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ARW Dynamical Solver

– Terrain representation
– Vertical coordinate
– Equations / variables  
– Grid staggering
– Time integration scheme
– Advection scheme
– Time step parameters
– Filters
– Boundary conditions
– Nesting
– Map projections
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WRF-ARW MM5

• Terrain-following hydrostatic 
pressure vertical coordinate

• Arakawa C-grid

• 3rd order Runge-Kutta
split-explicit time integration

• Conserves mass, 
momentum, entropy, and 
scalars using flux form 
prognostic equations

• 5th order upwind or 6th order 
centered differencing for 
advection

• Terrain-following height 
(sigma-z) vertical coordinate

• B-grid

• 1st order (time-filtered) 
Leapfrog time integration 

• Advective formulation                  
(no conservation properties)

• 2nd order centered 
differencing for advection
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ARW, Terrain Representation
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Lower boundary condition for the geopotential
specifies the terrain elevation, and specifying
the lowest coordinate surface to be the terrain
results in a terrain-following coordinate.
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Flux-Form Equations in ARW

Hydrostatic pressure coordinate:

πhydrostatic pressure
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Conserved state variables:
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Non-conserved state variable: gz=φ

January 2007



Flux-Form Equations in ARW
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Moist Equations in ARW

Moist Equations:
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Time Integration in ARW

3rd Order Runge-Kutta time integration

advance
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Time-Split Runge-Kutta Integration Scheme

Integrate
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WRF ARW Model Integration Procedure

Runge-Kutta loop (steps 1, 2, and 3)
(i) advection, p-grad, buoyancy using 
(ii) physics if step 1, save for steps 2 and 3
(iii) mixing, other non-RK dynamics, save…
(iv) assemble dynamics tendencies
Acoustic step loop

(i) advance U,V, then , then w, 
(ii) time-average U,V, 

End acoustic loop
Advance scalars using time-averaged U,V, 

End Runge-Kutta loop
Adjustment physics (currently microphysics)

Begin time step

End time step

( )∗∗∗ φφφ ,,t
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Phase and amplitude errors for LF, RK3

Oscillation 
equation
analysis

φφ ikt =
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ARW model, grid staggering

C-grid staggering
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Advection in the ARW Model

2nd, 3rd, 4th, 5th and 6th order centered and upwind-biased schemes
are available in the ARW model.

Example:  5th order scheme
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Advection in the ARW Model

For constant U, the 5th order flux divergence tendency becomes
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The odd-ordered flux divergence schemes are equivalent to 
the next higher ordered (even) flux-divergence scheme plus 
a dissipation term of the higher even order with a 
coefficient proportional to the Courant number. 
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Mass Conservation in the ARW Model

control volume
(2D example)

Mass in a control volume
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Mass Conservation in the ARW Model

Mass in a control volume
2D example

Mass conservation equation

mass fluxes through 
control volume faces

Change in mass over a time step

January 2007



Mass Conservation in the ARW Model

Mass in a control volume

Mass conservation equation

Horizontal fluxes through the 
vertical control-volume faces
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Mass Conservation in the ARW Model

Mass in a control volume

Mass conservation equation

Vertical fluxes through the 
horizontal control-volume faces
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Mass Conservation in the ARW Model

The same mass fluxes are used for neighboring 
grid cells - hence mass is conserved locally and globally.
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Scalar Mass Conservation in the ARW Model

Mass in a control volume
Scalar mass

Mass conservation equation:

change in mass over a time step mass fluxes through control volume faces

Scalar mass conservation equation:

change in tracer mass 
over a time step

tracer mass fluxes through 
control volume faces
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Moisture Transport in ARW
1D advection

overshoot

undershoot

ARW scheme is conservative, 
but not positive definite nor monotonic.
Removal of negative q      
results in spurious source of q      .
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Positive-Definite Flux Renormalization

Scalar update, last RK3 step

(1) Decompose flux into upwind (1st order) flux 
and a higher order corrective flux.

(2) Update solution with the upwind fluxes.  
This update is monotonic.
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(3) Compute partial update using only outgoing higher order corrective 
fluxes (only outgoing fluxes can reduce the scalar mass in a volume).

(4) If the partial update is negative, renormalize the higher order 
corrective fluxes such that the update will be zero.

(5) After all fluxes have been renormalized, compute the full update.

Skamarock, MWR 2006, 2241-2250
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PD Limiter in ARW - 1D Example
Top-Hat Advection

Cr = 0.5, 1 revolution (200 steps)
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WRF ARW Model Integration Procedure

Runge-Kutta loop (steps 1, 2, and 3)
(i) advection, p-grad, buoyancy using 
(ii) physics if step 1, save for steps 2 and 3
(iii) mixing, other non-RK dynamics, save…
(iv) assemble dynamics tendencies
Acoustic step loop

(i) advance U,V, then , then w, 
(ii) time-average U,V, 

End acoustic loop
Advance scalars using time-averaged U,V, 

End Runge-Kutta loop
Adjustment physics (currently microphysics)

Begin time step

End time step

( )∗∗∗ φφφ ,,t

January 2007



Flux-Form Perturbation Equations

ααα
µµµφφφ

′+=′+=

′+=′+=
)(,)(

;)(,)(
zpzpp
zzIntroduce the

perturbation variables:

),,(),,,(
),,,()(

ηαη
ηφφφ

yxyxp
yxz ==Note –

likewise

Momentum and hydrostatic equations become:

U p p Uu u
t x x x x x

W p Uw wg
t x

µ φ φµα ηµα µ µ
η η

µ
η η

φ µα αµ
η

′ ′ ′ ′⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ω′ ′+ + + + − = − −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
′⎛ ⎞∂ ∂ ∂ ∂Ω′+ − = − −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

′∂ ′ ′= − −
∂

January 2007



Flux-Form Perturbation Equations: Acoustic Step

Acoustic mode separation:

Recast Equations in terms of perturbation about time t
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Flux-Form Perturbation Equations: Acoustic Step

Small (acoustic) timestep equations:
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Acoustic Integration in ARW

Forward-backward scheme, first advance the horizontal momentum

January 2007

Second, advance continuity equation,
diagnose omega,
and advance thermodynamic equation
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Finally, vertically-implicit integration of the acoustic and 
gravity wave terms



ARW Model: Dynamics Parameters

3rd order Runge-Kutta time step 
Courant number limited,    1D: 73.1<

∆
∆

=
x
tUCr

Generally stable using a timestep approximately 
twice as large as used in a leapfrog model.

Acoustic time step
2D horizontal Courant number limited:  

2
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r

τ

( )stepsacousticofnumberRKsound t∆=∆τ

Guidelines for time step
∆t in seconds should be about 6*∆x (grid size in 
kilometers). Larger ∆t can be used in smaller-scale 
dry situations, but time_step_sound (default = 4) 
should increase proportionately if larger ∆t is used.
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ARW Filters: Divergence Damping

Purpose: filter acoustic modes

γd = 0.1 recommended (default)
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ARW Filters: External Mode Filter
Purpose: filter the external mode

(primarily for real-data applications)

Additional terms:

γe = 0.01 recommended (default)
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ARW Filters: Vertically Implicit 
Off-Centered Acoustic Step

Purpose: damp vertically-propagating acoustic modes

β = 0.1 recommended (default)
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ARW Filters: Vertical Velocity Damping

Purpose: damp anomalously-large vertical velocities 
(usually associated with anomalous physics tendencies)

Additional term:

Crβ  = 1.0  typical value (default)
γw = 0.3 m/s2 recommended (default)
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ARW Filters: 2nd-Order Horizontal Mixing,
Horizontal-Deformation-Based Kh

Purpose: mixing on horizontal coordinate surfaces
(real-data applications, 2 km < ∆x <= 10 km)

where

Cs = 0.25 (Smagorinsky coefficient, default value)
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ARW Model: Boundary Condition Options

1. Specified  (Coarse grid, real-data applications).
2. Open lateral boundaries (gravity-wave radiative).
3. Symmetric lateral boundary condition (free-slip wall).
4. Periodic lateral boundary conditions.
5. Nested boundary conditions (specified).

Lateral boundary conditions

Top boundary conditions
1. Constant pressure.
2. Rayleigh damping upper layer.
3. Absorbing upper layer (increased horizontal diffusion).
4. Gravity-wave radiative condition (not yet implemented). 

Bottom boundary conditions
1. Free slip.
2. Various B.L. implementations of surface drag, fluxes.
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ARW Model: Nesting

1. Multiple domains run concurrently
2. Multiple levels, multiple nests per level
3. Any integer ratio grid size and time step
4. Parent domain provides nest boundaries
5. Nest feeds back interior values to parent

2-way nesting

1-way nesting
1. Parent domain is run first
2. ndown uses coarse output to generate nest boundary conditions
3. Nest initial conditions from fine-grid input file
4. Nest is run after ndown
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ARW Model: Coordinate Options

1. Cartesian geometry:
idealized cases

2.  Lambert Conformal:
mid-latitude applications

3. Polar Stereographic:
high-latitude applications

4. Mercator:
low-latitude applications
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WRF ARW code

WRFV2WRFV2

testtest dyndyn__ememmainmain
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idealized casesidealized cases

Initialization codeInitialization code
++

dynamics solver codedynamics solver code

physphys
(physics) (physics) 

shareshare

(b.c routines)
(model constants)

lots of lots of 
otherother
stuffstuff

real
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