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Outline of Talk

1) What is WRF-Var?

2) Practical Variational Data Assimilation.

3) Background Error Modeling.

4) Observational Issues.

5) Current Status and Future Plans.



1. What is WRF-Var?

…WRF-Var is a unified variational data assimilation system built 
within the software framework of the Weather Research and 
Forecasting (WRF) model, used for application in both research 
and operational environments….



What Do We Mean By “Unified”
AFWA 15km S-W Asia:

KMA T213 Global:

• Domains: Regional/global.

• Techniques: 3D-Var, 4D-Var, Hybrid 
Var/Ensemble DA.

• Code: Single code for research, 
development and release. Supported by 
NCAR/MMM.

• Software Engineering: WRF framework.

• Model: Runs with WRF, and also KMA 
global model.



WRF Variational Data Assimilation
(WRF-Var) History

June 2001: MM5-3DVar adopted as starting 
point for WRF 3D-Var.

May 2002: MM5/WRF 3D-Var operational 
at Taiwanese CAA.

September 2002: MM5/WRF 3D-Var 
operational in 45km domains at AFWA.

June 2003: WRF 3D-Var V1.0 release.

May 2004: WRF 3D-Var V2.0  release.

July 2005: WRF-Var V2.1 release.

February 2007: WRF-Var V2.2 release.

3D-Var
OI



WRF-Var Operational Applications: June 2005

AFWA 15km (e.g. S-W Asia):Indian NCMRWF 30km: Korean 10km:

AMPS 30km: Taiwanese CAA 135/45/15km: Korean T213/T426:



New Features Of WRF-Var Version 2.1 
(Release July 2005)

• First Guess at Appropriate Time (FGAT).

• Radar reflectivity.

• Other new obs: GPS refractivity, MODIS AMVs.

• Platforms: IBM-SP, DEC, Linux, SGI, Cray X1, Apple G4/G5.

• Initial 4D-Var modifications.

• New utility gen_be to calculate local background error statistics.

• Global 3D-Var capability.



WRF-Var Version 2.2 (release February 2007?)

• Major new features/improvements (provisional):

• Major software engineering reorganization.
• Use of [PREP]BUFR for observation ingest.
• Enhanced gen_be utility (EPS-based statistics, efficiency).
• Flow-dependent forecast error covariances.
• Remove obsolete features (e.g. MM5/GFS-based errors).
• Radiance data assimilation.

• NOT included: 4D-Var (under development).



WRF-Var in the WRF Modeling System
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WRF-Var in the WRF Modeling System
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2. Practical Variational
Data Assimilation



Need For Data Assimilation in NWP
Fact: There are never enough good observations!!

Consider NWP model:
– Typical global model – 425 * 325 * 50 = 6.9 million gridpoints.
– Minimum number of prognostic variables = 6 (u, v, w, T, p, q).
– Number of degrees of freedom = 41.4 million.

Typical number of observations = few x 106 but:
– Inhomogeneous distribution of data.
– Observations not always in sensitive areas.
– Observations have errors.

Solutions:
– Use sophisticated (variational/ensemble) techniques (can use “exotic” obs).
– Use previous forecast to propagate obs. info from previous times.
– Use approximate physical  balance relationships.
– More/better observations!



Importance of Data Assimilation For General 
WRF Development/Testing

Experiment (Mi-Seon Lee, KMA):
• Test undisclosed change to WRF modeling system.
• 40km WRF CONUS application. Solid = Control, Dashed = Test.
• Use January 2002 conventional data for cycling.
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What Is Data Assimilation?

Assimilation system combines:
– Observations - yo

– Previous forecast (“background field xb)
– Estimate of errors in observations/background.
– Laws of physics.

Assimilation system outputs an “analysis”.

Analysis used in a number of ways:
– Initial conditions for numerical forecasts.
– Climatology - reanalyses.
– Observing system design (e.g. OSSEs).



Variational Data Assimilation

• Variational data assimilation systems attempt to find an analysis xa that 
minimizes a cost-function

• Three-Dimensional Variational Data Assimilation = 3D-Var (first implemented 
at  NCEP - Parrish and Derber 1992).

• Four-Dimensional Variational Data Assimilation = 4D-Var. First implemented at 
ECMWF - Rabier et al. 2000).

•4D-Var includes the time dimension by including the forecast model as part of 
the data assimilation system.

J = Jb + Jo



4D Variational Data Assimilation

(old forecast)
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(initial condition for NWP)
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Variational Data Assimilation
• The components Jb and Jo of the cost function are defined as 

• B0 is an a priori weight matrix estimating the error covariance of xb.

• The direct calculation of Jb and Jo is impossible for NWP problems (B0, R are 
matrices of dimension 107). Therefore many practical simplifications required for 
real-world models.

• Incremental Var produces analysis increments that are added back to a first guess
field xg to produce the analysis, i.e. 
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Minimization Of The Cost Function
• Minimization of the cost function proceeds iteratively.

• “Convergence” achieved when either 1) Maximum iterations reached, 2) 
Ratio final/initial gradient hits a specified criterion. 

From Bouttier and Courtier (1999)
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3. Background Error
Modeling



Incremental WRF-Var Jb Preconditioning

Define preconditioned control variable v space transform

where U transform CAREFULLY chosen to satisfy Bo = UUT .

Choose (at least assume) control variable components with 
uncorrelated errors:

where n~number pieces of independent information.

Jb δx t0( )[ ]= 1
2
δx t0( )− xb t0( )− xg t0( )[ ]{ }T

Bo
−1 δx t0( )− xb t0( )− xg t0( )[ ]{ }

δx t0( )= Uv

Jb δx t0( )[ ]= 1
2

vn
2

n
∑



WRF-Var Background Error Modeling
δx t0( )= Uv = UpUvUhv

RF = Recursive Filter, 
e.g. Purser et al 2003

Uv: Vertical correlations 
EOF Decomposition

Up: Change of variable,
impose balance.



WRF-Var Background Error Modeling
δx t0( )= Uv = UpUvUhv
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WRF-Var Background Error Modeling
δx t0( )= Uv = UpUvUhv
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WRF-Var Background Error Modeling
δx t0( )= Uv = UpUvUhv

Define control variables:

ψ '

  r' = q'/ qs Tb,qb, pb( )

 χ'= χu '+ χb ' ψ '( )

 T'= Tu '+Tb ' ψ '( )

  ps '= psu '+ psb' ψ '( )



WRF-Var Statistical Balance Constraints

• Define statistical balance after Wu et al (2002):

• How good are these balance constraints? Test on KMA global model
data. Plot correlation between “Full” and balanced components of field:

χb • χ / χ • χ Tb •T / T •T psb • ps / ps • ps

χb
' = cψ ' Tb

' (k) = G(k,k1)ψ ' (k1)
k1
∑ psb

' = W (k)ψ ' (k)
k
∑



Pressure,
Temperature 

3D-Var response to a single Ps Observation

Wind Speed,
Vector,

v-wind component.



WRF-Var Parallelism (e.g. 4 processors)
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MPI Scalability – NCAR IBM

•Test Case: 140x150x41 AFWA 45km “T4 theater” – 25th Jan 2002.
•Background error tuning – Old Its = 98, New = 49 (64PE = 58s).
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Global Applications of WRF-Var

Major technical changes to regional system are

1. Periodic boundary conditions.
2. New global WRF Registry created.
3. Minor changes to treat pole as a special point.
4. Spectral-Grid transformation for horizontal error correlations (FFTPACK).

U-wind Observation (O-B = 1m/s, so = 1m/s) at 120E, 45N, level 15:

U V T



4. Observational Issues



WRF-Var Observations (August 2005, V2.1 Release)
Conventional:

- Surface (SYNOP, METAR, SHIP, BUOY).
- Upper air (TEMP, PIBAL, AIREP, ACARS).

Remotely sensed retrievals:
- Atmospheric Motion Vectors (SATOBS, MODIS).
- Ground-based GPS Total Precipitable Water.
- SSM/I oceanic surface wind speed and TPW.
- Scatterometer (Quikscat) oceanic surface winds.
- Wind Profiler.
- Radar radial velocity and reflectivity.
- ATOVS/AIRS/MODIS temperature/humidities.
- GPS “local” refractivity.

Radiances:
- SSM/I brightness temperatures (Shu-Hua Chen).



3D-Var FGAT: First Guess at Appropriate Time

Forecast (F) Observation at appropriate time Observation at analysis time
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3D-Var-FGAT Forecast Impact

6hr Forecast T Error 12hr Forecast U Error
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Korean Radar Data Assimilation in WRF-Var

Obs (03Z, 31/08) No Radar
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Typhoon Sinlaku: Quikscat Data

00Z September 4th 2002 00Z September 6th 2002

Quikscat Data

Barker et al 
(2004)



WRF-Var Sinlaku Bogus:Analysis Increments

Pressure,
Temperature 

Wind Speed,
Vector,

v-wind component.



Single Surface Pressure Bogus: Forecast Impact
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5. Current Status and 
Future Plans



WRF-Var Observations (December 2006)
Conventional:

- Surface (SYNOP, METAR, SHIP, BUOY).
- Upper air (TEMP, PIBAL, AIREP, ACARS).

Remotely sensed retrievals:
- Atmospheric Motion Vectors (geo/polar).
- Ground-based GPS Total Precipitable Water.
- SSM/I oceanic surface wind speed and TPW.
- Scatterometer oceanic surface winds.
- Wind Profiler.
- Radar radial velocity and reflectivity.
- Satellite temperature/humidities.
- GPS refractivity (e.g. COSMIC).

Radiances:
- SSM/I brightness temperatures.
- Direct radiance assimilation (SSM/I, TMI, 

AMSU, AIRS).



4D-Var Summary (X.-Y. Huang) 

1. WRF-(4D)Var project: 2004-2006.
2. WRF-(4D)Var formulation: Multi-incremental, based on the 

existing WRF 3D-Var and WRF model.
3. Current status of WRF-(4D)Var: The prototype has been put 

together and can run. An installation has been made at AFWA. On 
going work: 

• Case studies and data assimilation experiments.
• Code merge.
• MPP. 
• JcDFI
• Simple physics

4. Near future plan: The basic system; Multi-incremental
5. FY07 plan: Lateral boundary control (J_bdy); more physics, parallel 

runs, efficiency.



WRF-Var Example Flow-Dependence: Global
• Specify single T observation (O-B, σο=1K) at 50N, 150E, 500hPa.
• Flow-Dependence given by KMA’s Ensemble Prediction System.
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WRF-Var Plans

WRF-Var:
• Further development of radiance, radar, GPS assimilation.
• Port JCSDA’s CRTM RT model to WRF-Var,
• Global 3D-Var operational  at KMA (2007).
• 4D-Var operational at AFWA (March 2008).
• Applications (US, Korea, Taiwan, India, Antarctica).
• Flow-dependent covariances (4D-Var, Hybrid VAR/ENS).

Unified WRF Data Assimilation System (WADAS?):
• Further comparison of EnKF and 3/4D-Var.
• Hybrid variational/ensemble-based system.
• Leverages satellite radiance expertise of JCSDA, 

EUMETSAT, universities, etc.
• Suitable for MMM research, operations, and academic 

community use.

WRF 20km Antarctica:

Alpha CV: T response to wind ob:



Observation Cost Function (Jo) Implementation

Observation error correlations increase computational cost of Jo, so…

Assume observation errors uncorrelated (specified by std. dev.  ):

This assumption is not good for satellite retrievals (e.g. temperature, 
humidity) as retrieval process creates correlated errors.

Approximation is better for the “raw” radiance observations.

Use of “super observations” improves assumptions and reduces costs.
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Effects of simplifications of cost function

• We started from the full cost-function:

• We have made various practical assumptions to get the following:

• This is much cheaper (sums rather than matrix operations).

• Very important to choose accurate background error model Bo = UUT.
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