layer subroutine        

 SUBROUTINE model ( &  
   arg1, arg2, arg3, … , argn,   & 
   ids, ide, jds, jde, kds, kde, &  ! Domain dims 
   ims, ime, jms, jme, kms, kme, &  ! Memory dims 
   its, ite, jts, jte, kts, kte  )  ! Tile dims 

 IMPLICIT NONE 

 ! Define Arguments (S and I1) data 
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . . 
 REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . . 
  . . . 
 ! Define Local Data (I2) 
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . . 
  . . . 
 ! Executable code; loops run over tile  
 ! dimensions 
 DO j = MAX(jt,jds), MIN(jte,jde-1) 
   DO k = kts, kte 
     DO i = MAX(its,ids), MIN(ite,ide-1) 
       loc1(i,k,j) = arg1(i,k,j) + … 
     END DO 
   END DO 
 END DO 

•  Domain dimensions 
•  Size of logical domain 
•  Used for bdy tests, etc. 

•  Memory dimensions 
•  Used to dimension dummy 

arguments 
•  Do not use for local arrays 

•  Tile dimensions 
•  Local loop ranges 
•  Local array dimensions 

•  Patch dimensions 
•  Start and end indices of local 

distributed memory subdomain 
•  Available from mediation layer 

(solve) and driver layer; not usually 
needed or used at model layer 



•  Architecture 

•  Directory structure 

•  Model Layer Interface 

•  Data Structures 

•  I/O 

WRF Software Overview 



Driver Layer Data Structures: Domain Objects 

•  Driver layer 
‒  All data for a domain is an object, a domain derived data type (DDT) 
‒  The domain DDTs are dynamically allocated/deallocated 
‒  Linked together in a tree to represent nest hierarchy; root pointer is 
head_grid, defined in frame/module_domain.F 

‒  Supports recursive depth-first traversal algorithm (frame/
module_integrate.F) 

head_grid 1 

4 

3 2 

•  Every Registry defined state, I1, and 

namelist variable is contained inside the 

DDT (locally known as a grid of  type 

domain), where each node in the tree 

represents a separate and complete 3D 

model domain/nest. 



Model Layer Data Structures: F77 

•  Model layer 

–  All data objects are scalars and arrays of simple types only 

–  Virtually all passed in through subroutine argument lists 

–  Non-decomposed arrays and “local to a module” storage are 
permitted with an initialization at the model start 



Mediation Layer Data Structures: Objects + F77 

•  Mediation layer 

–  One task of mediation layer is to dereference fields from DDTs 

–  Therefore, sees domain data in both forms, as DDT and as individual fields 
which are components of the DDTs 

•  The name of a data type and how it is referenced differs depending on the level of 

the architecture 



Data Structures 

•  WRF Data Taxonomy 
‒  State data 
‒  Intermediate data type 1 (I1) 
‒  Intermediate data type 2 (I2) 
‒  Heap storage (COMMON or Module data) 
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Data Structures 

•  WRF Data Taxonomy 
‒  State data 
‒  Intermediate data type 1 (I1) 
‒  Intermediate data type 2 (I2) 
‒  Heap storage (COMMON or Module) 

Defined in the 
module top, 
typically 
look-up tables 
and routine 
constants, 
NO HORIZ 
DECOMPOSED 
DATA! 
Common 
blocks must 
not leave the 
Module. 



Mediation/Model Layer Data Structures:  
State Data 

•  Duration: Persist between start and stop of a domain 

•  Represented as fields in domain data structure 

–  Memory for state arrays are dynamically allocated, only big enough to hold the 
local subdomain’s (ie. patch’s) set of array elements  

–  Always memory dimensioned 
–  Declared in Registry using state keyword 

•  Only state arrays can be subject to I/O and Interprocessor communication 



Mediation/Model Layer Data Structures:  
I1 Data 

•  Persist for the duration of a single time step in solve 

•  Represented as fields in domain data structure 

–  Memory for I1 arrays are dynamically allocated, only big enough to hold the 
local subdomain’s (ie. patch’s) set of array elements  

–  Always memory dimensioned 
–  Declared in Registry using I1 keyword 

–  Typically tendency fields computed, used, and discarded at the end of every 
time step 

–  Are not used to impact I1 variables on a child domain 



Model Layer Data Structures:  
I2 Data 

•  Persist for the duration of a call of the physics routine 

•  NOT contained within the DDT structure (no declarations in the Registry) 

–  Memory for I2 arrays are dynamically allocated on subroutine entry, and 
automatically deallocated on exit  

–  Local, intermediate dummy variables required for physics computations 
–  If I2 arrays, then they are always tile dimensioned 

–  Not declared in the Registry, not communicated, no IO, not passed back to the 
solver, do not exist (retain their previous value) between successive physics 
calls 



Grid Representation in Arrays  

•  Increasing indices in WRF arrays run 

–  West to East   (X, or I-dimension) 

–  South to North (Y, or J-dimension) 

–  Bottom to Top (Z, or K-dimension) 

•  Storage order in WRF is IKJ (ARW) and IJK (NMM) but these are a WRF Model 

convention, not a restriction of the WRF Software Framework (provides cache 

coherency, but long vectors possible) 

•  Output data has grid ordering independent of the ordering inside the WRF model 



Grid Representation in Arrays 

•  The extent of the logical or domain dimensions is always the "staggered" grid 

dimension. That is, from the point of view of a non-staggered dimension (also 

referred to as the ARW “mass points”), there is always an extra cell on the end of 

the domain dimension 



WRF Software Overview 

•  Architecture 

•  Directory structure 

•  Model Layer Interface 

•  Data Structures 

•  I/O 



WRF I/O 

•  Streams: pathways into and out of model 
–  History + auxiliary output streams (10 and 11 are reserved for nudging) 
–  Input + auxiliary input streams (10 and 11 are reserved for nudging) 
–  Restart, boundary, and a special Var stream 



WRF I/O 

•  Attributes of streams 
–  Variable set 

•  The set of WRF state variables that comprise one read or write on a 
stream 

•  Defined for a stream at compile time in Registry 
–  Format 

•  The format of the data outside the program (e.g. NetCDF), split 
•  Specified for a stream at run time in the namelist 



WRF I/O 

•  Attributes of streams 
–  Additional namelist-controlled attributes of streams 

•  Dataset name 
•  Time interval between I/O operations on stream 
•  Starting, ending times for I/O (specified as intervals from start of run) 



Outline - Review 

•  Introduction 
–  WRF started 1998, clean slate, Fortran + C 
–  Targeted for research and operations 

•  WRF Software Overview 
–  Hierarchical software layers 
–  Patches (MPI) and Tiles (OpenMP) 
–  Strict interfaces between layers 
–  Contract with developers 
–  Data Structures 
–  I/O 


