WRF Variational Data Assimilation System (WRF-Var) Overview

WRF Tutorial Presentation

NCAR, Boulder, Colorado

July 26th 2007

Dale Barker (dmbarker@ucar.edu)

Acknowledge:

NCAR/MMM Division Staff
USWRP, NSF-OPP, NCAR Data Assimilation Initiative
US Air Force Weather Agency, Korean Meteorological Administration
Taiwanese Central Weather Bureau, Civil Aeronautics Administration

Outline of Talk

- 1) What is WRF-Var?
- 2) Practical Variational Data Assimilation.
- 3) Background Error Modeling.
- 4) Observational Issues.
- 5) Current Status and Future Plans.

1. What is WRF-Var?

...WRF-Var is a **unified** variational data assimilation system built within the software framework of the Weather Research and Forecasting (WRF) model, used for application in both research and operational environments....

WRF-Var Data Assimilation Overview

- Techniques: 3D-Var, 4D-Var (regional),
 Hybrid Variational/Ensemble DA.
- Software Engineering: WRF framework.
- Multiple Models: Runs with WRF, MM5, KMA global model, etc.
- **Support:** MMM Division, NCAR.
- Applications: Regional/global, Research/Operational, Deterministic/Ensemble,

AFWA Worldwide Theaters

KMA T213/426 Global:

WRF Variational Data Assimilation (WRF-Var) History

- **June 2001:** MM5-3DVar adopted as starting point for WRF 3D-Var.
- **May 2002:** MM5/WRF 3D-Var operational in Taiwan.
- September 2002: MM5/WRF 3D-Var operational in 45km domains at AFWA.
- June 2003: First public release of WRF-Var.
- July 2006: WRF-ARW/WRF-Var operational in AFWA 15km domains.
- May 2007: WRF-Var/ARW operational in Korea 10km domain
- **March 2008:** WRF-Var/WRF V3.0

The WRF-Var Program

- NCAR staff: 23FTE, ~12 projects.
- Non-NCAR collaborators (AFWA, KMA, etc): ~10FTE.
- Community users: ~30 (more in 4000 general WRF downloads?).

New Features Of WRF-Var Version 2.1 (Release July 2005)

- First Guess at Appropriate Time (FGAT).
- Radar reflectivity.
- Other new obs: GPS refractivity, MODIS AMVs.
- Platforms: IBM-SP, DEC, Linux, SGI, Cray X1, Apple G4/G5.
- Initial 4D-Var modifications.
- New utility *gen_be* to calculate local background error statistics.
- Global 3D-Var capability.

WRF-Var in the WRF Modeling System

WRF-Var in the WRF Modeling System

Importance of Data Assimilation For General WRF Development/Testing

Experiment (Mi-Seon Lee, KMA):

- Test undisclosed change to WRF modeling system.
- 40km WRF CONUS application. Solid = Control, Dashed = Test.
- Use January 2002 conventional data for cycling.

2. Practical Variational Data Assimilation

What Is Data Assimilation?

- Assimilation system combines:
 - Observations y^o
 - Previous forecast ("background field x^b)
 - Estimate of observations/forecast errors.
 - Laws of physics.
- Assimilation system outputs an "analysis".
- Analysis used in a number of ways:
 - Initial conditions for numerical forecasts.
 - Climatology reanalyses.
 - Observing system design (e.g. OSSEs).

Need For Data Assimilation in NWP

Fact: There are never enough good observations!!

Consider NWP model:

- Typical global model -425 * 325 * 50 = 7 million gridpts.
- Minimum number of variables = 6 (u, v, w, T, p, q).
- Number of degrees of freedom = 41.4 million.
- Typical number of observations = few $\times 10^6$ but:
 - Inhomogeneous distribution of data.
 - Observations not always in sensitive areas.
 - Observations have errors.

Solutions:

- Use sophisticated (variational/ensemble) techniques.
- Use previous forecast to propagate past observations. 20°N
- Use approximate physical balance relationships.
- More/better observations!

Variational Data Assimilation

• Variational data assimilation systems attempt to find an analysis x^a that minimizes a cost-function

$$J = J_b + J_o$$

- Three-Dimensional Variational Data Assimilation = 3D-Var (first implemented at NCEP Parrish and Derber 1992).
- Four-Dimensional Variational Data Assimilation = 4D-Var. First implemented at ECMWF Rabier et al. 2000).
- •4D-Var includes the time dimension by including the forecast model as part of the data assimilation system.

4D Variational Data Assimilation

Variational Data Assimilation

• The components J_b and J_o of the cost function are defined as

$$J_{b}[\mathbf{x}(t_{0})] = \frac{1}{2}[\mathbf{x}(t_{0}) - \mathbf{x}^{b}(t_{0})]^{T} \mathbf{B}_{o}^{-1}[\mathbf{x}(t_{0}) - \mathbf{x}^{b}(t_{0})]$$

$$J_o[\mathbf{x}(t_0)] = \frac{1}{2} \sum_{i=0}^{n} \left[\mathbf{y}_i - \mathbf{y}_i^o \right]^T \mathbf{R}_i^{-1} \left[\mathbf{y}_i - \mathbf{y}_i^o \right]$$

- $\mathbf{B_0}$ is an *a priori* weight matrix estimating the error covariance of $\mathbf{x^b}$.
- \mathbf{R}_{i} is the observation error covariance matrix at time i.
- Direct calculation of J_b and J_o impossible for NWP problems ($\mathbf{B_0}$, \mathbf{R} are matrices of dimension 10^7). Therefore many practical simplifications required.
- Incremental Var produces analysis increments that are added back to a first guess field $\mathbf{x}^{\mathbf{g}}$ to produce the analysis, i.e.

$$\mathbf{x}^{a}(t_{0}) \equiv \mathbf{x}^{g}(t_{0}) + \delta \mathbf{x}(t_{0})$$

Minimization Of The Cost Function

Minimization of the cost function proceeds iteratively.

From Bouttier and Courtier (1999)

From WRF-Var tutorial

"Convergence" achieved when either 1) Maximum iterations reached, 2) Ratio final/initial gradient hits a specified criterion.

3. Background Error Modeling

Incremental WRF-Var J_b Preconditioning

$$J_{b}\left[\delta\mathbf{x}(t_{0})\right] = \frac{1}{2}\left\{\delta\mathbf{x}(t_{0}) - \left[\mathbf{x}^{b}(t_{0}) - \mathbf{x}^{g}(t_{0})\right]\right\}^{T}\mathbf{B}_{o}^{-1}\left\{\delta\mathbf{x}(t_{0}) - \left[\mathbf{x}^{b}(t_{0}) - \mathbf{x}^{g}(t_{0})\right]\right\}$$

Define preconditioned control variable v space transform

$$\delta \mathbf{x}(t_0) = \mathbf{U}\mathbf{v}$$

where **U** transform CAREFULLY chosen to satisfy $\mathbf{B}_{o} = \mathbf{U}\mathbf{U}^{T}$.

Choose (at least assume) control variable components with uncorrelated errors:

$$J_b \left[\delta \mathbf{x} (t_0) \right] = \frac{1}{2} \sum_{n} v_n^2$$

where n~number pieces of independent information.

cv_options		2 (original MM5)	3(GSI)	4 (Global)	5(regional)		
Analysis increments	х,	$u',v',T',q',p_s'(i,j,k)$					
Change of Variable	$U_{ m p}$	$\psi',\chi',p_{u}',q'(i,j,k)$	$\chi', p_{u}', q'(i, j, k)$ $\psi', \chi_{u}', T_{u}', \tilde{r}', p_{su}'(i, j, k)$				
Vertical Covariances	U,	$\mathbf{B} = \mathbf{E} \Lambda \mathbf{E}^{\mathrm{T}}$	RF $\mathbf{B} = \mathbf{E} \Lambda \mathbf{E}^{\mathrm{T}}$				
Horizontal Correlations	$U_{\mathbf{A}}$	RF	Spectral	RF			
Control Variables	£.	v (<i>i</i> , <i>j</i> , <i>m</i>)		v (l,n,m)	v (<i>i</i> , <i>j</i> , <i>m</i>)		

$$\delta \mathbf{x}(t_0) = \mathbf{U}\mathbf{v} = \mathbf{U}_p \mathbf{U}_v \mathbf{U}_h \mathbf{v}$$

Up: Change of variable, impose balance.

Uv: Vertical correlations EOF Decomposition

RF = Recursive Filter, e.g. Purser et al 2003

cv_options		2 (original MM5)	3(GSI)	4 (Global)	5(regional)		
Analysis increments	*	$u',v',T',q',p_s'(i,j,k)$					
Change of Variable	$U_{ m p}$	$\psi',\chi',p_u',q'(i,j,k)$	$\psi',\chi_{u}',T_{u}',\tilde{r}',p_{su}'(i,j,k)$				
Vertical Covariances	U_{\bullet}	$\mathbf{B} = \mathbf{E} \Lambda \mathbf{E}^{\mathrm{T}}$	RF	$\mathbf{B} = \mathbf{E} \Lambda \mathbf{E}^{\mathrm{T}}$			
Horizontal Correlations	$U_{\mathbf{A}}$	RF		Spectral	RF		
Control Variables	*	v (<i>i</i> , <i>j</i> , <i>m</i>)		v (l,n,m)	v (<i>i</i> , <i>j</i> , <i>m</i>)		

$$\delta \mathbf{x}(t_0) = \mathbf{U}\mathbf{v} = \mathbf{U}_p \mathbf{U}_v \mathbf{U}_h \mathbf{v}$$

30 N

cv_options		2 (original MM5)	3(GSI)	4 (Global)	5(regional)		
Analysis increments	х,	$u',v',T',q',p_s'(i,j,k)$					
Change of Variable	$U_{ m p}$	$\psi',\chi',p_{u}',q'(i,j,k)$	ψ',χ	$(x_{\alpha}^{\dagger}, T_{\alpha}^{\dagger}, \tilde{r}^{\dagger}, p_{\alpha})$	"(i,j,k)		
Vertical Covariances	$U_{\mathbf{v}}$	$\mathbf{B} = \mathbf{E} \Lambda \mathbf{E}^{\mathrm{T}}$	RF	B = F	EAET		
Horizontal Correlations	$U_{\mathbf{A}}$	RF		Spectral	RF		
Control Variables	18.	v (<i>i</i> , <i>j</i> , <i>m</i>)		v (<i>l</i> , <i>n</i> , <i>m</i>)	v (<i>i</i> , <i>j</i> , <i>m</i>)		

cv_options		2 (original MM5)	3(GSI)	4 (Global)	5(regional)		
Analysis increments	ж,	$u',v',T',q',p_s'(i,j,k)$					
Change of	$U_{ m p}$	$\psi',\chi',p_{u}',q'(i,j,k)$	$\psi',\chi_{u}',T_{u}',\tilde{r}',p_{su}'(i,j,k)$				
Variable							
Vertical Covariances	$U_{\mathbf{v}}$	$\mathbf{B} = \mathbf{E} \Lambda \mathbf{E}^{\mathrm{T}}$	RF	$\mathbf{B} = \mathbf{E} \Lambda \mathbf{E}^{\mathrm{T}}$			
Horizontal Correlations	U,	RF	Spectral	RF			
Control Variables	Ŕ.	v (<i>i</i> , <i>j</i> , <i>m</i>)		v (l,n,m)	v (<i>i</i> , <i>j</i> , <i>m</i>)		

$$\delta \mathbf{x}(t_0) = \mathbf{U}\mathbf{v} = \mathbf{U}_p \mathbf{U}_v \mathbf{U}_h \mathbf{v}$$

Define control variables:

$$\psi'$$

$$r' = q' / q_s (T_b, q_b, p_b)$$

$$\chi' = \chi_u' + \chi_b'(\psi')$$

$$T' = T_{\mu}' + T_{b}'(\psi')$$

$$p_{s}' = p_{su}' + p_{sb}'(\psi')$$

WRF-Var Statistical Balance Constraints

• Define statistical balance after Wu et al (2002):

$$\chi'_b = c \psi' \quad T'_b(k) = \sum_{k1} G(k,k1) \psi'(k1) \quad p'_{sb} = \sum_k W(k) \psi'(k)$$

• How good are these balance constraints? Test on KMA global model data. Plot correlation between "Full" and balanced components of field:

3D-Var response to a single P_s Observation

Pressure, Temperature

Wind Speed,
Vector,
v-wind component.

Global Applications of WRF-Var

Major technical changes to regional system are

- 1. Periodic boundary conditions.
- 2. New global WRF Registry created.
- 3. Minor changes to treat pole as a special point.
- 4. Spectral-Grid transformation for horizontal error correlations (FFTPACK).

U-wind Observation (O-B = 1m/s, $s_0 = 1$ m/s) at 120E, 45N, level 15:

4. Observational Issues

WRF-Var Observations (August 2005, V2.1 Release)

Conventional:

- Surface (SYNOP, METAR, SHIP, BUOY).
- Upper air (TEMP, PIBAL, AIREP, ACARS).

Remotely sensed retrievals:

- Atmospheric Motion Vectors (SATOBS, MODIS
- Ground-based GPS Total Precipitable Water.
- SSM/I oceanic surface wind speed and TPW.
- Scatterometer (Quikscat) oceanic surface winds.
- Wind Profiler.
- Radar radial velocity and reflectivity.
- ATOVS/AIRS/MODIS temperature/humidities.
- GPS "local" refractivity.

Radiances:

- SSM/I brightness temperatures (Shu-Hua Chen).

3D-Var FGAT: First Guess at Appropriate Time

Observation at appropriate time Observation at analysis time Forecast (F) NoFGAT analysis FGAT analysis Field Value O-F>0T-3hT+00 T+3hTime "Centered" Assimilation Window

3D-Var-FGAT Forecast Impact

6hr Forecast T Error

3.0 2.9 FGAT 3DVAR 2.7 - GWÐ 2.6 - 2.5 CNTO SATEM ALL

12hr Forecast U Error

Korean Radar Data Assimilation in WRF-Var

Typhoon Rusa Test Case 3hr Precip: Typhoon Rusa 3hr Precip. Verification:

> 0.85 8.0

> > 0.6

3103

3106

0.55 0.5

TIME (Date/hr **KMA Pre-operational Verification:** (no radar: blue, with radar: red)

3109

3112

Threshold = 5 mr

■ Without Radar

■ With RV and RF

■ With RF □ With RV

Typhoon Sinlaku: Quikscat Data

00Z September 4th 2002

00Z September 6th 2002

Barker et al (2004)

WRF-Var Sinlaku Bogus: Analysis Increments

Pressure, Temperature

Wind Speed,
Vector,
v-wind component.

Single Surface Pressure Bogus: Forecast Impact

Typhoon Central Pressure

48hr Forecast (NoBogus)

48hr Forecast (PBogus1)

5. Current Status and Future Plans

WRF-Var Radiance Assimilation Status

- BUFR Data interface for a number of satellites
- RTM interface: RTTOV8 5 or CRTM
- Currently only assimilating clear-sky radiances
- NESDIS Microwave surface emissivity model
- Quality Control for AMSU-A/B, AIRS
- Bias Correction (Scan Angle + Air Mass)
- Innovation output and Statistics Diagnosis
 - O-B, O-A, counting number of observation
- Observation error tuning
- FGAT(First Guess at Appropriate Time)
- Parallel: MPI (regional, not yet global)
- Flexible design to easily add new satellite sensor

WRF-(4D)Var Summary

- 1. WRF-(4D)Var AFWA project: 2004-2007.
- 2. Formulation: Built within WRF-Var, using ARW dynamic core.

3. Status:

- Prototype built (parallel, JcDFI, limited physics).
- Prototypes delivered to AFWA in 2006 and 2007.
- Current focus: Testing, more physics, optimization.

Cycling WRF/WRF-Var/ETKF System (Hybrid DA)

WRF-Var Observations (July 2007)

Conventional:

- Surface (SYNOP, METAR, SHIP, BUOY).
- Upper air (TEMP, PIBAL, AIREP, ACARS).

Remotely sensed retrievals:

- Atmospheric Motion Vectors (geo/polar).
- Ground-based GPS Total Precipitable Water.
- SSM/I oceanic surface wind speed and TPW.
- Scatterometer oceanic surface winds.
- Wind Profiler.
- Radar radial velocity and reflectivity.
- Satellite temperature/humidities.
- GPS refractivity (e.g. COSMIC).

Radiances:

- SSM/I brightness temperatures.
- Direct radiance assimilation (SSM/I, TMI, AMSU, AIRS).

WRF-Var/WRF Version 3.0 (March 2008)

- Major new features/improvements (provisional):
 - Radiance data assimilation via CRTM/RTTOV.
 - Hybrid variational/ensemble DA.
 - Ensemble Transform Kalman Filter (ETKF).
 - Enhanced gen_be utility (EPS-based stats., efficiency).
 - Major software engineering reorganization.
 - Option to use [PREP]BUFR for observation ingest.
 - Remove obsolete features (e.g. MM5/GFS-based errors).
- Unify code management (process, regression testing, SE framework) for WRF/WRF-Var.
- NOT included: 4D-Var.

Future Plans

General Goals:

- Research: Focus on high-resolution (1-10km).
- Development: Unified DA system (3/4D-Var, EnKF).
- Community Model: Retain flexibility for research.
- Leverage international WRF community efforts.
- Work to eliminate **unnecessary** diversity.

WRF-Var Development (MMM Division):

- 4D-Var (physics, optimization).
- Adjoint Sensitivities.
- EnKF within WRF-Var.
- Instrument-specific radiance QC, bias correction.

Data Assimilation Extended-Period Testing (DATC):

- Technique intercomparison: 3/4D-Var, EnKF, Hybrid
- System studies: WRF-Var, GSI, DART.
- Obs. impact: AMSU, AIRS, COSMIC, SSMI/S.
- New Regional testbeds: Korea, India, CONUS.

