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Introduction

• Intended audience for this tutorial session: 
– Primarily scientific users and others who wish to:

• Work with the code
• Extend/modify the code to enable their work/research
• Address problems as they arise
• Adapt the code to take advantage of local computing resources

– Also: developers, computer scientists and software engineers, computer vendors
• Developing new functionality (e.g. moving nests, coupling)
• Integration with frameworks and other community infrastructure
• Porting and benchmarking new platforms

Introduction

• Characteristics of WRF Software
– Developed from scratch beginning around 1998

– Requirements emphasize flexibility over a range of platforms, applications, users; performance
– WRF develops rapidly. First released Dec 2000; Last beta release, 1.3, in May 2003. Official 2.0 

release May, 2004
– Current source code

• Fortran 90:125,000 lines (+ 40,000 auto-generated)
• Subroutines: 960 subroutines (+ 800 auto-generated)
• C: 6,000 lines (includes auto-generator code)
• Misc: 1,800 lines (shell, Perl, Makefiles, etc.)
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Introduction

• Supported Platforms (alphabetical)

Vendor Hardware O.S. Compiler 
Cray Inc. X1 UNICOS vendor 

Alpha Tru64 vendor 
Linux Intel HP/Compaq IA-64 (Intel) HPUX vendor 

IBM SP Power-x AIX vendor 
IA-64 (Intel) Linux Intel SGI MIPS Irix vendor 

Sun UltraSPARC Solaris vendor 
IA-32/AMD 32 Linux Intel/PGI various IA-64/Opteron Linux Intel/PGI

Performance
http://www.mmm.ucar.edu/wrf/bench

Some terms

• WRF Architecture – scheme of software layers and interface definitions

• WRF Framework – the software infrastructure, also "driver layer" in the 

WRF architecture

• WRF Model Layer – the computational routines that are specifically WRF

• WRF Model – a realization of the WRF architecture comprising the WRF 

model layer with some framework

• WRF – a set of WRF architecture-compliant applications, of which the WRF 

Model is one

Computing Overview
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Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Hardware: The Computer

• The ‘N’ in NWP

• Components
– Processor

• A program counter
• Arithmetic unit(s)
• Some scratch space (registers)
• Circuitry to store/retrieve from memory device

– Memory
– Secondary storage
– Peripherals

• The implementation has been continually refined, but the basic idea hasn’t 

changed much

Hardware has not changed much…

~50,000 flop/s
48hr 12km WRF Conus in 600 years

~5,000,000,000 flop/s
48 12km WRF CONUS in 52 Hours

6-way superscalar

36-bit floating point precision

~144 Kbytes

A computer in 1960

IBM 7090

4-way superscalar

64-bit floating point precision

1.4 Mbytes (shown)

> 500 Mbytes (not shown)

A computer in 2002

IBM p690

…how we use it has

• Fundamentally, processors haven’t changed much since 1960

• Quantitatively, they haven’t improved nearly enough
– 100,000x increase in peak speed
– > 4,000x increase in memory size
– These are too slow and too small for even a moderately large NWP run today

• We make up the difference with parallelism
– Ganging multiple processors together to achieve 1011-12 flop/second
– Aggregate available memories of 1011-12 bytes

~100,000,000,000 flop/s
48 12km WRF CONUS in under 15 minutes
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Parallel computing terms -- hardware

• Processor: 
– A device that reads and executes instructions in sequence to produce perform operations on data 

that it gets from a memory device producing results that are stored back onto the memory device

• Node: One memory device connected to one or more processors. 
– Multiple processors in a node are said to “share-memory” and this is shared memory parallelism
– They can work together because they can see each other’s work
– The latency and bandwidth to memory affect performance

• Cluster: One or more nodes connected by a network
– The processors attached to the memory in one node can not see the memory for processors on 

another node
– For processors on different nodes to work together they must send messages between the nodes. 

This is  “distributed memory parallelism”

• Network: 
– Devices and wires for sending messages between nodes
– Bandwidth – a measure of the number of bytes that can be moved in a second
– Latency – the amount of time it takes before the first byte of a message arrives at its destination

Parallel Computing Terms -- Software

• Process: 
– A set of instructions to be executed on a processor
– Enough state information to allow process execution to stop on a processor and be 

picked up again later, possibly by another processor

• Processes may be lightweight or heavyweight
– Lightweight processes, e.g. shared-memory threads, store very little state; just enough to 

stop and then start the process
– Heavyweight processes, e.g. UNIX processes, store a lot more (basically the memory 

image of the job)

“The only thing one does directly with hardware is pay for it.”

Parallel Computing Terms -- Software

• Every job has at least one heavy-weight process. 
– A job with more than one process is a distributed-memory parallel job 

– Even on the same node, heavyweight processes do not share memory†

• Within a heavyweight process you may have some number of lightweight processes, 

called threads.
– Threads are shared-memory parallel; only threads in the same memory space can work together. 
– A thread never exists by itself; it is always inside a heavy-weight process.

• Processes (heavy-weight) are the vehicles for distributed memory parallelism

• Threads are the vehicles for shared-memory parallelism

Jobs, Processes, and Hardware

• MPI is used to start up and pass messages between multiple heavyweight processes
– The mpirun command controls the number of processes and how they are mapped onto nodes of 

the parallel machine
– Calls to MPI routines sending and receiving messages and control other interactions between 

processes
– http://www.mcs.anl.gov/mpi

• OpenMP is used to start up and control threads within each process 
– Directives specify which parts of the program are multi-threaded
– OpenMP environment variables determine the number of threads in each process
– http://www.openmp.org

• The number of processes (number of MPI processes times the number of threads in each 
process) usually corresponds to the number of processors
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Examples

• If the machine consists of 4 nodes, each with 4 processors, how many different ways can 
you run a job to use all 16?

– 4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 wrf.exe

– 8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 wrf.exe

– 16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
mpirun –np 16 wrf.exe

Examples (cont.)

• Note, since there are 4 nodes, we can never have fewer than 4 MPI processes 

because nodes do not share memory

• What happens on this same machine for the following?

setenv OMP_NUM_THREADS 4
mpirun –np 32

Other information about Parallel Processes

• Memory limits for heavy-weight processes
– A process doesn’t get all the memory and running out is ugly

• Often appears as a segmentation violation in some otherwise correct-looking part of the program
• Soft limits on per-process memory controlled by the limit and unlimit commands
• Hard limits are set in the operating system; need administrator to change

– Virtual memory
• Even when you’re not running out of memory, you may be running out of physical memory
• Program will still run but it will be many times slower

– Make sure that mpirun is distributing processes evenly over the nodes in your partition. You may need to use 
the –machinefile or other options

– Some versions of MPI have buffer size limits

• Memory limits for light-weight processes
– Thread-private stack size is usually limited and running out is uglier
– May be enlarged; for example, the MPSTKZ environment variable with the Portland Group compilers

Application:  WRF

• WRF uses domain decomposition to divide total amount of work over parallel 

processes 

• Since the process model has two levels, the decomposition has two levels:
– The domain is first broken up into rectangular pieces that are assigned to heavy-weight 

processes. These pieces are called patches
– The patches may be further subdivided into smaller rectangular pieces that are called tiles, and 

these are assigned to threads within the process.
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Model domains are decomposed for parallelism on two-levels
Patch: section of model domain  allocated to a distributed memory  node
Tile: section of a patch allocated to a shared-memory processor within a node; this is 
also the scope of a model layer subroutine.
Distributed memory parallelism is over patches; shared memory parallelism is over 
tiles within patches

• Single version of code for efficient execution on:
– Distributed-memory
– Shared-memory 
– Clusters of SMPs
– Vector and microprocessors

Parallelism in WRF: Multi-level Decomposition

Logical 
domain

1 Patch, divided 
into multiple tiles

Inter-processor 
communication

D
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(dyn_eh/module_diffusion.F )

SUBROUTINE horizontal_diffusion_s (tendency, rr, var, . . .
. . .

DO j = jts,jte
DO k = kts,ktf
DO i = its,ite

mrdx=msft(i,j)*rdx
mrdy=msft(i,j)*rdy
tendency(i,k,j)=tendency(i,k,j)- &

(mrdx*0.5*((rr(i+1,k,j)+rr(i,k,j))*H1(i+1,k,j)- &
(rr(i-1,k,j)+rr(i,k,j))*H1(i  ,k,j))+     &

mrdy*0.5*((rr(i,k,j+1)+rr(i,k,j))*H2(i,k,j+1)- &
(rr(i,k,j-1)+rr(i,k,j))*H2(i,k,j  ))- &

msft(i,j)*(H1avg(i,k+1,j)-H1avg(i,k,j)+             &
H2avg(i,k+1,j)-H2avg(i,k,j)              &

)/dzetaw(k)                     &
)

ENDDO
ENDDO
ENDDO

. . .

Example code fragment that requires communication 
between patches

Note the tell-tale +1 and –1 expressions in indices for rr and 
H1 arrays on right-hand side of assignment. These are 
horizontal data dependencies because the indexed operands 
may lie in the patch of a neighboring processor. That 
neighbor’s updates to that element of the array won’t be 
seen on this processor. We have to communicate. 

• Halo updates

Distributed Memory Communications

memory on one processor memory on neighboring processor

*
+ *
*

* *

• Halo updates

• Periodic boundary updates

Distributed Memory Communications
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• Halo updates

• Periodic boundary updates

• Parallel transposes

all z on
patch

all x on
patch

all y on
patch

Distributed Memory Communications Review

APPLICATION
(WRF)

HARDWARE
(Processors, Memories, Wires)

SYSTEM
(UNIX, MPI, OpenMP)

ProcessorscontainNodescontainsCluster

ThreadscontainProcessescontainsJob

TilescontainPatchescontainsDomain

Distributed 
Memory
Parallel

Shared
Memory
Parallel

WRF Software Overview

WRF Software

• Architecture

• Directory structure

• Module Conventions and USE Association

• Model Layer Interface
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WRF Software Architecture

• Hierarchical software architecture
– Insulate scientists' code from parallelism and other architecture/implementation-specific details
– Well-defined interfaces between layers, and external packages for communications, I/O, and model coupling facilitates 

code reuse and exploiting of community infrastructure, e.g. ESMF.

WRF Software Architecture

• Driver Layer
– Allocates, stores, decomposes model domains, represented abstractly as single data objects
– Contains top-level time loop and algorithms for integration over nest hierarchy
– Contains the calls to I/O, nest forcing and feedback routines supplied by the Mediation Layer
– Provides top-level, non package-specific access to communications, I/O, etc.
– Provides some utilities, for example module_wrf_error, which is used for diagnostic prints and error stops

WRF Software Architecture

• Mediation Layer
– Provides to the Driver layer

• Solve solve routine, which takes a domain object and advances it one time step
• I/O routines that Driver when it is time to do some input or output operation on a domain
• Nest forcing and feedback routines
• The Mediation Layer and not the Driver knows the specifics of what needs to be done

– The sequence of calls to Model Layer routines for doing a time-step is known in Solve routine
– Responsible for dereferencing driver layer data objects so that individual fields can be passed to Model layer Subroutines
– Calls to message-passing are contained here as part of solve routine

WRF Software Architecture

• Model Layer
– Contains the information about the model itself, with machine architecture and implementation aspects abstracted out and moved into 

layers above
– Contains the actual WRF model routines that are written to perform some computation over an arbitrarily sized/shaped subdomain
– All state data objects are simple types, passed in through argument list
– Model Layer routines don’t know anything about communication or I/O; and they are designed to be executed safely on one thread – they 

never contain a PRINT, WRITE, or STOP statement
– These are written to conform to the Model Layer Subroutine Interface (more later) which makes them “tile-callable”
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Directory Structure
WRF Model Directory Structure

page 5, 
WRF D&I Document

driver
mediation

model

WRF File Taxonomy and Nomenclature

Module files
14 Driver frame/module_* .F WRF framework (driver layer)
1 Driver frame/module_state_description.F registry generated framework file

15 Model dyn_em/module_*.F em core-specific model layer
17 Model dyn_nmm/module_* .F nmm core-specific model layer
11 Model share/module_*. F non-core specific model layer
26 Model phys/module_pp_*. F physics modules, where pp is k ind of physics
2 Model phys/module_*.F misc physics routines
5 Mediation phys/module_*_driver.F physics drivers

Non-module Fortran Source
5 Driver main/*.F main programs (1 wrf and 6 preprocs)
3 Driver frame/*.c C-language routines in the WRF framework
5 Mediation dyn_em/*. F em core-specific routines (includes solver)

12 Mediation dyn_nmm/*. F nmm core-specific routines (includes solver)
5 Mediation share/mediation_*. F mediation layer

38 Mediation share/something. F mediation layer and miscellaneous
Include files

inc/*. inc registry generated includes
inc/*. h io api definitions, autogenerated from build

Others
13 Makefile */Makefile build mechanism
3 configure, compile, clean scripts build mechanism

19 tools/*.c source for registry program
1 tools/regtest.csh a regression tester for WRF model

Externals
7 External external/* external package directories

Module Conventions and USE Association

• Modules are named module_something

• Name of file containing module is module_something.F

• If a module includes an initialization routine, that 

routine should be named init_module_something()

• Typically: 
– Driver and model layers are made up of modules,
– Mediation layer is bare subroutines, except for physics 

drivers in phys directory
– Gives benefit of modules while avoiding cycles in the 

use association graph

MODULE module_this
MODULE module_that
…

USE module_this
USE module_that
USE module_whatcha
USE module_macallit
…

MODULE module_whatcha
MODULE module_macallit
USE module_this
USE module_that
…

driver

mediation

model
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Code Structure

OMP
Config
Inquiry I/O API

Config
Module

WRF Tile-callable
Subroutines

SolveMediation Layer

Model Layer

Driver Layer

DM comm

Th
re

ad
s

External Packages

Package
Independent

Package
Dependent

Data formats,
Parallel I/O

M
es

sa
ge

Pa
ss

in
g

Driver

Registry

wrf  (main/wrf.F)wrf  (main/wrf.F)

integrate (frame/module_integrate.F)integrate (frame/module_integrate.F)

solve_interface (share/solve_interface.F)solve_interface (share/solve_interface.F)

solve_em (dyn_em/solve_em.F)solve_em (dyn_em/solve_em.F)

advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
cumulus_driver (physics/cumulus_driver.F)cumulus_driver (physics/cumulus_driver.F)

WRF Model Layer Interface

• Interface Mediation layer <> Model Layer
– All state arrays passed through argument list as simple 

(not derived) data types
– Domain, memory, and run dimensions passed 

unambiguously in three physical dimensions
– Restrictions on model layer subroutines

• No I/O, communication, no stops or aborts (use 
wrf_error_fatal in frame/module_wrf_error.F)

• No common/module storage of decomposed data 
(exception allowed for set-once/read-only tables)

• Spatial scope of a Model Layer call is one “tile”
• Temporal scope of a call is limited by coherency
• Computation on halos is allowed and considered a 

model-layer concern

OMP
Config
Inquiry I/O API

Config
Module

WRF Tile-callable
Subroutines

Solve
DM comm

Th
re

ad
s

Data formats,
Parallel I/O

M
es

sa
ge

Pa
ss

in
g

Driver

SUBROUTINE solve_xxx ( 
. . .

!$OMP DO PARALLEL
DO ij = 1, numtiles

its = i_start(ij) ; ite = i_end(ij)
jts = j_start(ij) ; jte = j_end(ij)
CALL model_subroutine( arg1, arg2, . . .

ids , ide , jds , jde , kds , kde ,
ims , ime , jms , jme , kms , kme ,
its , ite , jts , jte , kts , kte )

END DO
. . .

END SUBROUTINE

SUBROUTINE solve_xxx ( 
. . .

!$OMP DO PARALLEL
DO ij = 1, numtiles

its = i_start(ij) ; ite = i_end(ij)
jts = j_start(ij) ; jte = j_end(ij)
CALL model_subroutine( arg1, arg2, . . .

ids , ide , jds , jde , kds , kde ,
ims , ime , jms , jme , kms , kme ,
its , ite , jts , jte , kts , kte )

END DO
. . .

END SUBROUTINE

template for model layer subroutine       

SUBROUTINE model_subroutine ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte  )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

template for model layer subroutine       

SUBROUTINE model_subroutine ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte  )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte  )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte  )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.

template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte  )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte  )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.

• Memory dimensions
• Used to dimension dummy 

arguments
• Do not use for local arrays



11

template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte  )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte  )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.

• Memory dimensions
• Used to dimension dummy 

arguments
• Do not use for local arrays

• Tile dimensions
• Local loop ranges
• Local array dimensions

Data Structures

Data Structures

• Data Taxonomy

• How data appears at different levels of architecture

• Grid representation in WRF arrays

• Lateral Boundary Condition arrays

• Four dimensional tracer arrays

Data Structures

• WRF Data Taxonomy
– State data

– Intermediate data type 1 (I1)
– Intermediate data type 2 (I2)
– Heap storage (COMMON or Module data)
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State Data

• Persist for the duration of a domain

• Represented as fields in domain data structure

• Arrays are represented as dynamically allocated pointer arrays in the domain data 

structure

• Declared in Registry using state keyword

• Always memory dimensioned; always thread shared

• Only state arrays can be subject to I/O and Interprocessor communication

WRF State Variables

• May be 0d, 1d, 2d, 3d, or 4d

• What they look like in the code:

[grid%[core_ ]] var [_tl]

when seen in the driver layer (above solve_interface.F)

core-association if given in Registry (use field starts with "dyn_")

name of variable (0- through 3-D); name of 4D array (4D only)

integer time level number (if multi-time level variable)

Example

The second time level of the u variable in the Eulerian Mass (EM) core can be 
accessed in the driver layer as:

grid%em_u_2

in the solve_em routine and below it is simply:

u_2

I1 Data

• Data that persists for the duration of 1 time step on a domain and then released

• Declared in Registry using i1 keyword

• Typically automatic storage (program stack) in solve routine

• Typical usage is for tendency arrays in solver

• Always memory dimensioned and thread shared

• Typically not communicated or I/O
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I2 Data

• I2 data are local arrays that exist only in model-layer subroutines and exist only for 

the duration of the call to the subroutine

• I2 data is not declared in Registry, never communicated and never input or output

• I2 data is tile dimensioned and thread local; over-dimensioning within the routine 

for redundant computation is allowed 
– the responsibility of the model layer programmer
– should always be limited to thread-local data

Data Structures

• What you see depends on where you are
– Driver layer

• All data for a domain is a single object, a domain derived data type (DDT)
• The domain DDTs are dynamically allocated/deallocated
• Linked together in a tree to represent nest hierarchy; root pointer is head_grid, defined in 

frame/module_domain.F
• Supports recursive depth-first traversal algorithm (frame/module_integrate.F)

– Model layer
• All data objects are scalars and arrays of simple types only
• Virtually all passed in through subroutine argument lists

– Mediation layer
• One task of mediation layer is to dereference fields from DDTs
• Therefore, sees domain data in both forms, as DDT and as individual fields

– The name of a data type and how it is referenced may differ depending on the level of the 
architecture

1

2
4

3

head_grid 1

4

32

Data Structures

• What you see depends on where you are
– Driver layer

• All data for a domain is a single object, a domain derived data type (DDT)
• The domain DDTs are dynamically allocated/deallocated
• Linked together in a tree to represent nest hierarchy; root pointer is head_grid, defined in 

frame/module_domain.F
• Supports recursive depth-first traversal algorithm (frame/module_integrate.F)

– Model layer
• All data objects are scalars and arrays of simple types only
• Virtually all passed in through subroutine argument lists

– Mediation layer
• One task of mediation layer is to dereference fields from DDTs
• Therefore, sees domain data in both forms, as DDT and as individual fields

– The name of a data type and how it is referenced may differ depending on the level of the 
architecture

head_grid 1

4

32

RECURSIVE SUBROUTINE integrate ( domain , stoptime )

WHILE ( domain.time <= stoptime )

CALL solve ( domain )   ! Advances domain.time

FOR EACH CHILD OF DOMAIN

CALL integrate ( domain.child , domain.time ) 

RECURSIVE SUBROUTINE integrate ( domain , stoptime )

WHILE ( domain.time <= stoptime )

CALL solve ( domain )   ! Advances domain.time

FOR EACH CHILD OF DOMAIN

CALL integrate ( domain.child , domain.time ) 

Data Structures

What you see depends on where you are  (Cont.)
– Model layer

• All data objects are scalars and arrays of simple types only
• Virtually all passed in through subroutine argument lists

– Mediation layer
• One task of mediation layer is to dereference fields from DDTs
• Therefore, sees domain data in both forms, as DDT and as individual fields

– The name of a data type and how it is referenced may differ depending on the level of the 
architecture

•    What you see depends on where you are  (Cont.)
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Heap Storage

• Data stored on the process heap is not thread- safe and is generally forbidden 

anywhere in WRF
– COMMON declarations
– Module data

• Exception:  If the data object is:
– Completely contained and private within a Model Layer module, and
– Set once and then read-only ever after, and

– No decomposed dimensions.

Grid Representation in Arrays 

• Increasing indices in WRF arrays run
– West to East   (X, or I-dimension)

– South to North (Y, or J-dimension)
– Bottom to Top (Z, or K-dimension)

• Storage order in WRF is IKJ but this is a WRF Model convention, not a restriction of 

the WRF Software Framework

Grid Representation in Arrays

• The extent of the logical or domain dimensions is always the "staggered" grid 

dimension. That is, from the point of view of a non-staggered dimension, there is 

always an extra cell on the end of the domain dimension.

Grid Indices Mapped onto Array Indices (C-grid example)

m1,3 m2,3 m3,3

m1,2 m2,2 m3,2

m1,1 m2,1 m3,1

u1,3 u2,3 u3,3 u4,3

u1,2 u2,2 u3,2 u4,2

u1,1 u2,1 u3,1 u4,1

v1,4 v2,4 v3,4

v1,3 v2,3 v3,3

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

jds = 1

jde = 4

ids = 1 ide = 4

Computation over
mass points runs
only ids..ide-1
and  jds..jde-1

Likewise, vertical
computation over 
unstaggered fields
run kds..kde-1
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LBC Arrays

• State arrays, declared in Registry using the b modifier in the dimension field of the 

entry

• Store specified forcing data on domain 1, or forcing data from parent on a nest

• All four boundaries are stored in the array; last index is over:
P_XSB (western)
P_XEB (eastern)
P_YSB (southern)
P_YEB (northern)

These are defined in module_state_description.F

LBC Arrays

• LBC arrays are declared as follows:

em_u_b(max(ide,jde),kde,spec_bdy_width,4)

• Globally dimensioned in first index as the maximum of x and y dimensions
• Second index is over vertical dimension
• Third index is the width of the boundary (namelist)
• Fourth index is which boundary

• Note: LBC arrays are globally dimensioned
• not fully dimensioned so still scalable in memory

• preserves global address space for dealing with LBCs
• makes input trivial (just read and broadcast)

unused

LBC Arrays

unused

P_YEB

P_YSB

A Given Domain

P
_YE

B

P
_X

E
B

jds

jde

ids ide

spec_bdy_width

unused

LBC Arrays

unused

P_YEB

P_YSB

P
_YE

B

P
_X

E
B

jds

jde

ids ide

A given subdomain 
that includes a
domain boundary

spec_bdy_width
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Four Dimensional Tracer Arrays

• State arrays, used to store arrays of 3D fields such as moisture tracers, chemical species, 

ensemble members, etc.

• First 3 indices are over grid dimensions; last dimension is the tracer index

• Each tracer is declared in the Registry as a separate state array but with f and optionally 

also t modifiers to the dimension field of the entry

• The field is then added to the 4D array whose name is given by the use field of the Registry 

entry

Four Dimensional Tracer Arrays

• Fields of a 4D array are input and output separately and appear as any other 3D field in a 

WRF dataset

• The extent of the last dimension of a tracer array is from PARAM_FIRST_SCALAR to 

num_tracername 
– Both defined in Registry-generated frame/module_state_description.F
– PARAM_FIRST_SCALAR is a defined constant (2)
– Num_tracername is computed at run-time in set_scalar_indices_from_config (module_configure)

– Calculation is based on which of the tracer arrays are associated with which specific packages in the Registry
and on which of those packages is active at run time (namelist.input)

Four Dimensional Tracer Arrays

• Each tracer index (e.g. P_QV) into the 4D array is also defined in module_state_description and set in 

set_scalar_indices_from_config

• Code should always test that a tracer index greater than or equal to PARAM_FIRST_SCALAR before 

referencing the tracer (inactive tracers have an index of 1)

• Loops over tracer indices should always run from PARAM_FIRST_SCALAR to num_tracername --
EXAMPLE

The Registry
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WRF Registry
• "Active data-dictionary” for managing WRF data structures

– Database describing attributes of model state, intermediate, and configuration data
• Dimensionality, number of time levels, staggering
• Association with physics
• I/O classification (history, initial, restart, boundary)
• Communication points and patterns
• Configuration lists (e.g. namelists)

– Program for auto-generating sections of WRF from database: 
• 570 Registry entries ⇒ 30-thousand lines of automatically generated WRF code
• Allocation statements for state data, I1 data
• Argument lists for driver layer/mediation layer interfaces
• Interprocessor communications: Halo and periodic boundary updates, transposes
• Code for defining and managing run-time configuration information
• Code for forcing, feedback and interpolation of nest data

• Automates time consuming, repetitive, error-prone programming

• Insulates programmers and code from package dependencies

• Allow rapid development

• Documents the data

Registry Mechanics

%compile wrf

WRF source
*/*.F

CPP 
____________

Fortran90

wrf.exe

Registry/Registry
registry program:

tools/registry

inc/*.incl

Registry Data Base

• Currently implemented as a text file: Registry/Registry

• Types of entry:
– State – Describes state variables and arrays in the domain structure
– Dimspec – Describes dimensions that are used to define arrays in the model
– I1 – Describes local variables and arrays in solve
– Typedef – Describes derived types that are subtypes of the domain structure 
– Rconfig – Describes a configuration (e.g. namelist) variable or array

– Package – Describes attributes of a package (e.g. physics)
– Halo – Describes halo update interprocessor communications
– Period – Describes communications for periodic boundary updates
– Xpose – Describes communications for parallel matrix transposes

State entry

• Elements
– Entry: The keyword “state”
– Type: The type of the state variable or array (real, double, integer, logical, character, or derived)
– Sym: The symbolic name of the variable or array
– Dims: A string denoting the dimensionality of the array or a hyphen (-)
– Use: A string denoting association with a solver or 4D scalar array, or a hyphen
– NumTLev: An integer indicating the number of time levels (for arrays) or hypen (for variables)
– Stagger: String indicating staggered dimensions of variable  (X, Y, Z, or hyphen)
– IO: String indicating whether and how the variable is subject to I/O and Nesting
– DName: Metadata name for the variable
– Units: Metadata units of the variable
– Descrip: Metadata description of the variable

• Example

#      Type Sym  Dims   Use     Tlev Stag IO    Dname      Descrip
# definition of a 3D, two-time level, staggered state array

state  real ru   ikj    dyn_eh   2   X irh   "RHO_U"  "X WIND COMPONENT“
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Dimspec entry

• Elements
– Entry: The keyword “dimspec”
– DimName:  The name of the dimension (single character)
– Order: The order of the dimension in the WRF framework (1, 2, 3, or ‘-‘)
– HowDefined: specification of how the range of the dimension is defined
– CoordAxis: which axis the dimension corresponds to, if any (X, Y, Z, or C)
– DatName: metadata name of dimension

• Example

#<Table>  <Dim>  <Order> <How defined>         <Coord-axis>  <DatName>
dimspec    i      1     standard_domain           x          west_east
dimspec    j      3     standard_domain           y          south_north
dimspec    k      2     standard_domain           z          bottom_top
dimspec    l      2     namelist=num_soil_layers  z          soil_layers

Rconfig entry

• This defines namelist entries

• Elements
– Entry: the keyword “rconfig”
– Type: the type of the namelist variable (integer, real, logical, string )
– Sym: the name of the namelist variable or array
– How set: indicates how the variable is set: e.g. namelist or derived, and if namelist, which block of the namelist 

it is set in
– Nentries: specifies the dimensionality of the namelist variable or array. If 1 (one) it is a variable and applies to 

all domains; otherwise specify max_domains (which is an integer parameter defined in 
module_driver_constants.F).

– Default: the default value of the variable to be used if none is specified in the namelist; hyphen (-) for no 
default

• Example

#         Type    Sym      How set              Nentries Default
rconfig   integer dyn_opt  namelist,namelist_01 1          1

Package Entry

• Elements
– Entry: the keyword “package”,
– Package name: the name of the package: e.g. “kesslerscheme”
– Associated rconfig choice:  the name of a rconfig variable and the value of that variable that choses this 

package
– Package state vars: unused at present; specify hyphen (-)
– Associated 4D scalars: the names of 4D scalar arrays and the fields within those arrays this package uses

• Example

# specification of microphysics options
package passiveqv     mp_physics==0    - moist:qv
package kesslerscheme mp_physics==1    - moist:qv,qc,qr
package linscheme     mp_physics==2    - moist:qv,qc,qr,qi,qs,qg
package   ncepcloud3    mp_physics==3    - moist:qv,qc,qr
package   ncepcloud5    mp_physics==4    - moist:qv,qc,qr,qi,qs

# namelist entry that controls microphysics option
rconfig   integer     mp_physics   namelist,namelist_04     max_domains   0

Comm entries: halo and period

• Elements
– Entry: keywords “halo” or “period”

– Commname: name of comm operation
– Description: defines the halo or period operation

• For halo: npts:f1,f2,...[;npts:f1,f2,...]*
• For period: width:f1,f2,...[;width:f1,f2,...]*

• Example

# first exchange in eh solver
halo   HALO_EH_A  dyn_em 24:u_2,v_2,ru_1,ru_2,rv_1,rv_2,w_2,t_2;4:pp,pip

# a periodic boundary update
period PERIOD_EH_A dyn_em 2:u_1,u_2,ru_1,ru_2,v_1,v_2,rv_1,rv_2,rw_1,rw_2
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I/O

WRF Model IO and Coupling

• WRF I/O and Coupling Streams
– Streams: the logical data paths into and out of WRF
– Available streams in WRF

• Input, plus 5 auxiliary input streams
• History, plus 5 auxiliary output streams
• Dedicated output stream for Cycling 3DVAR
• Boundary
• Restart

– Read from and written to in "variable-sets"
– Variable-sets are defined at compile-time in the Registry

• Formats
– The mechanism by which I/O is moved on a stream
– Implemented using external packages and interfaced to the model through the WRF I/O and Model Coupling API 

(§7, WRF Design and Implementation Document)
– Formats are specified at run-time in namelist.input

• NetCDF (Format 2)
• Parallel HDF5 (Format 4), thanks Kent Yang, NCSA
• Experimental Model-Coupling interfaces through MCT, MCEL (Format 7)

WRF Model I/O and Coupling (Cont.)

• Lower levels of the WRF I/O software stack allow expression of a dataset open as a two-

stage operation: OPEN BEGIN and then OPEN COMMIT
– Between the OPEN BEGIN and OPEN COMMIT the program performs the sequence of writes that will constitute 

one frame of output to "train" the interface
– An implementation of the API is free to use this information for optimization/bundling/etc. or ignore it

• Higher levels of the WRF I/O software stack provide a BEGIN/TRAIN/COMMIT form of an 

OPEN as a single call

I/O Software Stack

• Domain I/O
– Operations that performs I/O on a stream for an entire domain

– At this level all opens are single phase
– The read/write calls to the per-field I/O routines below are Registry-generated

• Package-independent I/O API
– Lower level opens (each step separate for multi-phase opens)
– Read or write operation on a single field on a stream
– Selects particular package-specific API routine to call based on io_form setting in namelist

• Package-specific I/O API
– Package specific (and thus, external) implementation of each routine in the I/O API
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Domain I/O 

• Routines in share/module_io_domain.F and share/module_io_wrf.F
– High level routines that apply to operations on a domain and a stream

• open and define a stream for writing in a single call that contains the OPEN FOR WRITE BEGIN, the series of "training 
writes" to a dataset, and the final OPEN FOR WRITE COMMIT

• read or write all the fields of a domain that make up a complete frame on a stream (as specified in the Registry) with a 
single call

• some wrf-model specific file name manipulation routines

• Output_wrf and input_wrf
– Contain hard coded WRF-specific meta-data puts (for output) and gets (for input)

• Whether meta-data is output or input is controlled by a flag in the grid data structure
• Meta data output is turned off when output_wrf is being called as part of a "training write" within a two-stage open
• It is turned on when it's called as part of an actual write

– Contain registry generated series of calls the WRF I/O API to write or read individual files

Package-independent I/O API

• frame/module_io.F

• These routines correspond to WRF I/O API specification

• Start with the wrf_ prefix (package-specific routines start with ext_package_)

• The package-independent routines here contain logic for: 
– selecting between formats (package-specific) based on the what stream is being written and what format is specified for that 

stream
– calling the external package as a parallel package (each process passes subdomain) or collecting and calling on a single WRF 

process 
– passing the data off the the asynchronous quilt-servers instead of calling the I/O API from this task

Package-specific I/O API

• Format specific implementations of I/O
– external/io_netcdf/wrf_io.F90
– external/io_int/io_int.F90
– external/io_phdf5/wrf-phdf5.F90
– external/io_mcel/io_mcel.F90

• The NetCDF version contains a small program, diffwrf.F90, that uses the API read and then 

generate an ascii dump of a field that is readable by HMV (see: www.rotang.com) a small 

plotting program we use in-house for debugging and quick output.

• Diffwrf is also useful as a small example of how to use the I/O API to read a WRF data set

Defining a variable-set for an I/O stream

• Fields are added to a variable-set on an I/O channel in the Registry

IO is a string that specifies if the variable is to be subject to initial, restart, history, or 
boundary I/O.  The string may consist of 'h' (subject to history I/O), 'i' (initial dataset), 
'r' (restart dataset), or 'b' (lateral boundary dataset).  The 'h', 'r', and 'i' specifiers may 
appear in any order or combination.  

The ‘h’ and ‘i’ specifiers may be followed by an optional integer string consisting of 
‘0’, ‘1’, ‘2’, ‘3’, ‘4’, and/or ‘5’.  Zero denotes that the variable is part of the principal 
input or history I/O stream. The characters ‘1’ through ‘5’ denote one of five 
auxiliary input or history I/O streams.

#      Type Sym  Dims   Use     Tlev Stag IO    Dname      Descrip

state  real ru   ikj    dyn_eh   2   X irh   "RHO_U"  "X WIND COMPONENT“
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Defining Variable-set for an I/O stream

• Examplesirh -- The state variable will be included in the input, restart, and history I/O streams

irh13 -- The state variable has been added to the first and third auxiliary history output 
streams; it has been removed from the principal history output stream, because zero is not 
among the integers in the integer string that follows the character 'h'

rh01 -- The state variable has been added to the first auxiliary history output stream; it is 
also retained in the principal history output

i205hr -- Now the state variable is included in the principal input stream as well as 
auxiliary inputs 2 and 5.  Note that the order of the integers is unimportant. The variable is 
also in the principal history output stream

ir12h -- No effect; there is only 1 restart data stream and ru added to it.

Assigning I/O Streams to Formats

• Run-time: specified in namelist.input file

io_form_history  = 2,

io_form_restart   = 2,

io_form_input  = 2,

io_form_boundary = 2,

Nest Initialization, Forcing, and Feedback

• Three built-in streams for exchange of data between nested domains
– DOWN: data from a coarse domain state array to a nested domain state array

– UP: data from a nested domain state array to a coarse-domain state array
– FORCE: data from a coarse domain array to boundary arrays for a nested domain array

• Format is specialized, parallel and built-in to WRF

• Like I/O streams, variable-sets on nest streams defined in Registry

Nest Initialization, Forcing, and Feedback

There are three streams that a variable may take between a coarse domain and a 
nested domain: down, indicated by a ‘d’ character in the IO string; up, indicated 
by a ‘u’; and force, a special form of down, indicated with an ‘f’. 

If the stream identifier is specified by itself, a default interpolation subroutine is 
used. Down uses interp_fcn(), defined in share/interp_fcn.F, which is the semi-
Lagrangian interpolator, SINT, from MM5 nesting. Up uses copy_fcn() by default, 
also defined in that source file. 

There is no default for force; however, there is a function bdy_interp() (which also 
uses SINT) provided in share/interp_fcn.F. 

When these are specified, the state variable is passed as an argument to the 
interpolation routine on both the coarse domain and the nest. If the state variable 
has multiple time levels, the highest numbered time level is passed.
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Nest Initialization, Forcing, and Feedback

Different functions can be specified for nesting in the Registry, and additional fields can be provided to 
those functions, using the following syntax:

f=(my_bdy_fcn:dt,u_b,u_bt)

This will cause a different subroutine, named my_bdy_fcn, to be called instead of the default and the 
additional state variables dt, u_b, and u_bt (boundary and boundary tendency arrays, respectively) will be 
passed for both the coarse and nested domains. 

The down, up, and force descriptions may be included in the same IO field for a state-entry: for example:

i01rhu=(my_feedback)d=(my_interp:mask)f=(bdy_interp:dt,u_b,u_bt)

This would specify that the state variable is input in the main input stream as well as the auxiliary-1 
stream, it is part of restart and history data, it is downward forced using the user-supplied routine 
my_interp() which also takes the state variable mask as an argument; it is upward forced using the 
my_feedback() routine; and it is forced using the bdy_interp() routine, which takes as extra arguments the
dt, u_b, and u_bt state variables.

Nest Initialization, Forcing, and Feedback

Given:
f=(my_bdy_fcn:dt,u_b,u_bt)

The interface to the subroutine should be as follows. Note the extra arguments defined for dt, u_b, and u_bt on coarse and nested domains. 
Note also that the registry-generated call to this routine will also provide two logical arguments to the routine indicating whether the 
variable is x-staggered or y-staggered.

SUBROUTINE my_bdy_fcn ( cfld, &  ! CD field
cids, cide, ckds, ckde, cjds, cjde,   &  ! CD domain dims
cims, cime, ckms, ckme, cjms, cjme,   &  ! CD mem dims
cits, cite, ckts, ckte, cjts, cjte,   &  ! CD patch dims
nfld,                                 &  ! ND field
nids, nide, nkds, nkde, njds, njde,   &  ! ND domain dims
nims, nime, nkms, nkme, njms, njme,   &  ! ND mem dims
nits, nite, nkts, nkte, njts, njte,   &  ! ND patch dims
shw,                                  &  ! stencil half width
xstag, ystag,                         &  ! staggering of field
ipos, jpos,                           &  ! Nest lower left in CD
nri, nrj,                             &  ! nest ratios
cdt, ndt,                             &  ! extra vars on CD and ND
cbdy, nbdy,                           &  !  “ “ “ “
cbdy_t, nbdy_t                        &  !  “ “ “ “
)

Time Management and Error Handling

WRF Time management

• Implementation of ESMF Time Manager

• Defined in external/esmf_time_f90

• Objects
– Clocks
– Alarms
– Time Instances
– Time Intervals
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WRF Time management

• Operations on ESMF time objects
– For example: +, -, and other arithmetic is defined for time intervals intervals and instances

– I/O intervals are specified by setting alarms on clocks that are stored for each domain; see 
share/set_timekeeping.F

– The I/O operations are called when these alarms "go off".  see MED_BEFORE_SOLVE_IO in 
share/mediation_integrate.F

WRF Error Handling

• frame/module_wrf_error.F

• Routines for
– Incremental debugging output WRF_DEBUG
– Producing diagnostic messages WRF_MESSAGE
– Writing an error message and terminating WRF_ERROR_FATAL

Example: Adding a New Core

Example: Adding a new core
• Conceptual

– WRF framework can slot in new dynamics as run-time selectable option
• Changes to:

– Mediation layer, model layer
– Registry

• Reuse:

– Top-level driver layer
– I/O infrastructure
– Parallel infrastructure
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Example: Adding a new core
• Steps

– Develop new or convert existing code:
• Mediation layer routine: solve
• Model layer subroutines called by solver

– Add to WRF 
• Add code to source tree
• Incorporate into build mechanism
• Registry entries: data, solver options, comms
• Some additional splicing

– Single processor testing
– Analyze data-dependencies, define and implement 

communication for parallelism
– Multi-processor testing
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PSEUDO CODE FOR NEW WRF SOLVER:

Time loop outside of solver (part of WRF driver: integrate)
DO 1 <- number of iterations

subroutine solve_exp ( x_1 , x_2 )

for each i,j

X1,i,j+1

X2,ij <=   X1,i-1,j               X1,i+1,j

X1,i,j-1

for each i,j

X1,ij <= X2,ij

end subroutine solve_exp

End time loop

SOLVE_EXP

!WRF:MEDIATION_LAYER:SOLVER

SUBROUTINE solve_exp ( grid ,               &
!
#include "exp_dummy_args.inc"
!

)

CALL set_tiles ( grid , . . . )

#ifdef DM_PARALLEL
# include "HALO_EXP_A.inc"
#endif

!$OMP PARALLEL DO   &
!$OMP PRIVATE ( ij )
DO ij = 1 , grid%num_tiles

CALL comp_1_into_2 ( x_1, x_2,                            &
ids, ide, jds, jde, kds, kde,        &
ims, ime, jms, jme, kms, kme,        &
grid%i_start(ij), grid%i_end(ij),    &
grid%j_start(ij), grid%j_end(ij),    &
k_start, k_end                    )

END DO

!$OMP PARALLEL DO   &
!$OMP PRIVATE ( ij )
DO ij = 1 , grid%num_tiles

CALL copy_2_into_1  ( x_2, x_1,                         &
ids, ide, jds, jde, kds, kde,        &
ims, ime, jms, jme, kms, kme,        &
grid%i_start(ij), grid%i_end(ij),    &
grid%j_start(ij), grid%j_end(ij),    &
k_start, k_end                    )

END DO

SOLVE_EXP
!WRF:MEDIATION_LAYER:SOLVER

SUBROUTINE solve_exp ( grid ,               &
!
#include "exp_dummy_args.inc"
!

)

CALL set_tiles ( grid , . . . )

#ifdef DM_PARALLEL
# include "HALO_EXP_A.inc"
#endif

!$OMP PARALLEL DO   &
!$OMP PRIVATE ( ij )
DO ij = 1 , grid%num_tiles

CALL comp_1_into_2 ( x_1, x_2,                            &
ids, ide, jds, jde, kds, kde,        &
ims, ime, jms, jme, kms, kme,        &
grid%i_start(ij), grid%i_end(ij),    &
grid%j_start(ij), grid%j_end(ij),    &
k_start, k_end                    )

END DO

!$OMP PARALLEL DO   &
!$OMP PRIVATE ( ij )
DO ij = 1 , grid%num_tiles

CALL copy_2_into_1  ( x_2, x_1,                         &
ids, ide, jds, jde, kds, kde,        &
ims, ime, jms, jme, kms, kme,        &
grid%i_start(ij), grid%i_end(ij),    &
grid%j_start(ij), grid%j_end(ij),    &
k_start, k_end                    )

END DO

SOLVE_EXP
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!WRF:MEDIATION_LAYER:SOLVER

SUBROUTINE solve_exp ( grid ,               &
!
#include "exp_dummy_args.inc"
!

)

CALL set_tiles ( grid , . . . )

#ifdef DM_PARALLEL
# include "HALO_EXP_A.inc"
#endif

!$OMP PARALLEL DO   &
!$OMP PRIVATE ( ij )
DO ij = 1 , grid%num_tiles

CALL comp_1_into_2 ( x_1, x_2,                            &
ids, ide, jds, jde, kds, kde,        &
ims, ime, jms, jme, kms, kme,        &
grid%i_start(ij), grid%i_end(ij),    &
grid%j_start(ij), grid%j_end(ij),    &
k_start, k_end                    )

END DO

!$OMP PARALLEL DO   &
!$OMP PRIVATE ( ij )
DO ij = 1 , grid%num_tiles

CALL copy_2_into_1  ( x_2, x_1,                         &
ids, ide, jds, jde, kds, kde,        &
ims, ime, jms, jme, kms, kme,        &
grid%i_start(ij), grid%i_end(ij),    &
grid%j_start(ij), grid%j_end(ij),    &
k_start, k_end                    )

END DO

SOLVE_EXP
!WRF:MEDIATION_LAYER:SOLVER

SUBROUTINE solve_exp ( grid ,               &
!
#include "exp_dummy_args.inc"
!

)

CALL set_tiles ( grid , . . . )

#ifdef DM_PARALLEL
# include "HALO_EXP_A.inc"
#endif

!$OMP PARALLEL DO   &
!$OMP PRIVATE ( ij )
DO ij = 1 , grid%num_tiles

CALL comp_1_into_2 ( x_1, x_2,                            &
ids, ide, jds, jde, kds, kde,        &
ims, ime, jms, jme, kms, kme,        &
grid%i_start(ij), grid%i_end(ij),    &
grid%j_start(ij), grid%j_end(ij),    &
k_start, k_end                    )

END DO

!$OMP PARALLEL DO   &
!$OMP PRIVATE ( ij )
DO ij = 1 , grid%num_tiles

CALL copy_2_into_1  ( x_2, x_1,                         &
ids, ide, jds, jde, kds, kde,        &
ims, ime, jms, jme, kms, kme,        &
grid%i_start(ij), grid%i_end(ij),    &
grid%j_start(ij), grid%j_end(ij),    &
k_start, k_end                    )

END DO

SOLVE_EXP

Example: Adding a new core
• Steps

– Develop new or convert existing code:
• Mediation layer routine: solve
• Model layer subroutines called by solver

– Add to WRF 
• Add code to source tree
• Incorporate into build mechanism
• Registry entries: data, solver options, comms
• Some additional splicing

– Single processor testing
– Analyze data-dependencies, define and implement 

communication for parallelism
– Multi-processor testing
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!WRF:MODEL_LAYER:DYNAMICS
!

MODULE module_exp

USE module_state_description

CONTAINS

!-------------------------------------------------------------------

SUBROUTINE comp_1_into_2   ( x1, x2,                        &
ids, ide, jds, jde, kds, kde,    &
ims, ime, jms, jme, kms, kme,    &
its, ite, jts, jte, kts, kte    )

DO j = jts, jte
IF ( j > jds .AND. j < jde-1 ) THEN

DO k = kts, kte
DO i = its, ite

IF ( i > ids .AND. i < ide-1 ) THEN
x2(i,k,j) = 0.25*(x1(i+1,k,j)+x1(i-1,k,j)+  &

x1(i,k,j+1)+x1(i,k,j-1))
ENDIF

ENDDO
ENDDO

ENDIF
ENDDO

END SUBROUTINE comp_1_into_2

SUBROUTINE copy_2_into_1  ( x2, x1,                        &
ids, ide, jds, jde, kds, kde,    &
ims, ime, jms, jme, kms, kme,    &
its, ite, jts, jte, kts, kte    )

. . .

module_exp
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Example: Adding a new core
• Steps

– Develop new or convert existing code:
• Mediation layer routine: solve
• Model layer subroutines called by solver

– Add to WRF 
• Add code to source tree
• Incorporate into build mechanism
• Registry entries: data, solver options, comms
• Some additional splicing

– Single processor testing
– Analyze data-dependencies, define and implement 

communication for parallelism
– Multi-processor testing

WRFV1/

dyn_em/

share/physics/

dyn_eh/

Registry Makefile clean

. . .

WRFV1/

dyn_em/

share/physics/

dyn_eh/

Registry Makefile clean

. . .dyn_em/

share/physics/

dyn_eh/

Registry Makefile clean

. . .

Makefile
solve_exp.F

module_exp.F

Makefile
solve_exp.F

module_exp.F

dyn_exp/

Example: Adding a new core
• Steps

– Develop new or convert existing code:
• Mediation layer routine: solve
• Model layer subroutines called by solver

– Add to WRF 
• Add code to source tree
• Incorporate into build mechanism
• Registry entries: data, solver options, comms
• Some additional splicing

– Single processor testing
– Analyze data-dependencies, define and implement 

communication for parallelism
– Multi-processor testing

• Create dyn_exp/Makefile
• Edit top-level WRFV1/Makefile
• Additions to clean script

Example: Adding a new core
• Steps

– Develop new or convert existing code:
• Mediation layer routine: solve
• Model layer subroutines called by solver

– Add to WRF 
• Add code to source tree
• Incorporate into build mechanism
• Registry entries: data, solver options, comms
• Some additional splicing

– Single processor testing
– Analyze data-dependencies, define and implement 

communication for parallelism
– Multi-processor testing

Additions to Registry/Registry file:

# define the state variable for new core

state real x ikj dyn_exp 2 - ih "TOYVAR"

# value of namelist variable dyn_opt for this core

package   dyn_exp dyn_opt==4 

# four-point halo-exchange on first time level of x

halo      HALO_EXP_A dyn_exp    4:x_1

Example: Adding a new core
• Steps

– Develop new or convert existing code:
• Mediation layer routine: solve
• Model layer subroutines called by solver

– Add to WRF 
• Add code to source tree
• Incorporate into build mechanism
• Registry entries: data, solver options, comms
• Some additional splicing

– Single processor testing
– Analyze data-dependencies, define and implement 

communication for parallelism
– Multi-processor testing
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Example: Adding a new core
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– Develop new or convert existing code:
• Mediation layer routine: solve
• Model layer subroutines called by solver

– Add to WRF 
• Add code to source tree
• Incorporate into build mechanism
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four processor run

Example: Adding a new core
• Steps

– Develop new or convert existing code:
• Mediation layer routine: solve
• Model layer subroutines called by solver

– Add to WRF 
• Add code to source tree
• Incorporate into build mechanism
• Registry entries: data, solver options, comms
• Some additional splicing

– Single processor testing
– Analyze data-dependencies, define and implement 

communication for parallelism
– Multi-processor testing

!WRF:MEDIATION_LAYER:SOLVER

SUBROUTINE solve_exp ( grid ,               &
!
#include "exp_dummy_args.inc"
!

)

CALL set_tiles ( grid , . . . )

#ifdef DM_PARALLEL
# include "HALO_EXP_A.inc"
#endif

!$OMP PARALLEL DO   &
!$OMP PRIVATE ( ij )
DO ij = 1 , grid%num_tiles

CALL comp_1_into_2 ( x_1, x_2,                            &
ids, ide, jds, jde, kds, kde,        &
ims, ime, jms, jme, kms, kme,        &
grid%i_start(ij), grid%i_end(ij),    &
grid%j_start(ij), grid%j_end(ij),    &
k_start, k_end                    )

END DO

!$OMP PARALLEL DO   &
!$OMP PRIVATE ( ij )
DO ij = 1 , grid%num_tiles

CALL copy_2_into_1  ( x_2, x_1,                         &
ids, ide, jds, jde, kds, kde,        &
ims, ime, jms, jme, kms, kme,        &
grid%i_start(ij), grid%i_end(ij),    &
grid%j_start(ij), grid%j_end(ij),    &
k_start, k_end                    )

END DO

Example: Adding a new core
• Steps

– Develop new or convert existing code:
• Mediation layer routine: solve
• Model layer subroutines called by solver

– Add to WRF 
• Add code to source tree
• Incorporate into build mechanism
• Registry entries: data, solver options, comms
• Some additional splicing

– Single processor testing
– Analyze data-dependencies, define and implement 

communication for parallelism
– Multi-processor testing
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