Tutorial Notes: WRF-VAR Software 2.1

Wei Huang (BEFF)
July 28, 2005

Many are copied/modified from John Michalakes’ 2004 lecture

Outline

Introduction
Software Overview
Data Structures
Registry

Example

Introduction

* |ntended audience for this tutorial session:

— Primarily scientific users and others who wish to:
 Work with the code
 Extend/modify the code to enable their work/research
* Address problems as they arise
* Adapt the code to take advantage of local computing resources

— Also: developers, computer scientists and software engineers, computer vendors

* Developing new functionality (e.g. new observations, new minimization package)
* Porting and benchmarking new platforms

YV V. V VY V

Introduction

Supported Platforms
IBM (AIX)

HP (OSF1)

MAC (OS X)

PC (Linux)

SGI (IRIX)

Parallelism in WRF-VAR: MPI Decomposition

Each Patch has
Logical ONLY 1 tile.
domain different to WRF

« Single version of code for efficient execution on; g

— Distributed-memory
— Vector and microprocessors

Inter-processor
communication

Model domain is decomposed for parallelism

Patch: section of model domain allocated to a distributed memory node
Tile: same as patch in wrf-var

Observation in Distributed Memory

e Halo R xn Observation

Obs. on (1 processor’s halo Obs. on neighboring processor

Distributed Memory Communications

* Halo updates

* Periodic boundary updates(. . i
(only needed for global e

W = []
o o

Distributed Memory Communications

* Halo updates al'y on

patch

* Periodic boundary updates

* Parallel transposes

al zon
patch

al x on
patch

WRF-VAR Software Architecture

Driver
DM comm
Config Solve Ea g /O API
Inquiry OMP
e 9 gJD o Data formats,| -
Config WRLE l1le-callable S| @5 p
. 7 m arallel I/O
Module Subroutmes £ |8 %
=S A

e Hierarchical software architecture

— Insulate scientists' code from parallelism and other architecture/implementation-specific details

— Well-defined interfaces between layers, and external packages for communications, 1/0, and model coupling facilitates code reuse and
exploiting of community infrastructure, e.g. ESMF.

* Borrowed from John

— Replace WRF with WRF/WRF-VAR
— Replace solve with solve_v3d

— There is NO OpenMP in wrfvar

Directory Structure

wrf (main/wrf.F)

Driver Layer Driver
integrate (frame/module_integrate.F)

e /O API

Mediation Layer

Inquiry

solve em (dyn_gm/solve_gm.F)

Data formats,

Conflg Parallel O

Module

Model Layer

cumulus driver (physics/cumulus_driver.F)

Replace wrf with wrfvar

Replace integrate with da_solve v3d_interface
Replace solve em with da_solve v3d

Replace cumulus_driver with obs. (ships)

WRF-VAR Directory Structure

2.1. DIRECTORY STRUCTURE

The top-level WRFMODEL directory contains the following:

main -- directory containing Makefile and files containing main programs for the WRF model and initialization
programs;

frame -- directory containing Makefile and source files specific to the WRF software framework;
dyn xx -- directory containing Makefile and source files specific to a particular dynamical core xx; dr@er

phys -- directory containing Maketile and source files for physics; majj:a[i On
share -- directory containing Makefile and source files for non-physics modules shared between dynamical cores;

external -- directory containing Makefile and subdirectories containing external packages for I/O, communications, l I Iédel
etc.,

Registry -- directory containing the registry database;,
clean, configure, and compile -- shell scripts (csh) for cleaning, configuring, and compiling the madel,

arch -- directory containing settings files and scripts for configuring the model on different platforms; the file
containing the settings for all currently supported platforms is configure. defaults;

inc -- directory that holds registry-generated include files (esgentially empty on initial distribution),

tools -- directory containing tools used to build the model; the Makefile and source files for the registry mechanism
reside here;

run and test -- run directories for the model; run is the defanlt run directory; test contains standardized idealized and
real-data test cases for the model; and

Makefile -- the top level (UNIX) make file for building WRF. This is not used directly; WRF is configured and built
using the scripts mentioned above.

Add da_3dvar directory
No physics package needed in wrf-var (yet)

Data Structures

Data Taxonomy
How data appears at different levels of architecture
Grid representation in WRF-VAR arrays

Observations

Data Structures

* WRF-VAR Data Taxonomy

— State data

— Intermediate data type 1 (1)

— Intermediate data type 2 (12)

— Heap storage (COMMON or Module data)

— Al WRF data are used in WRF-VAR (Because of Frame, 1/0 API)

State Data

Persist for the duration of a domain

Represented as fields in domain data structure

Arrays are represented as dynamically allocated pointer arrays in the domain data

structure
Declared in Registry using state keyword
Always memory dimensioned; always thread shared

Only state arrays can be subject to /O and Interprocessor communication

WRF-VAR Observations

* May be single level or multiple levels

* Have defined type of: ob, iv, re, and y. Ob looks like in code:

ob%ob_type(:)%field_type% [inv/qc]

. - 1
A Innovation or quality flag

Obsfield (u,v,t,etc.)
—— Ob_type and length

Obs. structure

Example

Radiosonde observation appears as.

ob%sound(n)%u(lvl)%iInc
ob%sound(n)%v(lvl)%gc

Radiosonderesidual appears as:

re%sound(n)%u(ivl)
re%sound(n)%v(ivl)

Observation Storage

* Observation is stored in heap

— Completely self-contained and private
— Set once (Read in from disk file)
— No exchange between processors/processes

Grid Representation in Arrays

Increasing indices in WRF-VAR arrays run

— West to East (X, or |-dimension)
— South to North (Y, or J-dimension)
— Bottom to Top (Z, or K-dimension)

Storage order in WRF-VAR is IJK, but this is a WRF -VAR convention, not a

restriction of the WRF Software Framework

WRF-VAR grid data are all converted to mass-grid point

WRF-VAR Reqgistry

"Active data-dictionary” for managing WRF-VAR data structures

— Database describing attributes of model state, intermediate, and configuration data

Dimensionality, number of time levels, staggering
Association with physics

/0 classification (history, initial, restart, boundary)
Communication points and patterns

Configuration lists (€.g. namelists)

— Program for auto-generating sections of WRF from database:

Allocation statements for state data, |1 data

Argument lists for driver layer/mediation layer interfaces

Interprocessor communications: Halo and periodic boundary updates, transposes
Code for defining and managing run-time configuration information

Code for forcing, feedback and interpolation of nest data

Automates time consuming, repetitive, error-prone programming

Insulates programmers and code from package dependencies

Allow rapid development

Documents the data

Registry Mechanics

Reglstry file
- #

%Comp 1 Ie Var # table entries are of the form
#<Table> <Type> <3ym> <Dims> <Use> <NumTLev> <Stagger> <IC»>
1 .
state real ru ikj dyn-rk 2 = irh r%l Stry prograrn.
state real u ikj dyn-rk Z X irh
state real ru_m ikj dyn-rk 1 X -
i1 el n e LR % 1{0]0) regi stry
communications
halo HALO RK R 24:u Z,v 2,w 2,t Z,tp Z2,rw Z,rom_Z:4:pp,pip
halo HALC RK B dintp Z
halo HALO RK C d:ru 2,rv_2Z,du,dv

WRF-VAR source
*/*_F

— Fortran90

Regqistry Data Base

* Currently implemented as a text file: Registry/Registry

* Types of entry:

State— Describes state variables and arrays in the domain structure
Dimspec— Describes dimensions that are used to define arrays in the model
/71— Describes local variables and arrays in solve

Typedef— Describes derived types that are subtypes of the domain structure
Rconfig— Describes a configuration (e.g. namelist) variable or array
Package — Describes attributes of a package (e.g. physics)

Halo— Describes halo update interprocessor communications

Period— Describes communications for periodic boundary updates

Xpose— Describes communications for parallel matrix transposes

State entry

 Elements

Entry. The keyword “state”

Type. The type of the state variable or array (real, double, integer, logical, character, or derived)
Sym. The symbolic name of the variable or array

Dims. A string denoting the dimensionality of the array or a hyphen (-)

Use. A string denoting association with a solver or 4D scalar array, or a hyphen

NumTLev. An integer indicating the number of time levels (for arrays) or hypen (for variables)
Stagger. String indicating staggered dimensions of variable (X, Y, Z, or hyphen)

/0. String indicating whether and how the variable is subject to 1/0 and Nesting

DName. Metadata name for the variable

Units. Metadata units of the variable

Descrip. Metadata description of the variable

* Example

Type Sym Dims Use Tlev Stag 10 Dname
Descrip
definition of a 3D, two-time level, staggered state array

state real u 1k dyn_em 2 X irh U™ "X WIND
COMPONENT*“*

typedef xb_typereal u ik - 1

éfate xb type xb - -

Dimspec entry

 Elements

— Entry. The keyword “dimspec”

— DimName. The name of the dimension (single character)

— Order. The order of the dimension in the WRF framework (1, 2, 3, or ')
— HowDefined specification of how the range of the dimension is defined
— CoordAxis. which axis the dimension corresponds to, if any (X, Y, Z, or ()
— DatName metadata name of dimension

e Example

#<Table> <Dim> <Order> <How defined> <Coord-axis>
dimspec i 1 standard_domain X
dimspec] 2 standard_domain Yy
dimspec k 3 standard_domain z
dimspec I 3 namelist=num_soil layers =z

<DatName>
west_east
south_north
bottom_top
soil_layers

Comm entries: halo

e Elements

— Entry. keywords “halo” or “period”
— Commname. name of comm operation

— Description. defines the halo or period operation
» For halo: npts:f1,12,... [npts:f1,12,...]
* For period: width:f1,12,...[width:f1,/2,..] *

* Example

halo HALO_XA dyn_em 24:xa%u,xa%v,xa%q,xa%p,xa%t,xa%rho,xa%rh,xa%psfc,xa%qcw,xa%qrn,xa%qt
halo HALO_XB dyn_em 24:xb%u,xb%v,xb%w,xb%wh,xb%q,xb%p,xb%t,xb%rho,xb%rh,xb%psfc,xb%slp

/10

e Use WRF I/0 API

Adding WRF-VAR to WRF Frame

Conceptual

— WRF framework can slot in new dynamics as run-time selectable option

 (Changes to:

— Mediation layer, model layer
— Registry

~
* Reuse: . N
. | Reqistr \
— Top-level driver layer \ YISty L/
, S = -
— 1/0 infrastructure ~ === — == mmmo eI~
. ~ -~ . / /7 \~
— Parallel infrastructure U~ [, =~ Driver ’
i - S 3. \ — \{\ / _ =
o \- LT T — - -
" Caiille; 'S Solve M comm |) ap
Inquir \ SMP
I | 1
: ‘ I : \é S o Dataformats
| | Conlig | , WRFTilecalable \|, 8 @‘_c i
\ | Mod ! Subroutines \ﬁ = g
\ y —
\J ‘\ /—/ \
~ v

Adding WRF-VAR
Steps

— Develop new or convert existing code:

* Mediation layer routine: solve

* Model layer subroutines called by solver
— Add to WRF

* Add code to source tree
* Incorporate into build mechanism
* Registry entries: data, solver options, comms
 Some additional splicing
— Single processor testing

— Analyze data-dependencies, define and implement

Registry

communication for parallelism

Driver
— Multi-processor testing
' DM
Comflg solve v3d comm 110 AP
Inquiry
S 9 Dataformat

Config | WRF-VAR -cdlable £ arormats

: Pardld 1/0
Module Subroutines S

1

Add new Observation

Edit DA_Define_Structure.F to add new
type

May need add grid array in Registry
Make a new obs directory

Input observation

Link into minimization package

