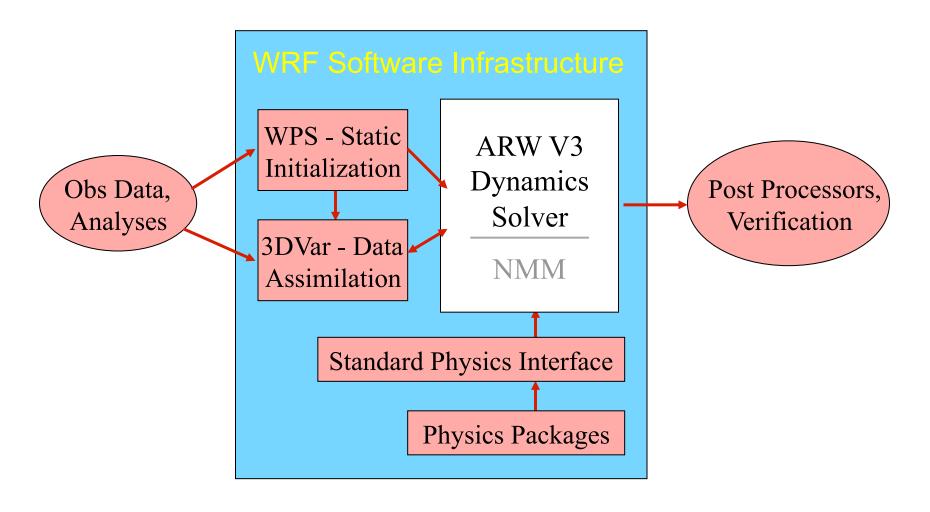
The Advanced Research WRF (ARW) Dynamics Solver

Bill Skamarock

skamaroc@ucar.edu

Jimy Dudhia

dudhia@ucar.edu



WRF ARW Tech Note

A Description of the Advanced Research WRF Version 3 http://www.mmm.ucar.edu/wrf/users/pub-doc.html

ARW Dynamical Solver

- Terrain representation
- Vertical coordinate
- Equations / variables
- Time integration scheme
- Grid staggering
- Advection scheme
- Time step parameters
- Filters
- Boundary conditions
- Nesting
- Map projections

Vertical Coordinate and Prognostic Variables

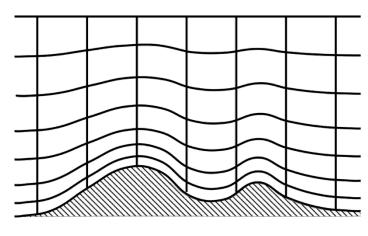
Hydrostatic pressure $\,\pi\,$

Column mass
$$\mu = \pi_s - \pi_t$$
 (per unit area)

(per unit area)

Vertical coordinate
$$\eta = \frac{\left(\pi - \pi_t\right)}{\mu}$$

$$\frac{t}{D}$$



Layer mass
$$\mu \Delta \eta = \Delta \pi = g \rho \Delta z$$
 (per unit area)

Conserved state (prognostic) variables:

$$\mu$$
, $U = \mu u$, $V = \mu v$, $W = \mu w$, $\Theta = \mu \theta$

Non-conserved state variable: $\phi = gz$

2D Flux-Form Moist Equations in ARW

Moist Equations:

$$\frac{\partial U}{\partial t} + \alpha \mu_d \frac{\partial p}{\partial x} + \frac{\alpha}{\alpha_d} \frac{\partial p}{\partial \eta} \frac{\partial \phi}{\partial x} = -\frac{\partial Uu}{\partial x} - \frac{\partial \Omega u}{\partial \eta}$$

$$\frac{\partial W}{\partial t} + g \left(\mu_d - \frac{\alpha}{\alpha_d} \frac{\partial p}{\partial \eta} \right) = -\frac{\partial Uw}{\partial x} - \frac{\partial \Omega w}{\partial \eta}$$

$$\frac{\partial \mu_d}{\partial t} + \frac{\partial U}{\partial x} + \frac{\partial \Omega}{\partial \eta} = 0$$

$$\frac{\partial \Theta}{\partial t} + \frac{\partial U\theta}{\partial x} + \frac{\partial \Omega\theta}{\partial \eta} = \mu Q$$

$$\frac{d\phi}{dt} = gw$$

$$\frac{\partial (\mu_d q_{v,l})}{\partial t} + \frac{\partial (U q_{v,l})}{\partial x} + \frac{\partial (\Omega q_{v,l})}{\partial \eta} = \mu Q_{v,l}$$

Diagnostic relations:

$$\frac{\partial \phi}{\partial \eta} = -\alpha_d \mu_d, \quad p = \left(\frac{R\Theta}{p_o \mu_d \alpha_v}\right)^{\gamma}$$

Time Integration in ARW

3rd Order Runge-Kutta time integration

advance
$$\phi^t \rightarrow \phi^{t+\Delta t}$$

$$\phi^* = \phi^t + \frac{\Delta t}{3} R(\phi^t)$$

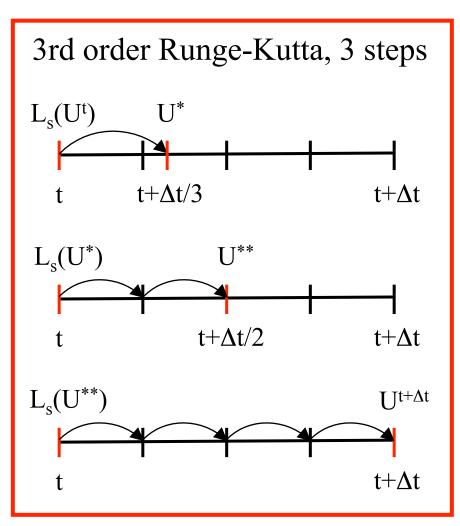
$$\phi^{**} = \phi^t + \frac{\Delta t}{2} R(\phi^*)$$

$$\phi^{t+\Delta t} = \phi^t + \Delta t R(\phi^{**})$$

Amplification factor
$$\phi_t = i k \phi$$
; $\phi^{n+1} = A \phi^n$; $|A| = 1 - \frac{(k\Delta t)^4}{24}$

Time-Split Runge-Kutta Integration Scheme

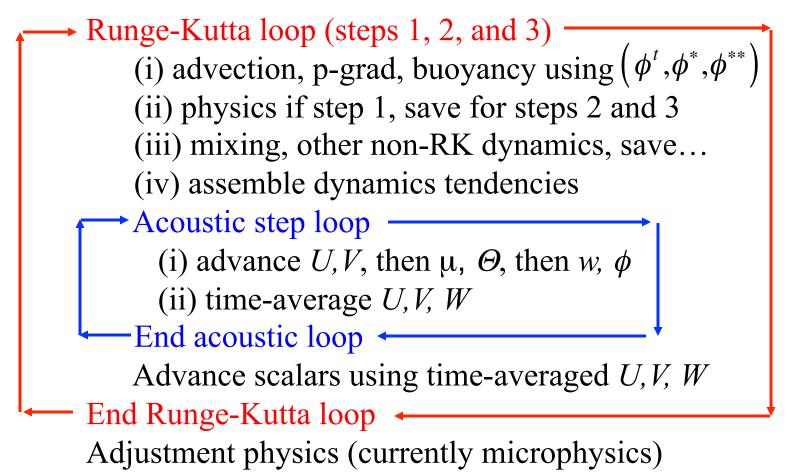
$$U_{t} = L_{fast}(U) + L_{slow}(U)$$



- RK3 is 3rd order accurate for linear eqns, 2nd order accurate for nonlinear eqns.
- Stable for centered and upwind advection schemes.
- Stable for Courant number $U\Delta t/\Delta x < 1.73$
- Three $L_{slow}(U)$ evaluations per timestep.

WRF ARW Model Integration Procedure

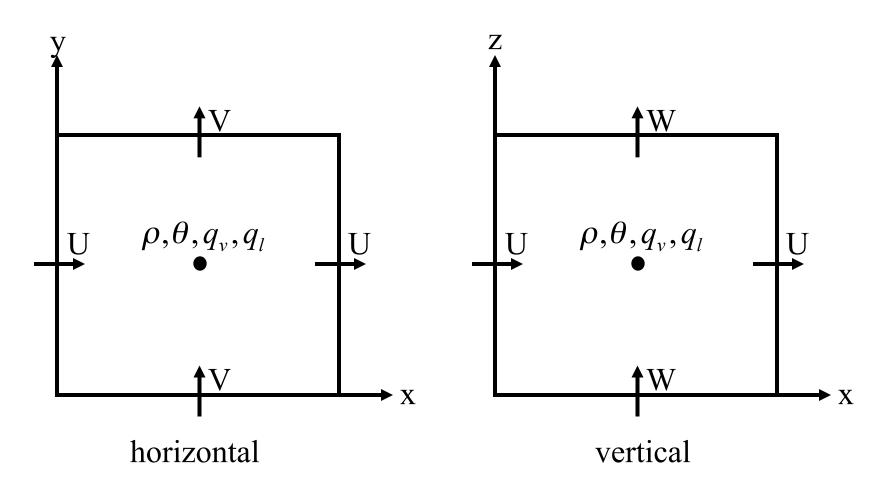
Begin time step



End time step

ARW model, grid staggering

C-grid staggering



Advection in the ARW Model

2nd, 3rd, 4th, 5th and 6th order centered and upwind-biased schemes are available in the ARW model.

Example: 5th order scheme

$$\frac{\partial (U\phi)}{\partial x} = \frac{1}{\Delta x} \left(F_{i+\frac{1}{2}}(U\phi) - F_{i-\frac{1}{2}}(U\phi) \right)$$

where

$$F_{i-\frac{1}{2}}(U\phi) = U_{i-\frac{1}{2}} \left\{ \frac{37}{60} (\phi_i + \phi_{i-1}) - \frac{2}{15} (\phi_{i+1} + \phi_{i-2}) + \frac{1}{60} (\phi_{i+2} + \phi_{i-3}) \right\}$$

$$- sign(1, U) \frac{1}{60} \left\{ (\phi_{i+2} - \phi_{i-3}) - 5 (\phi_{i+1} - \phi_{i-2}) + 10 (\phi_i - \phi_{i-1}) \right\}$$

Advection in the ARW Model

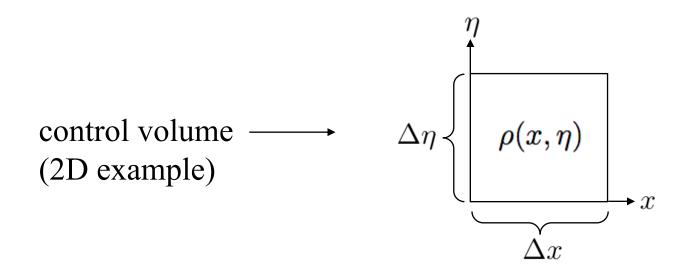
For constant U, the 5th order flux divergence tendency becomes

$$\Delta t \frac{\delta \left(U\phi\right)}{\Delta x} \bigg|_{5th} = \Delta t \frac{\delta \left(U\phi\right)}{\Delta x} \bigg|_{6th}$$

$$- \left| \frac{U\Delta t}{\Delta x} \right| \frac{1}{60} \left(-\phi_{i-3} + 6\phi_{i-2} - 15\phi_{i-1} + 20\phi_{i} - 15\phi_{i+1} + 6\phi_{i+2} - \phi_{i+3}\right)$$

$$\frac{Cr}{60} \frac{\partial^{6}\phi}{\partial x^{6}} + H.O.T$$

The odd-ordered flux divergence schemes are equivalent to the next higher ordered (even) flux-divergence scheme plus a dissipation term of the higher even order with a coefficient proportional to the Courant number.



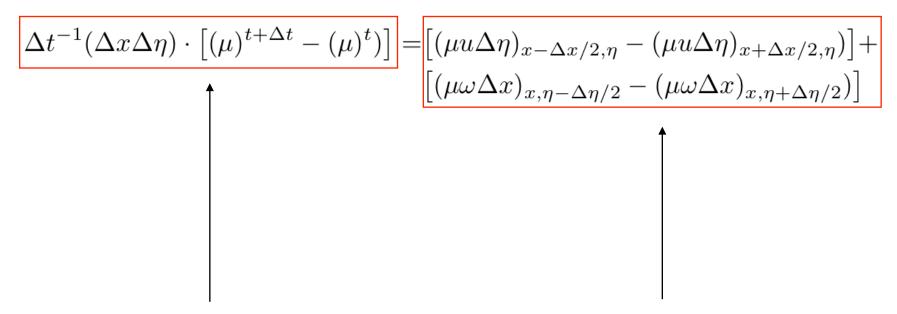
Mass in a control volume is proportional to

$$(\Delta x \Delta \eta)(\mu)^t$$

since
$$\mu(x)\Delta\eta = \Delta\pi = -g\rho\Delta z$$

Mass in a control volume $(\Delta x \Delta \eta)(\mu)^t$ 2D example

Mass conservation equation



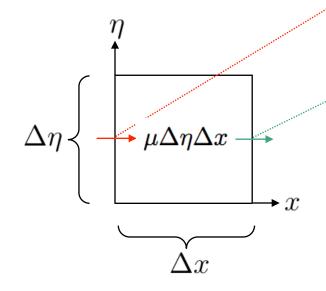
Change in mass over a time step

mass fluxes through control volume faces

Mass in a control volume $(\Delta x \Delta \eta)(\mu)^t$

Mass conservation equation

$$\Delta t^{-1} (\Delta x \Delta \eta) \cdot \left[(\mu)^{t+\Delta t} - (\mu)^t \right] = \left[(\mu u \Delta \eta)_{x-\Delta x/2,\eta} - (\mu u \Delta \eta)_{x+\Delta x/2,\eta} \right] + \left[(\mu \omega \Delta x)_{x,\eta-\Delta \eta/2} - (\mu \omega \Delta x)_{x,\eta+\Delta \eta/2} \right]$$



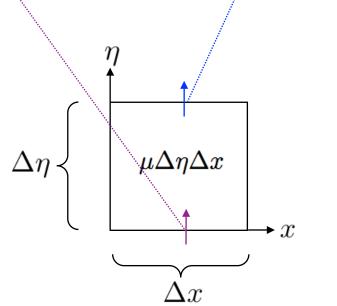
Horizontal fluxes through the vertical control-volume faces

Mass in a control volume $(\Delta x \Delta \eta)(\mu)^t$

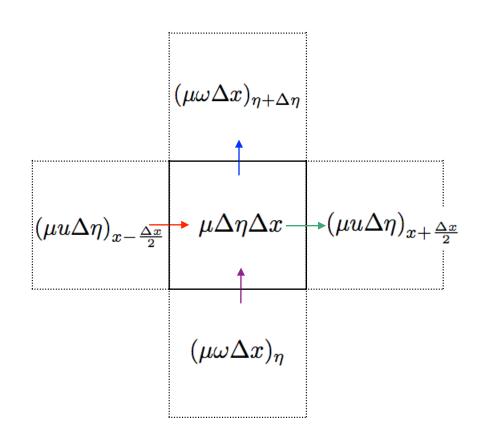
Mass conservation equation

$$\Delta t^{-1}(\Delta x \Delta \eta) \cdot \left[(\mu)^{t+\Delta t} - (\mu)^t \right] = \left[(\mu u \Delta \eta)_{x-\Delta x/2,\eta} - (\mu u \Delta \eta)_{x+\Delta x/2,\eta} \right] + \left[(\mu \omega \Delta x)_{x,\eta-\Delta \eta/2} - (\mu \omega \Delta x)_{x,\eta+\Delta \eta/2} \right]$$

Vertical fluxes through the horizontal control-volume faces



The same mass fluxes are used for neighboring grid cells - hence mass is conserved locally and globally.



Mass in a control volume $(\Delta x \Delta \eta)(\mu)^t$ Scalar mass $(\Delta x \Delta \eta)(\mu \phi)^t$

Mass conservation equation:

$$\frac{\Delta t^{-1}(\Delta x \Delta \eta) \cdot \left[(\mu)^{t+\Delta t} - (\mu)^t \right]}{ \left[(\mu u \Delta \eta)_{x-\Delta x/2,\eta} - (\mu u \Delta \eta)_{x+\Delta x/2,\eta} \right] + \left[(\mu u \Delta x)_{x,\eta-\Delta \eta/2} - (\mu u \Delta x)_{x,\eta+\Delta \eta/2} \right] }$$

change in mass over a time step

mass fluxes through control volume faces

Scalar mass conservation equation:

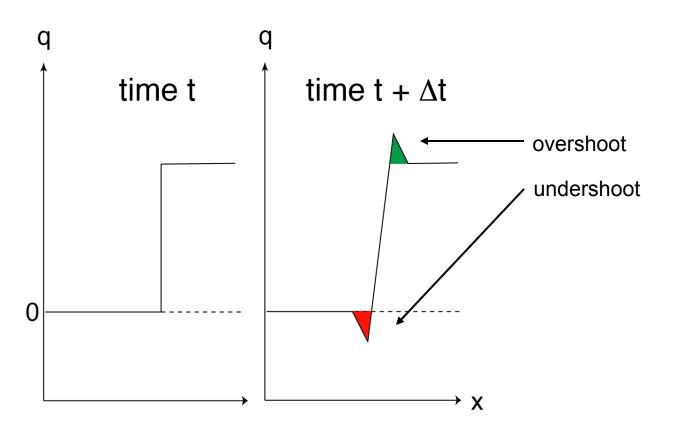
$$\Delta t^{-1} (\Delta x \Delta \eta) \cdot \left[(\mu \phi)^{t+\Delta t} - (\mu \phi)^{t} \right] = \left[(\mu u \phi \Delta \eta)_{x-\Delta x/2,\eta} - (\mu u \phi \Delta \eta)_{x+\Delta x/2,\eta} \right] + \left[(\mu \omega \phi \Delta x)_{x,\eta-\Delta \eta/2} - (\mu \omega \phi \Delta x)_{x,\eta+\Delta \eta/2} \right]$$

change in tracer mass over a time step

tracer mass fluxes through control volume faces

Moisture Transport in ARW

1D advection



ARW scheme is conservative, but not positive definite nor monotonic. Removal of negative q results in spurious source of q.

Positive-Definite/Monotonic Flux Renormalization

Scalar update, last RK3 step

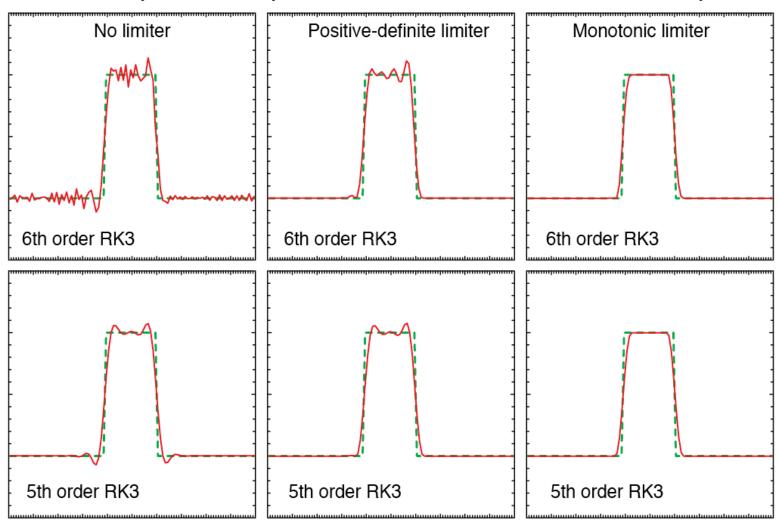
$$(\mu\phi)^{t+\Delta t} = (\mu\phi)^t - \Delta t \sum_{i=1}^n \delta_{x_i}[f_i]$$
 (1)

- (1) Decompose flux: $f_i = f_i^{upwind} + f_i^c$
- (2) Renormalize high-order correction fluxes f_i^c such that solution is positive definite or monotonic: $f_i^c = R(f_i^c)$
- (3) Update scalar eqn. (1) using $f_i = f_i^{upwind} + R(f_i^c)$

Skamarock, MWR 2006, 2241-2250

PD/Monotonic Limiters in ARW - 1D Example Top-Hat Advection

1D Top-hat transport Cr = 0.5, 1 revolution, 200 steps



ARW Model: Dynamics Parameters

3rd order Runge-Kutta time step

Courant number limited, 1D:
$$C_r = \frac{U\Delta t}{\Delta x} < 1.73$$

Generally stable using a timestep approximately twice as large as used in a leapfrog model.

Acoustic time step

2D horizontal Courant number limited:
$$C_r = \frac{C_s \Delta \tau}{\Delta x} < \frac{1}{\sqrt{2}}$$

 $\Delta \tau_{sound} = \Delta t_{RK} / \text{(number of acoustic steps)}$

Guidelines for time step

 Δt in seconds should be about $6*\Delta x$ (grid size in kilometers). Larger Δt can be used in smaller-scale dry situations, but $time_step_sound$ (default = 4) should increase proportionately if larger Δt is used.

Maximum Courant Number for Advection

$$C_a = U\Delta t/\Delta x$$

Time Integration Scheme	Advection Scheme				
	2^{nd}	3 rd	4^{th}	5^{th}	6 th
Leapfrog (α=0.1)	0.91	U	0.66	U	0.57
RK2	U	0.90	U	0.39	U
RK3	1.73	1.63	1.26	1.43	1.09

U = unstable

(Wicker & Skamarock, 2002)

ARW Filters: Divergence Damping

Purpose: filter acoustic modes

$$p^{*\tau} = p^{\tau} + \gamma_d (p^{\tau} - p^{\tau - \Delta \tau})$$
 since $p_t \sim c^2 \nabla \cdot \rho \mathbf{V}$

$$\delta_{\tau}U'' + \mu^{t^*}\alpha^{t^*}\partial_x p''^{\tau} + (\mu^{t^*}\partial_x \bar{p})\alpha''^{\tau} + (\alpha/\alpha_d)[\mu^{t^*}\partial_x \phi''^{\tau} + (\partial_x \phi^{t^*})(\partial_{\eta} p'') - \mu'')^{\tau}] = R_U^{t^*}$$

$$\delta_{\tau}V'' + \mu^{t^*}\alpha^{t^*}\partial_y p''^{\tau} + (\mu^{t^*}\partial_y \bar{p})\alpha''^{\tau} + (\alpha/\alpha_d)[\mu^{t^*}\partial_y \phi''^{\tau} + (\partial_y \phi^{t^*})(\partial_\eta p'') + \mu'')^{\tau}] = R_V^{t^*}$$

 $\gamma_d = 0.1$ recommended (default)

ARW Filters: External Mode Filter

Purpose: filter the external mode (primarily for real-data applications)

Additional terms:

$$\delta_{\tau}U'' = \dots - \gamma_e \left(\Delta x^2 / \Delta \tau\right) \delta_x (\delta_{\tau - \Delta \tau} \mu_d'')$$

$$\delta_{\tau}V'' = \dots - \gamma_e \left(\Delta y^2 / \Delta \tau\right) \delta_y (\delta_{\tau - \Delta \tau} \mu_d'')$$

$$\delta_{\tau}\mu_d = m^2 \int_1^0 [\partial_x U'' + \partial_y V'']^{\tau + \Delta \tau} d\eta$$

 $\gamma_e = 0.01$ recommended (default)

ARW Filters: Vertically Implicit Off-Centered Acoustic Step

Purpose: damp vertically-propagating acoustic modes

$$\delta_{\tau}W'' - m^{-1}g \overline{\left[(\alpha/\alpha_d)^{t^*} \partial_{\eta} (C \partial_{\eta} \phi'') + \partial_{\eta} \left(\frac{c_s^2}{\alpha^{t^*}} \frac{\Theta''}{\Theta^{t^*}} \right) - \mu_d'' \right]^{\tau}} = R_W^{t^*}$$
$$\delta_{\tau}\phi'' + \frac{1}{\mu_d^{t^*}} [m\Omega^{\tau + \Delta\tau} \phi_{\eta} - \overline{g} \overline{W''}^{\tau}] = R_\phi^{t^*}.$$

$$\overline{a}^{\tau} = \frac{1+\beta}{2}a^{\tau+\Delta\tau} + \frac{1-\beta}{2}a^{\tau}$$

 β = 0.1 recommended (default)

ARW Filters: Vertical Velocity Damping

Purpose: damp anomalously-large vertical velocities

(usually associated with anomalous physics tendencies)

Additional term:

$$\partial_t W = \dots - \mu_d \operatorname{sign}(W) \gamma_w (Cr - Cr_\beta)$$

$$Cr = \left| \frac{\Omega dt}{\mu d\eta} \right|$$

$$Cr_{\beta} = 1.0$$
 typical value (default)

 $\gamma_w = 0.3 \text{ m/s}^2 \text{ recommended (default)}$

ARW Filters: 2nd-Order Horizontal Mixing, Horizontal-Deformation-Based K_h

Purpose: mixing on horizontal coordinate surfaces (real-data applications)

$$K_h = C_s^2 l^2 \left[0.25(D_{11} - D_{22})^2 + \overline{D_{12}^2}^{xy} \right]^{\frac{1}{2}}$$

where
$$l = (\Delta x \Delta y)^{1/2}$$

$$D_{11} = 2 m^{2} [\partial_{x}(m^{-1}u) - z_{x} \partial_{z}(m^{-1}u)]$$

$$D_{22} = 2 m^{2} [\partial_{y}(m^{-1}v) - z_{y} \partial_{z}(m^{-1}v)]$$

$$D_{12} = m^{2} [\partial_{y}(m^{-1}u) - z_{y} \partial_{z}(m^{-1}u) + \partial_{x}(m^{-1}v) - z_{x} \partial_{z}(m^{-1}v)]$$

 $C_s = 0.25$ (Smagorinsky coefficient, default value)

ARW Filters: Upper Level Gravity-Wave Absorbers

(1) Implicit Rayleigh W - damping (nonhydrostatic equations only!)

$$\tilde{W}^{"\tau+\Delta\tau} - W^{"\tau} - g\Delta\tau \frac{\alpha}{\alpha_d} \frac{\partial}{\partial_{\eta}} \left(C \frac{\partial \overline{\phi^{"\tau}}}{\partial \eta} \right) = \Delta\tau R_W^* \qquad (1)$$

$$W''^{\tau + \Delta \tau} - \tilde{W}''^{\tau + \Delta \tau} = -\tau(z)\Delta \tau W''^{\tau + \Delta \tau} \tag{2}$$

$$\phi''^{\tau + \Delta \tau} - \phi''^{\tau} - g\Delta \tau \frac{1}{\mu} \overline{W''}^{\tau} = \Delta \tau R_{\phi}^{*}$$
 (3)

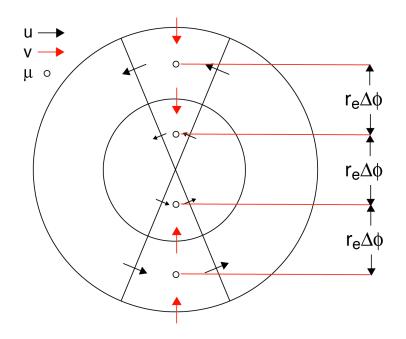
Vertically implicit solution procedure:

Eliminate $\phi''^{\tau+\Delta\tau}$ from (1) using (3), solve for $\tilde{W}''^{\tau+\Delta\tau}$. Apply implicit Rayleigh damping - solve for $W''^{\tau+\Delta\tau}$ using (2). Recover the geopotential using $W''^{\tau+\Delta\tau}$ in (3).

$$\tau(z) = \left\{ \begin{array}{ll} \gamma_r \sin^2\left[\frac{\pi}{2}\left(1 - \frac{z_{top} - z}{z_d}\right)\right] & \text{for } z \geq (z_{top} - z_d); \\ 0 & \text{otherwise,} \end{array} \right. \begin{array}{l} \tau(z) \text{ - damping rate (t-1)} \\ z_d \text{ - depth of the damping layer} \\ \gamma_r \text{ - dimensionless damping coefficient} \end{array}$$

Global ARW - Latitude-Longitude Grid

- Map factors m_x and m_y
 - Computational grid poles need not be geographic poles.
 - Limited area and nesting capable.
- Polar boundary conditions
- Polar filtering

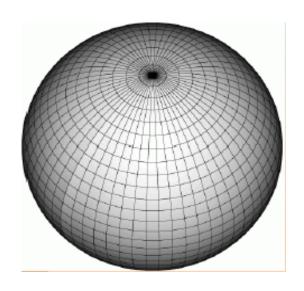


Zero meriodional flux at the poles (cell-face area is zero).

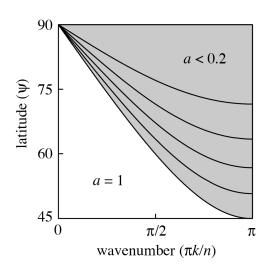
v (poles) only needed for meridional derivative of v near the poles (we interpolate).

All other meriodional derivatives are well-defined near/at poles.

ARW Filters: Polar Filter



Filter Coefficient a(k), $\psi_0 = 45^\circ$



Converging gridlines severely limit timestep. The polar filter removes this limitation.

Filter procedure - Along a grid latitude circle:

- 1. Fourier transform variable.
- 2. Filter Fourier coefficients.
- 3. Transform back to physical space.

$$\hat{\phi}(k)_{filtered} = a(k) \, \hat{\phi}(k), \quad \text{for all } k$$

$$a(k) = \min \left[1., \max \left(0., \left(\frac{\cos \psi}{\cos \psi_o} \right)^2 \frac{1}{\sin^2(\pi k/n)} \right) \right]$$

k = dimensionless wavenumber

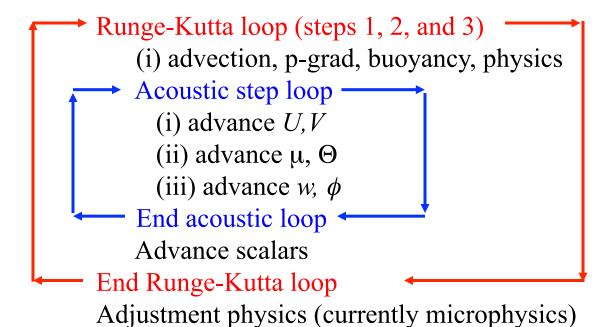
 $\hat{\phi}(k)$ = Fourier coefficients from forward transform

a(k) =filter coefficients

 $\psi = \text{ latitude } \psi_o = \text{ polar filter latitude, filter when } |\psi| > \psi_o$

WRF ARW Model Integration Procedure

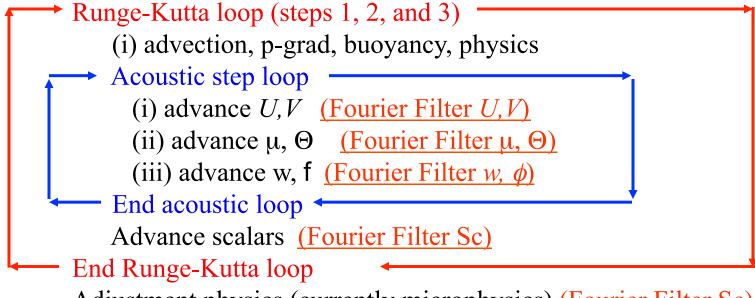
Begin time step



End time step

WRF ARW Model Integration Procedure

Begin time step



Adjustment physics (currently microphysics) (Fourier Filter Sc)

End time step

Timestep limited by minimum Δx outside of polar-filter region.

ARW Model: Coordinate Options

```
1. Cartesian geometry:
      idealized cases
2. Lambert Conformal:
      mid-latitude applications
3. Polar Stereographic:
      high-latitude applications
4. Mercator:
      low-latitude applications
5. Latitude-Longitude
      global
      regional
```

Projections 1-4 are isotropic $(m_x = m_y)$ Latitude-Longitude projection is anistropic $(m_x \neq m_y)$

ARW Model: Boundary Condition Options

Lateral boundary conditions

- 1. Specified (Coarse grid, real-data applications).
- 2. Open lateral boundaries (gravity-wave radiative).
- 3. Symmetric lateral boundary condition (free-slip wall).
- 4. Periodic lateral boundary conditions.
- 5. Nested boundary conditions (specified).

Top boundary conditions

1. Constant pressure.

Bottom boundary conditions

- 1. Free slip.
- 2. Various B.L. implementations of surface drag, fluxes.

ARW Model: Nesting

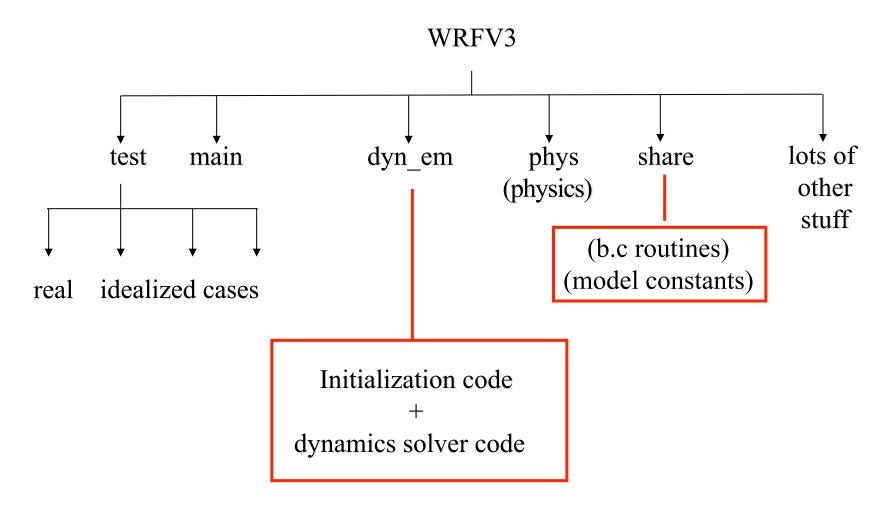
2-way nesting

- 1. Multiple domains run concurrently
- 2. Multiple levels, multiple nests per level
- 3. Any integer ratio grid size and time step
- 4. Parent domain provides nest boundaries
- 5. Nest feeds back interior values to parent

1-way nesting

- 1. Parent domain is run first
- 2. *ndown* uses coarse output to generate nest boundary conditions
- 3. Nest initial conditions from fine-grid input file
- 4. Nest is run after *ndown*

WRF ARW code



WRF ARW Tech Note

A Description of the Advanced Research WRF Version 3 (June 2008) http://www.mmm.ucar.edu/wrf/users/pub-doc.html