# WPS – Description of General Functions

Michael Duda



#### Purpose of this Lecture

In this lecture, our goals are to:

- 1) Understand the purpose of the WPS
- 2) Learn what each component of the WPS does

The details of *actually running* the WPS will be covered in a second lecture!



#### Purpose of the WPS

The purpose of the WPS is to prepare input to WRF for real-data simulations:

- Defines simulation domain and nested domains
- Computes latitude, longitude, map scale factors, Coriolis parameters at every grid point
- Interpolates time-invariant terrestrial data to simulation grids (e.g., terrain height and soil type)
- Interpolates time-varying meteorological fields from another model onto simulation domains



#### ARW Modeling System Flowchart

#### WRF ARW Modeling System Flow Chart (for WRFV2)





#### NMM Modeling System Flowchart

#### WRF NMM Modeling System Flow Chart (for WRFV2)





# WPS Program Flowchart





#### Function of WPS Components

- geogrid (think geographical)
  - Define size/location of model domains and interpolate static terrestrial fields to simulation grids
- ungrib
  - Extract meteorological fields from GRIB files
- metgrid (think meteorological)
  - Horizontally interpolate meteorological fields to simulation grids





#### The *geogrid* program





#### The geogrid program

- Define projection, location, and dimensions of simulation domains, including nested domains
- Compute latitude, longitude, map scale factor, and Coriolis parameters at each grid point
- Horizontally interpolate static terrestrial data to each grid point
  - Topography height, land use category, soil type, vegetation fraction, monthly surface albedo, etc.



#### Geogrid: Defining model domains

- First, we must choose a map projection to use for the domains
  - The real earth is (roughly) an ellipsoid
  - But WRF computational domains are defined by rectangles in the plane maps
- NMM uses a rotated lat/lon projection
- ARW can use one of the following projections:
  - Lambert conformal
  - 2. Mercator
  - 3. Polar stereographic



#### Why does ARW support 3 projections?

Rather than rotate the area of the model domain to an optimal position w.r.t. the projection plane, a projection appropriate to the domain location is chosen









#### Geogrid: Defining Model Domains

- Define projection of domains with (at most) the following parameters
  - MAP\_PROJ: 'lambert', 'mercator', 'polar', or 'rotated\_ll'
  - TRUELAT1: First true latitude
  - TRUELAT2: Second true latitude (only for Lambert conformal)
  - STAND\_LON: The meridian parallel to y-axis
- All parameters reside in the file namelist.wps



#### Geogrid: Defining Model Domains

- Define the area covered (dimensions and location) by coarse domain using the following:
  - REF\_LAT, REF\_LON: The (lat,lon) of a known location in the domain (by default, the center point of the domain)
  - DX, DY: Grid distance where map factor = 1
  - E\_WE: Number of velocity points in west-east direction for ARW; number of mass points in odd rows for NMM
  - E\_SN: Number of velocity points in south-north direction for ARW; number of rows for NMM



#### Geogrid: Defining ARW Domains





#### Geogrid: Defining ARW Domains



## Geogrid: Defining NMM Domains





#### Geogrid: Nesting Basics

- A nested domain is a domain that is wholly contained within its parent domain and that receives information from its parent, and that may also feed information back to its parent
  - A nested domain has exactly one parent
  - A domain (coarse or nested) may have one or more children
- Nests on the same nesting level must not overlap in coverage!



#### Geogrid: Nesting Example

Example configuration – 4 domains



Each domain is assigned a domain ID #





#### Geogrid: Defining Nested Domains

- Define the dimensions and location of nested domains using:
  - PARENT\_ID: Which domain is the parent?
  - PARENT\_GRID\_RATIO: What is the ratio between grid spacing in parent to grid spacing in this nest?
  - I\_PARENT\_START: i-coordinate in parent of this nest's lower-left corner
  - J\_PARENT\_START: j-coordinate in parent of this nest's lower-left corner
  - E\_WE: Number of velocity points in west-east direction for ARW
  - E\_SN: Number of velocity points in south-north direction for ARW



#### Geogrid: Defining Nested Domains



The grid spacing (dx)
of domain 2 is
determined by grid
spacing of
domain 1 and the
parent\_grid\_ratio

NB: For NMM, the parent\_grid\_ratio is always 3!



#### Geogrid: Interpolating Static Fields

- Given definitions of all computational grids, interpolate terrestrial, time-invariant fields
  - Terrain height
  - Land use categories
  - Soil type (top & bottom layer)
  - Annual mean soil temperature
  - Monthly vegetation fraction
  - Monthly surface albedo



#### Geogrid: Interpolating Static Fields



In general, source data are given on a different projection from the model grid.



#### Geogrid: Interpolation Options

- 4-point bilinear
- 16-point overlapping parabolic
- 4-point average (weighted or unweighted)
- 16-point average (weighted or unweighted)
- Grid cell average
- Nearest neighbor
- Breadth-first search



#### Why have so many interpolation options?

- Different interpolators work best for different fields
  - Some interpolators preserve positive definiteness
  - Some interpolators produce "smoother" fields
  - Some interpolators are best suited for discrete or categorical fields
- Having a choice of how to interpolate fields is good!
  - We'll see in the second lecture how several different options can be used for different regions of the same field



- geogrid is flexible enough to ingest and interpolate new static fields
  - handles either continuous or categorical fields
- New data sets must be written to simple binary format
- User needs to add an entry to the file GEOGRID.TBL



- The GEOGRID.TBL file determines
  - Which fields will be produced by geogrid
  - What sources of data will be used
  - How the data will be interpolated/smoothed
  - 4. Any derived fields (e.g., dominant cat., df/dx)
- Acceptable defaults exist in GEOGRID.TBL, so user will not generally need to edit the file (but more on this in later lecture!)



- Format of GEOGRID.TBL file is simple text, with specifications of the form <keyword>=<value>
- Example entry for new landuse data set:

```
name=LANDUSEF
    priority=2
    dest_type=categorical
    z_dim_name=land_cat
    interp_option=30s:nearest_neighbor
    abs_path=30s:/users/duda/Houston/
```



- The GEOGRID. TBL file also allows user to change which interpolation methods are used for each field
- Example:

```
interp option=sixteen pt
```

or

interp\_option=four\_pt+average\_4pt



- Other options in the GEOGRID.TBL include smoothing options and slope calculation
- Example:

```
smooth_option=smth-desmth
smooth passes=2
```

 More complete information on the available options may be found in Chapter 3 of the User's Guide



#### Geogrid: Program Output

- The parameters defining each domain, plus interpolated static fields, are written using the WRF I/O API
  - One file per domain for ARW
  - One file per nesting level for NMM
- Filenames: geo em.d0n.nc, or

```
geo_nmm.d01.nc, geo_nmm_nest.l0k.nc
```

(where *n* is the domain ID # and *k* is the nest level)

Example:

```
geo_em.d01.nc geo_nmm.d01.nc geo_em.d02.nc (nest) geo_nmm_nest.l01.nc (nest level) geo_em.d03.nc (nest) geo_nmm_nest.l02.nc (nest level)
```



#### Geogrid: Example Output



## The *ungrib* program





#### The ungrib program

- Read GRIB Edition 1 and GRIB Edition 2 files
- Extract meteorological fields
- If necessary, derive required fields from related ones
  - E.g., Compute RH from specific humidity
- Write requested fields to an intermediate file format



#### **Ungrib: Vtables**

How does ungrib know which fields to extract?

#### Using Vtables

- Vtables are files that give the GRIB codes for fields to be extracted from GRIB input files
- One Vtable for each source of data
- Vtables are provided for: NAM 104, NAM 212, GFS, AGRMET, and others



# Ungrib: Example Vtable

| GRIB1  |                   | From     | To             | UNGRIB                 | UNGRIB          | UNGRIB                                  |
|--------|-------------------|----------|----------------|------------------------|-----------------|-----------------------------------------|
| Param  | Туре              | Level1   | Level2         | Name                   | Units           | Description                             |
| 11     | 100               | +<br>  * | +<br>          | T                      | +<br>K          | Temperature                             |
| 33     | 100               | <br>  *  |                | IJ I                   | m s-1           | U                                       |
| 34     | 100               | <br>  *  | ! !<br>        | V                      | m s-1           | V                                       |
| 52     | 100               | <br>  *  |                | RH                     | %               | Relative Humidity                       |
| 7 1    | 100               | <br>  *  |                | HGT                    | m I             | Height                                  |
| 11     | 105               | 2        |                | T I                    | K I             | Temperature at 2 m                      |
| 52     | 105               | 2        |                | RH                     | %               | Relative Humidity at 2 m                |
| 33     | 105               | 10       |                | U                      | m s-1           | U at 10 m                               |
| 34     | 105               | 1 10     |                | V                      | m s-1           | V at 10 m                               |
| 1 1    | 1                 | 1 0      |                | PSFC                   | Pa              | Surface Pressure                        |
| 130    | 102               | 0        | ! !<br>        | PMSL                   | Pa              | Sea-level Pressure                      |
| 144    | 112               | 1 0      | 10             |                        | kg m-3          |                                         |
| 144    | 112               | 1 10     | 1 40 1         |                        | kg m-3          |                                         |
| 144    | 112               | 1 40     | 100            | SM040100               | kg m-3          |                                         |
| 144    | 112               | 100      | 200            | SM100200               | kg m-3          |                                         |
| 85     | 112               | 1 0      | 1 10           | ST100200  <br>ST000010 | Kg III 5  <br>K | T 0-10 cm below ground layer (Upper)    |
| 85     | 112               | 1 10     | 1 40 1         | ST010040               | K               | T 10-40 cm below ground layer (Upper)   |
| 85     | 112               | 1 40     | 100            |                        |                 | T 40-100 cm below ground layer (Upper)  |
| 85     | 112               | 1 100    | 100  <br>  200 | ST100200               | K               | T 100-200 cm below ground layer (Bottom |
| 91     | 1                 | 1 0      | 200  <br>      | SEAICE                 | proprtn         |                                         |
| 81     | , ⊥<br>, 1        | 1 0      |                | LANDSEA                | proprtn         |                                         |
| 7 1    | 1                 | 1 0      |                | HGT                    | m               | Terrain field of source analysis        |
| 11     | 1                 | 1 0      |                | SKINTEMP               | K               |                                         |
| 65     | ı <u>+</u><br>∣ 1 | 1 0      | 1<br>          | SNOW                   |                 | Water equivalent snow depth             |
| 223    | ı <u>+</u><br>∣ 1 | 1 0      | 1<br>          | CANWAT                 |                 | Plant Canopy Surface Water              |
| 223    | ı <u>+</u><br>∣ 1 | 1 0      | I I<br>I I     |                        |                 | Dominant soil type category             |
| 224    | ı <u>+</u><br>∣ 1 | 1 0      | I I<br>I I     | VEGCAT                 |                 | Dominant land use category              |
| VIET - | +-                | +        | ı<br>+         | VEGCAI                 | +               |                                         |

# Ungrib: GRIB2 Vtable Entries



# **Ungrib: Vtables**

What if a data source has no existing Vtable?

#### Create a Vtable

- Get a listing of GRIB codes for fields in the source
  - Check documentation from originating center or use utility such as wgrib
- Use existing Vtable as a template
- Check documentation in Chapter 3 of the Users'
   Guide for more information about Vtables



# Ungrib: Intermediate File Format

- After extracting fields listed in Vtable, ungrib writes those fields to intermediate format
- For meteorological data sets not in GRIB format, the user may write to intermediate format directly
  - Allows WPS to ingest new data sources; basic programming required of user
  - Simple intermediate file format is easily read/written



# **Ungrib: Program Output**

- Output files named FILE: YYYY-MM-DD\_HH
  - YYYY is year of data in the file; MM is month; DD is day; HH is hour
  - All times are UTC
- Example:

FILE:2007-07-24 00

FILE:2007-07-24\_12

FILE:2007-07-25\_00

ungrib can also write intermediate files in the MM5 or WRF SI format! (To allow for use of GRIB2 data with MM5, for example)



# **Ungrib: Obtaining GRIB Data**

- Where does one get GriB data?
  - User's responsibility
  - Some free data are available from NCAR and NCEP. See
  - <u>http://www.mmm.ucar.edu/wrf/users/</u>
    - > Download
      - Some NCEP data in the past year
      - NCEP operational data available daily



# The *metgrid* program





#### The *metgrid* program

- Horizontally interpolate meteorological data (extracted by ungrib) to simulation domains (defined by geogrid)
  - Masked interpolation for masked fields
- Rotate winds to WRF grid
  - i.e., rotate so that U-component is parallel to x-axis,
     V-component is parallel to y-axis



# Metgrid: ARW Grid Staggering

- For ARW, wind U-component interpolated to "u" staggering
- Wind V-component interpolated to "v" staggering
- Other meteorological fields interpolated to "θ" staggering by default (can change this!)



A single ARW grid cell, with "u", "v", and "θ" points labeled.



# Metgrid: NMM Grid Staggering

- For NMM, wind U- and V-components interpolated to "V" staggering
- Other meteorological fields interpolated to "H" staggering by default (can change this!)

HVHVHVH

VHVHVH

An NMM grid showing "V", and "H" points.



### Metgrid: Interpolation Options

- 4-point bilinear
- 16-point overlapping parabolic
- 4-point average (weighted or unweighted)
- 16-point average (weighted or unweighted)
- Grid cell average
- Nearest neighbor
- Breadth-first search



### Metgrid: Masked Interpolation

- Masked fields may only have valid data at a subset of grid points
  - Ex: SST field only valid on water points
- When metgrid interpolates masked fields, it must know which points are invalid (masked)
  - Can use separate mask field (e.g., LANDSEA)
  - Can rely on special values (e.g., 1×10<sup>30</sup>) in field itself to identify masked grid points



#### Metgrid: Masked Interpolation



- = valid source data
- = masked/invalid data

Suppose we need to interpolate to point X

- Using red points as valid data can give a bad interpolated value!
- Masked interpolation only uses valid blue points to interpolate to X



### **Example: Masked Interpolation**



Skin temperature field interpolated from GFS 0.5-deg field with no mask using a sixteen-point interpolator.



Skin temperature field interpolated using masks: GFS water points interpolated to model water points, GFS land points interpolated to model land points.

### Metgrid: Wind Rotation

- Input wind fields (U-component + V-component) are either:
  - Earth-relative: U-component = westerly component; V-component = southerly component
  - Relative to source grid: U-component (V-component)
     parallel to source model x-axis (y-axis)
- WRF expects wind components to be relative to the simulation grid



### Metgrid: Wind Rotation Example





A wind vector, shown in terms of its U and V components with respect to the source grid.

The same vector, in terms of its U and V components with respect to the WRF simulation grid.



#### Metgrid: Constant Fields

- For short simulations, some fields may be constant
  - E.g., SST or sea-ice fraction
- Use namelist option constants\_name option to specify such fields:
  - CONSTANTS NAME = 'SST FILE: 2007-07-24 00'



# Metgrid: Program Flexibility

- metgrid is capable of interpolating both isobaric and native vertical coordinate data sets
- User may specify interpolation methods and related options in the METGRID.TBL file
  - METGRID.TBL file similar in format to the file GEOGRID.TBL



# Metgrid: Program Flexibility

 Example METGRID.TBL entry (for "soil moisture 0-10 cm")



# Metgrid: Program Output

- For coarse domain, one file per time period
  - In ARW, we also get the first time period for all nested grids
- Files contain static fields from geogrid plus interpolated meteorological fields
- Filenames:

```
ARW: met em.d0n.YYYY-MM-DD HH.nc
```

(where *n* is the domain ID #)

NMM: met\_nmm.d01.*YYYY-MM-DD\_HH*.nc



### Metgrid: Example Output



### **WPS Summary**



#### Questions?

