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Introduction

• Intended audience for this tutorial session: 
– Primarily scientific users and others who wish to:

• Work with the code
• Extend/modify the code to enable their work/research
• Address problems as they arise
• Adapt the code to take advantage of local computing resources

– Also: developers, computer scientists and software engineers, computer vendors
• Developing new functionality (e.g. moving nests, coupling)
• Integration with frameworks and other community infrastructure
• Porting and benchmarking new platforms



Resources

• WRF project home page
– http://www.wrf-model.org

• WRF users page (linked from above)
– http://www.mmm.ucar.edu/wrf/users

• On line documentation (also from above)
– http://www.mmm.ucar.edu/wrf/WG2/software_v2

• WRF users help desk
– wrfhelp@ucar.edu



Introduction

• Characteristics of WRF Software
– Developed from scratch beginning around 1998
– Requirements emphasize flexibility over a range of platforms, applications, users; performance
– WRF develops rapidly. First released Dec 2000; Current Release WRF v2.1
– Current source code…



Introduction

WRF SOURCE CODE
• 250-thousand lines total

• 50-thousand lines of infrastructure leverages:
– 100-thousand lines of contributed scientist-

developed code; amount is increasing
– At least 40-thousand lines of “external” 

software

• 60-thousand lines are automatically 
generated at compile time

2 dycores
25 physics

options 

F90
with only 
f77 idioms 

F90 + C 

C and some 
Fortran 

Fortran



Introduction

• Supported Platforms (alphabetical)

Vendor Hardware OS Compiler
Apple (*) G5 MacOS IBM
Cray Inc. X1 UNICOS Cray

Alpha Tru64 Compaq
Linux Intel
HPUX HP

IBM SP Power-3/4 AIX IBM
Itanium-2 Linux Intel

MIPS IRIX SGI
Sun (*) UltraSPARC Solaris Sun

Xeon and Athlon
Itanium-2 and Opteron

Linux Intel and Portland Group

HP/Compaq

SGI

various

Itanium-2

(*) dm-parallel not supported yet



WSF Enhancements for V2.1 (Highlights)

– Inclusion of NMM-Core in source distribution (with Tom Black, S. Gopal, NCEP)
– WRF DA-VAR and Model version synchronization
– GRIB 1 (Todd Hutchinson, WSI)
– Generalized physics interface (with Sue Chen et al. NRL-MRY)
– Nest init option similar to MM5’s IOVERW=2 (for AFWA)
– Comprehensive regression testing for quality control
– Performance and Efficiency
– ESMF Integration
– Nesting and Moving Nests



Performance (v2.0.x)

• New v2.1 based standardized benchmark cases will be released in coming weeks, with release 

of WRF v2.1



Improved Memory Utilization in v2.1

• Reduced temporary data for nesting

• Removed 2nd time-level for tracer arrays

• Smaller, lighter-weight comm package RSL 

LITE

2 domain configuration
425 x 300 x 35 each

Mbytes / process 

Number of processes



ESMF Integration

• WRF as an ESMF component model
– WRF v2.1 can operate as an ESMF component
– Full coupling functionality through ESMF in-progress (initial target: HyCOM)

• Also:
– ESMF Time Management Utility
– ESMF Error Logging Utility
– WRF I/O has been adopted in ESMF
– Participating in CF metadata convention standardization

• ESMF can be used with v2.1 (but is not required)



Five-day Hurricane Ivan 12km/4km Moving Nest

Run time: 8.6 hours on 64p IBM Power 4

Two-way interacting nest with high-resolution terrain ingest at leading edge
400 x 301 x 35, dt = 72 sec                  331 x 352 x 35, dt = 24 sec



Some terms

• WRF Architecture – scheme of software layers and interface definitions

• WRF Framework – the software infrastructure, also "driver layer" in the 

WRF architecture

• WRF Model Layer – the computational routines that are specifically WRF

• WRF Model – a realization of the WRF architecture comprising the WRF 

model layer with framework

• WRF – a set of WRF architecture-compliant applications, of which the WRF 

Model is one



Computing Overview



Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms



Hardware: The Computer

• The ‘N’ in NWP

• Components
– Processor

• A program counter
• Arithmetic unit(s)
• Some scratch space (registers)
• Circuitry to store/retrieve from memory device

– Memory
– Secondary storage
– Peripherals

• The implementation has been continually refined, but the basic idea hasn’t 

changed much



Hardware has not changed much…

~50,000 flop/s
48hr 12km WRF CONUS in 600 years

~5,000,000,000 flop/s
48 12km WRF CONUS in 52 Hours

6-way superscalar

36-bit floating point precision

~144 Kbytes

A computer in 1960

IBM 7090

4-way superscalar

64-bit floating point precision

1.4 Mbytes (shown)

> 500 Mbytes (not shown)

A computer in 2002

IBM p690



…how we use it has

• Fundamentally, processors haven’t changed much since 1960

• Quantitatively, they haven’t improved nearly enough
– 100,000x increase in peak speed
– > 4,000x increase in memory size
– These are too slow and too small for even a moderately large NWP run today

• We make up the difference with parallelism
– Ganging multiple processors together to achieve 1011-12 flop/second
– Aggregate available memories of 1011-12 bytes

~100,000,000,000 flop/s
48 12km WRF CONUS in under 15 minutes



Parallel computing terms -- hardware

• Processor: 
– A device that reads and executes instructions in sequence to produce perform operations on data that it gets 

from a memory device producing results that are stored back onto the memory device

• Node: One memory device connected to one or more processors. 
– Multiple processors in a node are said to share-memory and this is “shared memory parallelism”
– They can work together because they can see each other’s memory
– The latency and bandwidth to memory affect performance

• Cluster: Multiple nodes connected by a network
– The processors attached to the memory in one node can not see the memory for processors on another node
– For processors on different nodes to work together they must send messages between the nodes. This is  

“distributed memory parallelism”

• Network: 
– Devices and wires for sending messages between nodes
– Bandwidth – a measure of the number of bytes that can be moved in a second
– Latency – the amount of time it takes before the first byte of a message arrives at its destination



Parallel Computing Terms -- Software

• Process: 
– A set of instructions to be executed on a processor
– Enough state information to allow process execution to stop on a processor and be 

picked up again later, possibly by another processor

• Processes may be lightweight or heavyweight
– Lightweight processes, e.g. shared-memory threads, store very little state; just enough to 

stop and then start the process
– Heavyweight processes, e.g. UNIX processes, store a lot more (basically the memory 

image of the job)

“The only thing one does directly with hardware is pay for it.”



Parallel Computing Terms -- Software

• Every job has at least one heavy-weight process. 
– A job with more than one process is a distributed-memory parallel job 
– Even on the same node, heavyweight processes do not share memory†

• Within a heavyweight process you may have some number of lightweight processes, 

called threads.
– Threads are shared-memory parallel; only threads in the same memory space can work together. 
– A thread never exists by itself; it is always inside a heavy-weight process.

• Processes (heavy-weight) are the vehicles for distributed memory parallelism

• Threads are the vehicles for shared-memory parallelism



Jobs, Processes, and Hardware

• MPI is used to start up and pass messages between multiple heavyweight processes
– The mpirun command controls the number of processes and how they are mapped onto nodes of 

the parallel machine
– Calls to MPI routines send and receive messages and control other interactions between 

processes
– http://www.mcs.anl.gov/mpi

• OpenMP is used to start up and control threads within each process 
– Directives specify which parts of the program are multi-threaded
– OpenMP environment variables determine the number of threads in each process
– http://www.openmp.org

• The number of processes (number of MPI processes times the number of threads in each 
process) usually corresponds to the number of processors



Examples

• If the machine consists of 4 nodes, each with 4 processors, how many different ways can 
you run a job to use all 16?

– 4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 wrf.exe

– 8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 wrf.exe

– 16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
mpirun –np 16 wrf.exe



Examples (cont.)

• Note, since there are 4 nodes, we can never have fewer than 4 MPI processes 

because nodes do not share memory

• What happens on this same machine for the following?

setenv OMP_NUM_THREADS 4
mpirun –np 32



Other information about Parallel Processes

• Memory limits for heavy-weight processes
– A process doesn’t get all the memory and running out is ugly

• Often appears as a segmentation violation in some otherwise correct-looking part of the program
• Soft limits on per-process memory controlled by the limit and unlimit commands
• Hard limits are set in the operating system; need administrator to change

– Virtual memory
• Even when you’re not running out of memory, you may be running out of physical memory
• Program will still run but it will be many times slower

– Make sure that mpirun is distributing processes evenly over the nodes in your partition. You may need to use 
the –machinefile or other options

– Some versions of MPI have buffer size limits

• Memory limits for light-weight processes
– Thread-private stack size is usually limited and running out is uglier
– May be enlarged; for example, the MPSTKZ environment variable with the Portland Group compilers



Application:  WRF

• WRF uses domain decomposition to divide total amount of work over parallel 

processes 

• Since the process model has two levels, the decomposition has two levels:
– The domain is first broken up into rectangular pieces that are assigned to heavy-weight 

processes. These pieces are called patches
– The patches may be further subdivided into smaller rectangular pieces that are called tiles, and 

these are assigned to threads within the process.



Model domains are decomposed for parallelism on two-levels
Patch: section of model domain  allocated to a distributed memory  node
Tile: section of a patch allocated to a shared-memory processor within a node; this is 
also the scope of a model layer subroutine.
Distributed memory parallelism is over patches; shared memory parallelism is over 
tiles within patches

• Single version of code for efficient execution on:
– Distributed-memory
– Shared-memory 
– Clusters of SMPs
– Vector and microprocessors

Parallelism in WRF: Multi-level Decomposition

Logical 
domain

1 Patch, divided 
into multiple tiles

Inter-processor 
communication
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(module_diffusion.F )

SUBROUTINE horizontal_diffusion_s (tendency, rr, var, . . .
. . .

DO j = jts,jte
DO k = kts,ktf
DO i = its,ite

mrdx=msft(i,j)*rdx
mrdy=msft(i,j)*rdy
tendency(i,k,j)=tendency(i,k,j)- &

(mrdx*0.5*((rr(i+1,k,j)+rr(i,k,j))*H1(i+1,k,j)- &
(rr(i-1,k,j)+rr(i,k,j))*H1(i  ,k,j))+     &

mrdy*0.5*((rr(i,k,j+1)+rr(i,k,j))*H2(i,k,j+1)- &
(rr(i,k,j-1)+rr(i,k,j))*H2(i,k,j  ))- &

msft(i,j)*(H1avg(i,k+1,j)-H1avg(i,k,j)+             &
H2avg(i,k+1,j)-H2avg(i,k,j)              &

)/dzetaw(k)                     &
)

ENDDO
ENDDO
ENDDO

. . .

Example code fragment that requires communication 
between patches

Note the tell-tale +1 and –1 expressions in indices for rr, H1,
and H2 arrays on right-hand side of assignment. These are 
horizontal data dependencies because the indexed operands 
may lie in the patch of a neighboring processor. That 
neighbor’s updates to that element of the array won’t be 
seen on this processor. We have to communicate. 



• Halo updates

Distributed Memory MPI 
Communications

memory on one processor memory on neighboring processor

*
+ *
*

* *



• Halo updates

• Periodic boundary updates

Distributed Memory (MPI) 
Communications



• Halo updates

• Periodic boundary updates

• Parallel transposes

all z on
patch

all x on
patch

all y on
patch

Distributed Memory (MPI) 
Communications



• Halo updates

• Periodic boundary updates

• Parallel transposes

• Nesting scatters/gathers

Distributed Memory (MPI) 
Communications



Review

APPLICATION
(WRF)

HARDWARE
(Processors, Memories, Wires)

SYSTEM
(UNIX, MPI, OpenMP)

ProcessorscontainNodescontainsCluster

ThreadscontainProcessescontainsJob

TilescontainPatchescontainsDomain

Distributed 
Memory
Parallel

Shared
Memory
Parallel



WRF Software Overview



WRF Software

• Architecture

• Directory structure

• Module Conventions and USE Association

• Model Layer Interface



WRF Software Architecture

• Hierarchical software architecture
– Insulate scientists' code from parallelism and other architecture/implementation-specific details
– Well-defined interfaces between layers, and external packages for communications, I/O, and model coupling facilitates 

code reuse and exploiting of community infrastructure, e.g. ESMF.

Registry



WRF Software Architecture

• Driver Layer
– Allocates, stores, decomposes model domains, represented abstractly as single data objects
– Contains top-level time loop and algorithms for integration over nest hierarchy
– Contains the calls to I/O, nest forcing and feedback routines supplied by the Mediation Layer
– Provides top-level, non package-specific access to communications, I/O, etc.
– Provides some utilities, for example module_wrf_error, which is used for diagnostic prints and error stops

Registry



WRF Software Architecture

• Mediation Layer
– Provides to the Driver layer

• Solve solve routine, which takes a domain object and advances it one time step
• I/O routines that Driver calls when it is time to do some input or output operation on a domain
• Nest forcing and feedback routines
• The Mediation Layer and not the Driver knows the specifics of what needs to be done

– The sequence of calls to Model Layer routines for doing a time-step is known in Solve routine
– Responsible for dereferencing driver layer data objects so that individual fields can be passed to Model layer Subroutines
– Calls to message-passing are contained here as part of solve routine

Registry



WRF Software Architecture

• Model Layer
– Contains the information about the model itself, with machine architecture and implementation aspects abstracted out and moved into 

layers above
– Contains the actual WRF model routines that are written to perform some computation over an arbitrarily sized/shaped subdomain
– All state data objects are simple types, passed in through argument list
– Model Layer routines don’t know anything about communication or I/O; and they are designed to be executed safely on one thread – they 

never contain a PRINT, WRITE, or STOP statement
– These are written to conform to the Model Layer Subroutine Interface (more later) which makes them “tile-callable”

Registry



WRF Software Architecture

• Registry: an “Active” data dictionary
– Tabular listing of model state and attributes 
– Large sections of interface code generated automatically
– Scientists manipulate model state simply by modifying Registry, without further knowledge of code mechanics 

Registry



Call Structure superimposed on Architecture

wrf  (main/wrf.F)wrf  (main/wrf.F)

integrate (frame/module_integrate.F)integrate (frame/module_integrate.F)

KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
WSM5  (phys/module_mp_wsm5.FWSM5  (phys/module_mp_wsm5.F

advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)

microphysics_driver (phys/module_microphysics_driver.F)microphysics_driver (phys/module_microphysics_driver.F)

solve_em (dyn_em/solve_em.F)solve_em (dyn_em/solve_em.F)

solve_interface (share/solve_interface.F)solve_interface (share/solve_interface.F)



WRF Model Directory Structure

page 5, 
WRF D&I Document

driver
mediation

model



Module Conventions and USE Association

• Modules are named module_something

• Name of file containing module is module_something.F

• If a module includes an initialization routine, that 

routine should be named init_module_something()

• Typically: 
– Driver and model layers are made up of modules,
– Mediation layer is bare subroutines, except for physics 

drivers in phys directory
– Gives benefit of modules while avoiding cycles in the 

use association graph

MODULE module_this
MODULE module_that
…

USE module_this
USE module_that
USE module_whatcha
USE module_macallit
…

MODULE module_whatcha
MODULE module_macallit
USE module_this
USE module_that
…

driver

mediation

model



WRF Model Layer Interface

• Mediation layer / Model Layer Interface

• All state arrays passed through argument list as simple (not 
derived) data types

• Domain, memory, and run dimensions passed unambiguously in 
three physical dimensions

• Model layer routines are called from mediation layer in loops over 
tiles, which are multi-threaded

• Restrictions on model layer subroutines
– No I/O, communication, no stops or aborts (use wrf_error_fatal in 

frame/module_wrf_error.F)
– No common/module storage of decomposed data (exception allowed for set-

once/read-only tables)
– Spatial scope of a Model Layer call is one “tile”
– Temporal scope of a call is limited by coherency

OMP
Config
Inquiry I/O API

Config
Module

WRF Tile-callable
Subroutines

Solve
DM comm

Th
re

ad
s

Data formats,
Parallel I/O

M
es

sa
ge

Pa
ss

in
g

Driver



WRF Model Layer Interface

• Mediation layer / Model Layer Interface

• Model layer routines are called from mediation layer in loops over 
tiles, which are multi-threaded

• All state arrays passed through argument list as simple data types

• Domain, memory, and run dimensions passed unambiguously in 
three physical dimensions

• Restrictions on model layer subroutines
– No I/O, communication, no stops or aborts (use wrf_error_fatal in 

frame/module_wrf_error.F)
– No common/module storage of decomposed data (exception allowed for set-

once/read-only tables)
– Spatial scope of a Model Layer call is one “tile”
– Temporal scope of a call is limited by coherency

SUBROUTINE solve_xxx ( 
. . .

!$OMP DO PARALLEL
DO ij = 1, numtiles

its = i_start(ij) ; ite = i_end(ij)
jts = j_start(ij) ; jte = j_end(ij)
CALL model_subroutine( arg1, arg2, . . .

ids , ide , jds , jde , kds , kde ,
ims , ime , jms , jme , kms , kme ,
its , ite , jts , jte , kts , kte )

END DO
. . .

END SUBROUTINE

SUBROUTINE solve_xxx ( 
. . .

!$OMP DO PARALLEL
DO ij = 1, numtiles

its = i_start(ij) ; ite = i_end(ij)
jts = j_start(ij) ; jte = j_end(ij)
CALL model_subroutine( arg1, arg2, . . .

ids , ide , jds , jde , kds , kde ,
ims , ime , jms , jme , kms , kme ,
its , ite , jts , jte , kts , kte )

END DO
. . .

END SUBROUTINE

template for model layer subroutine       

SUBROUTINE model_subroutine ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte  )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte
DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)
loc(i,k,j) = arg1(i,k,j) + …

END DO
END DO

END DO

template for model layer subroutine       

SUBROUTINE model_subroutine ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte  )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte
DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)
loc(i,k,j) = arg1(i,k,j) + …

END DO
END DO

END DO



template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte  )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte  )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.



template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte  )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte  )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.

• Memory dimensions
• Used to dimension dummy 

arguments
• Do not use for local arrays



template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte  )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte  )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.

• Memory dimensions
• Used to dimension dummy 

arguments
• Do not use for local arrays

• Tile dimensions
• Local loop ranges
• Local array dimensions



Data Structures



Data Structures

• Data Taxonomy

• How data appears at different levels of architecture

• Grid representation in WRF arrays

• Lateral Boundary Condition arrays

• Four dimensional tracer arrays



Data Structures

• WRF Data Taxonomy
– State data
– Intermediate data type 1 (I1)
– Intermediate data type 2 (I2)
– Heap storage (COMMON or Module data)



State Data

• Persist for the duration of a domain

• Represented as fields in domain data structure

• Arrays are represented as dynamically allocated pointer arrays in the domain data 

structure

• Declared in Registry using state keyword

• Always memory dimensioned; always thread shared

• Only state arrays can be subject to I/O and Interprocessor communication



Data Structures

• What you see depends on where you are
– Driver layer

• All data for a domain is a single object, a domain derived data type (DDT)
• The domain DDTs are dynamically allocated/deallocated
• Linked together in a tree to represent nest hierarchy; root pointer is head_grid, defined in 

frame/module_domain.F
• Supports recursive depth-first traversal algorithm (frame/module_integrate.F)

– Model layer
• All data objects are scalars and arrays of simple types only
• Virtually all passed in through subroutine argument lists

– Mediation layer
• One task of mediation layer is to dereference fields from DDTs
• Therefore, sees domain data in both forms, as DDT and as individual fields

– The name of a data type and how it is referenced may differ depending on the level of the 
architecture

1

2
4

3

head_grid 1

4

32



Data Structures

• What you see depends on where you are
– Driver layer

• All data for a domain is a single object, a domain derived data type (DDT)
• The domain DDTs are dynamically allocated/deallocated
• Linked together in a tree to represent nest hierarchy; root pointer is head_grid, defined in 

frame/module_domain.F
• Supports recursive depth-first traversal algorithm (frame/module_integrate.F)

– Model layer
• All data objects are scalars and arrays of simple types only
• Virtually all passed in through subroutine argument lists

– Mediation layer
• One task of mediation layer is to dereference fields from DDTs
• Therefore, sees domain data in both forms, as DDT and as individual fields

– The name of a data type and how it is referenced may differ depending on the level of the 
architecture

head_grid 1
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RECURSIVE SUBROUTINE integrate ( domain , stoptime )

WHILE ( domain.time <= stoptime )

CALL solve ( domain )   ! Advances domain.time

FOR EACH CHILD OF DOMAIN

CALL integrate ( domain.child , domain.time ) 

RECURSIVE SUBROUTINE integrate ( domain , stoptime )

WHILE ( domain.time <= stoptime )

CALL solve ( domain )   ! Advances domain.time

FOR EACH CHILD OF DOMAIN

CALL integrate ( domain.child , domain.time ) 



Data Structures

What you see depends on where you are  (Cont.)
– Model layer

• All data objects are scalars and arrays of simple types only
• Virtually all passed in through subroutine argument lists

– Mediation layer
• One task of mediation layer is to dereference fields from DDTs
• Therefore, sees domain data in both forms, as DDT and as individual fields

– The name of a data type and how it is referenced may differ depending on the level of the 
architecture

• What you see depends on where you are  (Cont.)



WRF State Variables

• May be 0d, 1d, 2d, 3d, or 4d

• What they look like in the code:

[grid%[core_ ]] var [_tl]

when seen in the driver layer (above solve_interface.F)

core-association if given in Registry (use field starts with "dyn_")

name of variable (0- through 3-D); name of 4D array (4D only)

integer time level number (if multi-time level variable)



Example

The second time level of the u variable in the Eulerian Mass (EM) core can be 
accessed in the driver layer as:

grid%em_u_2

in the solve_em routine and below it is simply:

u_2



Data Structures

• WRF Data Taxonomy
– State data
– Intermediate data type 1 (I1)
– Intermediate data type 2 (I2)
– Heap storage (COMMON or Module data)



I1 Data

• Data that persists for the duration of 1 time step on a domain and then released

• Declared in Registry using i1 keyword

• Typically automatic storage (program stack) in solve routine

• Typical usage is for tendency arrays in solver

• Always memory dimensioned and thread shared

• Typically not communicated or I/O



I2 Data

• I2 data are local arrays that exist only in model-layer subroutines and exist only for 

the duration of the call to the subroutine

• I2 data is not declared in Registry, never communicated and never input or output

• I2 data is tile dimensioned and thread local



Heap Storage

• Data stored on the process heap is not thread- safe and is generally forbidden 

anywhere in WRF
– COMMON declarations
– Module data

• Exception:  If the data object is:
– Completely contained and private within a Model Layer module, and
– Set once and then read-only ever after, and
– No decomposed dimensions.



Grid Representation in Arrays 

• Increasing indices in WRF arrays run
– West to East   (X, or I-dimension)
– South to North (Y, or J-dimension)
– Bottom to Top (Z, or K-dimension)

• Storage order in WRF is IKJ but this is a WRF Model convention, not a restriction of 

the WRF Software Framework



Grid Representation in Arrays

• The extent of the logical or domain dimensions is always the "staggered" grid 

dimension. That is, from the point of view of a non-staggered dimension, there is 

always an extra cell on the end of the domain dimension.



Grid Indices Mapped onto Array Indices (C-grid example)

m1,3 m2,3 m3,3

m1,2 m2,2 m3,2

m1,1 m2,1 m3,1

u1,3 u2,3 u3,3 u4,3

u1,2 u2,2 u3,2 u4,2

u1,1 u2,1 u3,1 u4,1

v1,4 v2,4 v3,4

v1,3 v2,3 v3,3

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

jds = 1

jde = 4

ids = 1 ide = 4

Computation over
mass points runs
only ids..ide-1
and  jds..jde-1

Likewise, vertical
computation over 
unstaggered fields
run kds..kde-1



LBC Arrays

• Two additional arrays containing lateral boundary values and tendencies that are 

associated with a 2-, 3-, or 4-dimensional state arrays when the b modifier in the 

dimension field of the state array’s entry of the Registry

• These store boundary forcing data, either from a file (mother domain), or 

interpolated from a parent (nested domain)

• All four boundaries are stored in the array; last index is over:
P_XSB (western)
P_XEB (eastern)
P_YSB (southern)
P_YEB (northern)

These are defined in module_state_description.F



LBC Arrays
• LBC arrays are dimensioned as:

em_u_b(max(ide,jde),kde,spec_bdy_width,4)
em_u_bt(max(ide,jde),kde,spec_bdy_width,4)

• Globally dimensioned in first index as the maximum of x and y dimensions
• Second index is over vertical dimension
• Third index is the width of the boundary (defined in the namelist)
• Fourth index is which boundary



Four Dimensional Tracer Arrays

• State arrays, used to store arrays of 3D fields such as moisture tracers, chemical species, 

ensemble members, etc.

• First 3 indices are over grid dimensions; last dimension is the tracer index

• Each tracer is declared in the Registry as a separate state array but with f and optionally 

also t modifiers to the dimension field of the entry

• The field is then added to the 4D array whose name is given by the use field of the Registry 

entry

--- File: Registry ---
# Moist Scalars
#       type   sym   dims    use    tl stag  io    dname
state   real qv  ikjftb   moist  1    - irh  "QVAPOR"
state   real    qc ikjftb   moist  1    - irh  "QCLOUD"
state   real qr  ikjftb   moist  1    - irh  "QRAIN"
state   real qi  ikjftb   moist  1    - irh  "QICE"
state   real qs  ikjftb   moist  1    - irh  "QSNOW"
state   real qg  ikjftb   moist  1    - irh  "QGRAUP"



Four Dimensional Tracer Arrays

• Appears in Solver as:

moist ( ims:ime, kms:kme, jms:jme, num_moist )

moist_tend ( ims:ime, kms:kme, jms:jme, num_moist )

moist_b( max(ide,jde), kms:kme, spec_bdy_width, 4, num_moist )

moist_bt( max(ide,jde), kms:kme, spec_bdy_width, 4, num_moist )

• The extent of the last dimension of a tracer array is from PARAM_FIRST_SCALAR to num_tracername  
(e.g. moist)

– PARAM_FIRST_SCALAR is a defined constant (value: 2)
– Num_tracername is computed at run-time in set_scalar_indices_from_config (module_configure)

– Calculation is based on which of the tracer arrays are associated with which specific packages in the Registry and on which of 
those packages is active at run time (namelist.input)

--- File: Registry ---
# Moist Scalars
#       type   sym   dims    use    tl stag  io    dname
state   real qv  ikjftb moist  1    - irh  "QVAPOR"
state   real    qc ikjftb moist  1    - irh  "QCLOUD"
state   real qr  ikjftb moist  1    - irh  "QRAIN"
state   real qi  ikjftb moist  1    - irh  "QICE"
state   real qs  ikjftb moist  1    - irh  "QSNOW"
state   real qg  ikjftb moist  1    - irh  "QGRAUP"



Four Dimensional Tracer Arrays

• Each tracer has an index (e.g. P_QV) that allows fields to be referenced individually from the 4D array 

where needed:

--- File: dyn_em/solve_em.F ---

CALL microphysics_driver(                                     &
. . .

&        , QV_CURR=moist(ims,kms,jms,P_QV), F_QV=F_QV           &
&        , QC_CURR=moist(ims,kms,jms,P_QC), F_QC=F_QC           &
&        , QR_CURR=moist(ims,kms,jms,P_QR), F_QR=F_QR           &
&        , QI_CURR=moist(ims,kms,jms,P_QI), F_QI=F_QI           &
&        , QS_CURR=moist(ims,kms,jms,P_QS), F_QS=F_QS           &
&        , QG_CURR=moist(ims,kms,jms,P_QG), F_QG=F_QG           &
&        , QNI_CURR=scalar(ims,kms,jms,P_QNI), F_QNI=F_QNI         &

)



Four Dimensional Tracer Arrays

• Loops over tracer indices should always run from PARAM_FIRST_SCALAR to num_tracername 

• Code should always test that a tracer index greater than or equal to PARAM_FIRST_SCALAR before 

referencing the tracer (inactive tracers have an index of 1)

--- File: dyn_em/solve_em.F ---

moist_variable_loop: DO im = PARAM_FIRST_SCALAR, num_moist

CALL rk_update_scalar(                                &
. . .

moist(ims,kms,jms,im),            &
moist_tend(ims,kms,jms,im),       &
. . .

)

ENDDO moist_variable_loop



The Registry



WRF Registry
• "Active data-dictionary” for managing WRF data structures

– Database describing attributes of model state, intermediate, and configuration data
• Dimensionality, number of time levels, staggering
• Association with physics
• I/O classification (history, initial, restart, boundary)
• Communication points and patterns
• Configuration lists (e.g. namelists)

– Program for auto-generating sections of WRF from database: 
• 570 Registry entries ⇒ 30-thousand lines of automatically generated WRF code
• Allocation statements for state data, I1 data
• Argument lists for driver layer/mediation layer interfaces
• Interprocessor communications: Halo and periodic boundary updates, transposes
• Code for defining and managing run-time configuration information
• Code for forcing, feedback and interpolation of nest data

• Automates time consuming, repetitive, error-prone programming

• Insulates programmers and code from package dependencies

• Allow rapid development

• Documents the data

• Reference: Description of WRF Registry, http://www.mmm.ucar.edu/wrf/software_v2



Registry Mechanics

%compile wrf

WRF source
*/*.F

CPP 
____________

Fortran90

wrf.exe

Registry/Registry
registry program:

tools/registry

inc/*.incl



Registry Data Base

• Currently implemented as a text file: Registry/Registry.EM

• Types of entry:
– Dimspec – Describes dimensions that are used to define arrays in the model
– State – Describes state variables and arrays in the domain structure
– I1 – Describes local variables and arrays in solve
– Typedef – Describes derived types that are subtypes of the domain structure 
– Rconfig – Describes a configuration (e.g. namelist) variable or array
– Package – Describes attributes of a package (e.g. physics)
– Halo – Describes halo update interprocessor communications
– Period – Describes communications for periodic boundary updates
– Xpose – Describes communications for parallel matrix transposes



Dimspec entry
• Elements

– Entry: The keyword “dimspec”
– DimName:  The name of the dimension (single character)
– Order: The order of the dimension in the WRF framework (1, 2, 3, or ‘-‘)
– HowDefined: specification of how the range of the dimension is defined
– CoordAxis: which axis the dimension corresponds to, if any (X, Y, Z, or C)
– DatName: metadata name of dimension

• Example

#<Table>  <Dim>  <Order> <How defined>         <Coord-axis>  <DatName>
dimspec    i      1     standard_domain           x          west_east
dimspec    j      3     standard_domain           y          south_north
dimspec    k      2     standard_domain           z          bottom_top
dimspec    l      2     namelist=num_soil_layers  z          soil_layers

--- namelist.input ---
. . .

s_we                                = 1, 
e_we                                = 91,
s_sn                                = 1, 
e_sn                                = 82,
s_vert                              = 1, 
e_vert                              = 28,

. . .
num_soil_layers                     = 4, 



Registry State Entry: ordinary State 

• Elements
– Entry: The keyword “state”
– Type: The type of the state variable or array (real, double, integer, logical, character, or derived)
– Sym: The symbolic name of the variable or array
– Dims: A string denoting the dimensionality of the array or a hyphen (-)
– Use: A string denoting association with a solver or 4D scalar array, or a hyphen
– NumTLev: An integer indicating the number of time levels (for arrays) or hypen (for variables)
– Stagger: String indicating staggered dimensions of variable  (X, Y, Z, or hyphen)
– IO: String indicating whether and how the variable is subject to I/O and Nesting
– DName: Metadata name for the variable
– Units: Metadata units of the variable
– Descrip: Metadata description of the variable

• Example

#      Type Sym  Dims   Use     Tlev Stag IO    Dname      Descrip

state  real  u   ikjb dyn_em   2   X irhusdf   "U"    "X WIND COMPONENT“



Registry State Entry: ordinary State 

• This single entry results in 130 lines automatically added to 43 different 
locations of the WRF code:

– Declaration and dynamic allocation of arrays in TYPE(domain)
• Two 3D state arrays corresponding to the 2 time levels of U

u_1 ( ims:ime , kms:kme , jms:jme )
u_2 ( ims:ime , kms:kme , jms:jme )

• Two LBC arrays for boundary and boundary tendencies
u_b ( max(ide,jde), kms:kme, spec_bdy_width, 4 )
u_bt ( max(ide,jde), kms:kme, spec_bdy_width, 4 )

– Add u_1, u_2, u_b, and u_2 to solver argument list
– Nesting code to interpolate, force, feedback, and smooth u
– Addition of u to the input, restart, history, and LBC  I/O streams
– Interprocessor communications involving u_1 and u_2 (with additional registry entries)

#      Type Sym  Dims        Use     Tlev Stag IO    Dname      Descrip

state  real  u   ikjb dyn_em   2   X irhusdf "U"    "X WIND COMPONENT“



Registry State Entry: Four Dimensional Tracer Arrays

• Defines a 4D tracer variable named “moist” that contains up to 6 moisture species
– Also a 4d tendency array named moist_tend (because t modifier appears in dims)
– Also two 5d LBC arrays (because b modifier appears in dims)
– The moisture variables are part of history, input, and restart I/O

• Appears in Solver as:

moist ( ims:ime, kms:kme, jms:jme, num_moist )

moist_tend ( ims:ime, kms:kme, jms:jme, num_moist )

moist_b( max(ide,jde), kms:kme, spec_bdy_width, 4, num_moist )

moist_bt( max(ide,jde), kms:kme, spec_bdy_width, 4, num_moist )

--- File: Registry ---
# Moist Scalars
#       type   sym   dims    use    tl stag  io    dname
state   real qv  ikjftb   moist  1    - irh  "QVAPOR"
state   real    qc ikjftb   moist  1    - irh  "QCLOUD"
state   real qr  ikjftb   moist  1    - irh  "QRAIN"
state   real qi  ikjftb   moist  1    - irh  "QICE"
state   real qs  ikjftb   moist  1    - irh  "QSNOW"
state   real qg  ikjftb   moist  1    - irh  "QGRAUP"



Rconfig entry

• This defines namelist entries

• Elements
– Entry: the keyword “rconfig”
– Type: the type of the namelist variable (integer, real, logical, string )
– Sym: the name of the namelist variable or array
– How set: indicates how the variable is set: e.g. namelist or derived, and if namelist, which block of the namelist 

it is set in
– Nentries: specifies the dimensionality of the namelist variable or array. If 1 (one) it is a variable and applies to 

all domains; otherwise specify max_domains (which is an integer parameter defined in 
module_driver_constants.F).

– Default: the default value of the variable to be used if none is specified in the namelist; hyphen (-) for no 
default

• Example

#         Type       Sym              How set          Nentries Default
rconfig   integer spec_bdy_width  namelist,bdy_control    1          1



Rconfig entry

• Result of this Registry Entry:
– Define an namelist variable “spec_bdy_width” in the bdy_control 

section of namelist.input
– Type integer (others: real, logical, character)
– If this is first entry in that section, define “bdy_control” as a new 

section in the namelist.input file
– Specifies that bdy_control applies to all domains in the run 

• if Nentries is “max_domains” then the entry in the namelist.input file is a 
comma-separate list, each element of which applies to a separate domain

– Specify a default value of “1” if nothing is specified in the 
namelist.input file

– In the case of a multi-process run, generate code to read in the 
bdy_control section of the namelist.input file on one process and 
broadcast the value to all other processes

#         Type       Sym              How set          Nentries Default
rconfig   integer spec_bdy_width  namelist,bdy_control    1          1

--- File: namelist.input ---

&bdy_control
spec_bdy_width       = 5,
spec_zone            = 1,
relax_zone           = 4,

. . .
/



Comm entries: halo and period

• Elements
– Entry: keywords “halo” or “period”
– Commname: name of comm operation
– Description: defines the halo or period operation

• For halo: npts:f1,f2,...[;npts:f1,f2,...]*
• For period: width:f1,f2,...[;width:f1,f2,...]*

• Example

halo   HALO_EM_A  dyn_em 24:u_2,v_2,w_2,t_2;4:pp,pip



• Defines a halo exchange that, when invoked, will update:
u_2, v_2, w_2, and t_2 on a 24 point stencil:

pp and pip on an 8 point stencil:

• Maximum allowed stencil is 168 pt

• Invoke by including in a mediation layer routine such as solve_em.F:   

#include <HALO_EM_A.inc>

Comm entries: halo and period

halo   HALO_EM_A  dyn_em 24:u_2,v_2,w_2,t_2;8:pp,pip



I/O



WRF Model IO and Coupling

• WRF I/O and Coupling Streams
– Streams: the logical data paths into and out of WRF
– Available streams in WRF

• Input, plus 5 auxiliary input streams
• History, plus 5 auxiliary output streams
• Dedicated output stream for Cycling 3DVAR
• Boundary
• Restart

– Read from and written to in "variable-sets"
– Variable-sets are defined at compile-time in the Registry

• Formats
– The mechanism by which I/O is moved on a stream
– Implemented using external packages and interfaced to the model through the WRF I/O and Model Coupling API 

(§7, WRF Design and Implementation Document)
– Formats are specified at run-time in namelist.input

• Native binary (Format 1)
• NetCDF (Format 2)
• Parallel HDF5 (Format 4), thanks Kent Yang, NCSA
• Grib1 Output, thanks Todd Hutchinson, WSI
• Experimental Model-Coupling interfaces through MCT, MCEL (Format 7)



I/O Software Stack

• Application-level I/O (Built-in)
– Controlled through Registry and namelist

• Domain I/O
– Subroutines in framework that perform I/O on a stream for an entire domain (based on variable 

sets defined in Registry)

• Low-Level  I/O API
– Subroutines provided by external packages
– Operate on individual fields



Defining a variable-set for an I/O stream

• Fields are added to a variable-set on an I/O channel in the Registry

IO is a string that specifies if the variable is to be subject to initial, restart, history, or 
boundary I/O.  The string may consist of 'h' (subject to history I/O), 'i' (initial dataset), 
'r' (restart dataset), or 'b' (lateral boundary dataset).  The 'h', 'r', and 'i' specifiers may 
appear in any order or combination.  

The ‘h’ and ‘i’ specifiers may be followed by an optional integer string consisting of 
‘0’, ‘1’, ‘2’, ‘3’, ‘4’, and/or ‘5’.  Zero denotes that the variable is part of the principal 
input or history I/O stream. The characters ‘1’ through ‘5’ denote one of five 
auxiliary input or history I/O streams.

#      Type Sym  Dims   Use     Tlev Stag IO    Dname      Descrip

state  real  u   ikjb   dyn_em   2   X irh   "U"  "X WIND COMPONENT“



Defining Variable-set for an I/O stream

irh -- The state variable will be included in the input, restart, and history I/O streams

irh13 -- The state variable has been added to the first and third auxiliary history output 
streams; it has been removed from the principal history output stream, because zero is not 
among the integers in the integer string that follows the character 'h'

rh01 -- The state variable has been added to the first auxiliary history output stream; it is 
also retained in the principal history output

i205hr -- Now the state variable is included in the principal input stream as well as 
auxiliary inputs 2 and 5.  Note that the order of the integers is unimportant. The variable is 
also in the principal history output stream

ir12h -- No effect; there is only 1 restart data stream and ru added to it.



Assigning I/O Streams to Formats

• Run-time: specified in namelist.input file

io_form_history  = 2,

io_form_restart   = 2,

io_form_input  = 2,

io_form_boundary = 2,



Nest Initialization, Forcing, and Feedback

• Three built-in streams for exchange of data between nested domains
– DOWN: data from a coarse domain state array to a nested domain state array
– UP: data from a nested domain state array to a coarse-domain state array
– FORCE: data from a coarse domain array to boundary arrays for a nested domain array

• Format is specialized, parallel and built-in to WRF

• Like I/O streams, variable-sets on nest streams defined in Registry

• User-specified interpolation functions can be added

#      Type Sym  Dims   Use     Tlev Stag             IO

state  real  u   ikjb   dyn_em   2    X    i01rhusdf=(bdy_interp:dt)



Outline
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Example: Adding I/O to the Model



Example: Input periodic SSTs

• Problem: adapt WRF to input a time-varying lower boundary condition, e.g. SSTs, 

from an input file for a new surface scheme

• Given: Input file in WRF I/O format containing 12-hourly SST’s

• Modify WRF model to read these into a new state array and make available to WRF 

surface physics



Example: Input periodic SSTs

• Steps
– Add a new state variable and definition of a new surface layer package that will use the 

variable to the Registry
– Add to variable stream for an unused Auxiliary Input stream
– Adapt physics interface to pass new state variable to physics
– Setup namelist to input the file at desired interval



Example: Input periodic SSTs

• Add a new state variable to Registry/Registry.EM and put it in the variable set for 

input on AuxInput #3

• Also added to History and Restart

• Result:
– 2-D variable named nsst defined and available in solve_em
– Dimensions: ims:ime, jms:jme
– Input and output on the AuxInput #3 stream will include the variable under 

the name NEW_SST

#     type  symbol dims use tl stag  io     dname     description       units
state real  nsst   ij   misc  1  - i3rh  "NEW_SST" "Time Varying SST" "K“



Example: Input periodic SSTs

• Pass new state variable to surface physics

--- File: dyn_em/solve_em.F ---

CALL surface_driver(                                          &
. . .

! Optional
&        ,QG_CURR=moist(ims,kms,jms,P_QG), F_QG=F_QG                 &
&        ,NSST=nsst & ! new
&        ,CAPG=capg, EMISS=emiss, HOL=hol,MOL=mol                    &
&        ,RAINBL=rainbl                                              &
&        ,RAINNCV=rainncv,REGIME=regime,T2=t2,THC=thc                &
&        ,QSG=qsg,QVG=qvg,QCG=qcg,SOILT1=soilt1,TSNAV=tsnav          & ! ruc lsm
&        ,SMFR3D=smfr3d,KEEPFR3DFLAG=keepfr3dflag               & ! ruc lsm
&                                                              )



Example: Input periodic SSTs

• Add new variable nsst to Physics Driver in Mediation Layer

• By making this an “Optional” argument, we preserve the driver’s compatibility with other 
cores and with versions of WRF where this variable hasn’t been added.

--- File: phys/module_surface_driver.F ---

SUBROUTINE surface_driver(                                   &
. . .

!  Other optionals (more or less em specific)
&          ,nsst &
&          ,capg,emiss,hol,mol                                   &
&          ,rainncv,rainbl,regime,t2,thc                         &
&          ,qsg,qvg,qcg,soilt1,tsnav                             &
&          ,smfr3d,keepfr3dflag                            &

!  Other optionals (more or less nmm specific)
&          ,potevp,snopcx,soiltb,sr                              &

))
. . .

REAL, DIMENSION( ims:ime, jms:jme ), OPTIONAL, INTENT(INOUT):: nsst



Example: Input periodic SSTs

• Add call to Model-Layer subroutine for new physics package to Surface Driver

• Note the PRESENT test to make sure new optional variable nsst is available

--- File: phys/module_surface_driver ---

!$OMP PARALLEL DO   &
!$OMP PRIVATE ( ij, i, j, k )

DO ij = 1 , num_tiles
sfclay_select: SELECT CASE(sf_sfclay_physics)

CASE (SFCLAYSCHEME)
. . .

CASE (NEWSFCSCHEME)  ! <- This is defined by the Registry “package” entry

IF (PRESENT(nsst))  THEN
CALL NEWSFCCHEME(                                   &

nsst,                                                &
ids,ide, jds,jde, kds,kde,                           &
ims,ime, jms,jme, kms,kme,                           &
i_start(ij),i_end(ij), j_start(ij),j_end(ij), kts,kte    )

ELSE
CALL wrf_error_fatal('Missing argument for NEWSCHEME in surface driver')

ENDIF
. . .

END SELECT sfclay_select
ENDDO

!$OMP END PARALLEL DO



Example: Input periodic SSTs

• Add definition for new physics package NEWSCHEME as setting 4 for namelist 
variable sf_sfclay_physics

• This creates a defined constant NEWSFCSCHEME and represents selection of the 
new scheme when the namelist variable sf_sfclay_physics is set to ‘4’ in the 
namelist.input file

• Clean –a and recompile so code and Registry changes take effect

rconfig   integer sf_sfclay_physics namelist,physics   max_domains    0

package   sfclayscheme   sf_sfclay_physics==1        - -
package myjsfcscheme   sf_sfclay_physics==2        - -
package gfssfcscheme   sf_sfclay_physics==3        - -
package   newsfcscheme   sf_sfclay_physics==4 - -



Example: Input periodic SSTs

• Setup namelist to input SSTs from the file at desired interval

• Run code with sst_input file in run-directory

--- File: namelist.input ---

&time_control
. . .

auxinput3_inname      = "sst_input"
auxinput3_interval_mo = 0
auxinput3_interval_d  = 0
auxinput3_interval_h  = 12
auxinput3_interval_m  = 0
auxinput3_interval_s  = 0

. . .
/

. . .
&physics
sf_sfclay_physics  = 4, 4, 4

. . .
/



Example: Input periodic SSTs

• A few notes…
– The read times and the time-stamps in the input file must match exactly
– We haven’t done anything about what happens if the file runs out of time periods (the last time 

period read will be used over and over again, though you’ll see some error messages in the 
output if you set debug_level to be 1 or greater in namelist.input)

– We haven’t said anything about what generates sst_input



Example: Computing a Diagnostic



Example: Compute a Diagnostic

• Problem: Output global average and global maximum and lat/lon location of 

maximum for 10 meter wind speed in WRF

• Steps:
– Modify solve to compute wind-speed and then compute the local sum and maxima at the end of 

each time step
– Use reduction operations built-in to WRF software to compute the global qualitities
– Output these on one process (process zero, the “monitor” process)



Example: Compute a Diagnostic

• Compute local sum and local max and the local indices of the local maximum

--- File: dyn_em/solve_em.F  (near the end) ---

! Compute local maximum and sum of 10m wind-speed
sum_ws = 0.
max_ws = 0.
DO j = jps, jpe

DO i = ips, ipe
wind_vel = sqrt( u10(i,j)*u10(i,j) + v10(i,j)*v10(i,j) )
IF ( wind_vel .GT. max_ws ) THEN

max_ws = wind_vel
idex = i
jdex = j

ENDIF
sum_ws = sum_ws + wind_vel

ENDDO
ENDDO



Example: Compute a Diagnostic

• Compute global sum,  global max, and indices of the global max

! Compute global sum
sum_ws = wrf_dm_sum_real ( sum_ws )

! Compute global maximum and associated i,j point
CALL wrf_dm_maxval_real ( max_ws, idex, jdex )



Example: Compute a Diagnostic

• On the process that contains the maximum value, obtain the latitude and longitude of that 

point; on other processes set to an artificially low value.

• The use parallel reduction to store that result on every process

IF ( ips .LE. idex .AND. idex .LE. ipe .AND.  &
jps .LE. jdex .AND. jdex .LE. jpe ) THEN

glat = xlat(idex,jdex)
glon = xlong(idex,jdex)

ELSE
glat = -99999.
glon = -99999.

ENDIF

! Compute global maximum to find glat and glon
glat = wrf_dm_max_real ( glat )
glon = wrf_dm_max_real ( glon )

This had been xlat.
Fixed after tutorial 
presentation July 27, 2005.  J.M.



Example: Compute a Diagnostic

• Output the value on process zero, the “monitor”

• Output from process zero of a 4 process run

! Print out the result on the monitor process
IF ( wrf_dm_on_monitor() ) THEN

WRITE(outstring,*)'Avg. ',sum_ws/((ide-ids*1)*(jde-jds+1))
CALL wrf_message ( TRIM(outstring) )
WRITE(outstring,*)'Max. ',max_ws,' Lat. ',glat,' Lon. ',glon
CALL wrf_message ( TRIM(outstring) )

ENDIF

--- Output file: rsl.out.0000 ---
. . .

Avg.    5.159380
Max.    15.09370     Lat.    37.25022     Lon.   -67.44571

Timing for main: time 2000-01-24_12:03:00 on domain   1:    8.96500 elapsed seconds.
Avg.    5.166167
Max.    14.97418     Lat.    37.25022     Lon.   -67.44571

Timing for main: time 2000-01-24_12:06:00 on domain   1:    4.89460 elapsed seconds.
Avg.    5.205693
Max.    14.92687     Lat.    37.25022     Lon.   -67.44571

Timing for main: time 2000-01-24_12:09:00 on domain   1:    4.83500 elapsed seconds.
. . .

Amended output after fix from 
previous slide.  J.M. 


