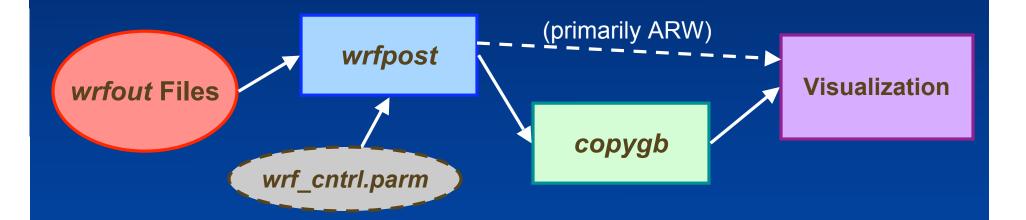
NCEP's WRF POST PROCESSOR (WPP)

Hui-Ya Chuang

Modified/Presented by Matthew Pyle

Outline


- Overview
- Components and Functions
- Sample fields generated
- Installation
- Running wrfpost
 - Controlling output generation
- Running copygb
 - Specifying target grid
- Visualization

The critical big picture overview

- The WRF post processor (WPP) generates output in GRIB.
- Processes model output from <u>both</u> the NMM and the ARW <u>dynamical cores</u>.
- The WPP enables product generation on any output grid.

Components of the WPP

The WPP has two components: wrfpost and copygb.

Functions and features of wrfpost

- Performs <u>vertical</u> interpolation onto isobaric and other non-model surfaces
- Computes diagnostic fields
- Destaggers wind onto mass points (ARW)
- An MPI-parallel code

Functions of copygb

- Performs <u>horizontal</u> interpolation and destaggering (NMM core) onto a defined output grid
 - Many visualization packages cannot properly handle staggered grids, so copygb is an important step for processing NMM core output (optional for ARW).
- Useful for both cores in creating an output grid not fixed by the model integration domain.

Ingesting WRF model output

- wrfpost reads in WRF model output in either binary or netCDF format using the WRF I/O package.
- Users are encouraged to use netCDF formatted model output for simplicity. NCEP uses binary output for speed.

Ingesting WRF model output

- The model fields read in by wrfpost for both dynamical cores can be found in your user guide (listed by WRF Registry file variable names).
- These fields are automatically provided by the default WRF model Registry files.

Fields generated by the WPP

- The WPP currently outputs 288 fields.
 - Complete list in the Post Processing Utilities Chapter of the user guide
- Sample fields generated by WPP:
 - 1) T, Z, humidity, wind, cloud water, cloud ice, rain, and snow on isobaric levels
 - 2) Shelter level T, humidity, and wind fields
 - 3) SLP (two kinds)
 - 4) Precipitation-related fields

Fields generated by the WPP

- Sample fields generated by WPP (cont.):
 - 5) PBL-related fields
 - 6) Diagnostic fields
 - 7) Radiative fluxes
 - 8) Surface fluxes
 - 9) Cloud related fields
 - 10) Aviation products

WPP download and compile

Downloading the WPP source code

- The WPP source code can be obtained from: http://www.dtcenter.org/wrf-nmm/users/downloads
- The latest version available is: wrfpostproc_v3.0.tar.gz
- Unpack the downloaded file:
 tar –zxvf wrfpostproc_v3.0.tar.gz
- cd to newly created WPPV3/ directory

WPPV3 directory contents

- sorc/: source codes
- scripts/: sample scripts for running WPP and generating graphics
- lib/: libraries used in the build
- parm/: control file used when running the wrfpost
- configure: sets up makefiles based on userspecified computing platform and paths to software
- makefile: master makefile to compile lib/ and sorc/

Compile source codes

- Prepare to build the WPP on your specific computer with ./configure
- At the prompt, specify:
 - 1) platform: "1" for LINUX (pg compiler); "2" for LINUX (ifort compiler); "3" for AIX/IBM.
 - 2) path to a netCDF installation
 - 3) path to a compiled WRF model source directory
- Compile all libraries and source code by executing the master makefile in the top directory:

make >& compile_wpp.log &

Compile source codes (cont.)

• If compilation is successful, these three executables will be present in exec/:

copygb.exe ndate.exe wrfpost.exe

Running wrfpost and copygb

wrfpost needs three input files to run:

itag: specifies details of WRF model output to process

```
wrfout_d01_2005-04-27_00:00:00 \leftarrow WRF history filename netcdf \leftarrow WRF output format (netcdf/binary) \leftarrow 2005-04-27_00:00:00 \leftarrow validation time NMM \leftarrow model name (NMM/NCAR)
```

- wrf_cntrl.parm: control file specifying fields to output
- eta_micro_lookup.dat: binary look-up table for Ferrier MP
- * In the sample run_wrfpost* scripts, these files are generated on the fly or are automatically linked.

Outputting fields on multiple levels

wrfpost outputs on several vertical coordinates:

- Native model levels
- -47 isobaric levels
- 7 flight levels above MSL: 914, 1524, 1829, 2134,
 2743, 3658, and 6000 m.
- 6 PBL layers: 30 hPa thick layers to 180 hPa AGL
- 2 AGL levels: 1000 & 4000 m (radar reflectivity).

wrfpost control file: wrf_cntrl.parm

```
GRIB packing precision

(PRESS ON MDL SFCS ) SCAL=(6.0)

L=(11000 00000 00000 00000 00000 00000 00000...

-(HEIGHT ON MDL SFCS ) SCAL=(6.0)

L=(11000 00000 00000 00000 00000 00000 00000...
```

Product description – wrfpost code keys on these character strings.

"1" = yes, "0" = no

 Except for AGL and isobaric levels, vertical levels are counted from the ground surface up in wrf_cntrl.parm.

wrfpost control file: wrf_cntrl.parm

- The included wrf_cntrl.parm file has entries for every possible output field.
- The "Fields produced by wrfpost" table in the user's guide may help understand the abbreviations.

Examples

Output T every 50 hPa from 50 hPa to 1000 hPa:

```
(TEMP ON PRESS SFCS ) SCAL=( 3.0)
L=(00000 01001 01010 10101 01010 10101 01010 10101 01010 10000...)
```

From left to right, the isobaric levels increase 2, 5, 7, 10, 20, 30, 50, 70, then 75-1000 hPa every 25 hPa.

Output instantaneous surface sensible heat flux:

Examples

Do not output cloud top height:

Output the U-wind component at the 5 lowest model levels:

copygb target grid definition

 The generic command to run copygb and horizontally interpolate onto a new grid is:

copygb.exe -xg"\${grid}" in.grb out.grb

- Three options on how to specify the target \$grid:
 - 1. Pre-defined NCEP standard grid number
 - 2. User-defined grid definition
 - 3. Grid navigation file created by wrfpost (NMM only)

Run copygb — Option 1

- Interpolate to a pre-defined NCEP standard grid (restrictive but simple)
 - For example, to interpolate onto NCEP grid 212:
 copygb.exe –xg212 in.grb out.grb

Descriptions of NCEP grids are available online:

http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html

Run *copygb* – Option 2

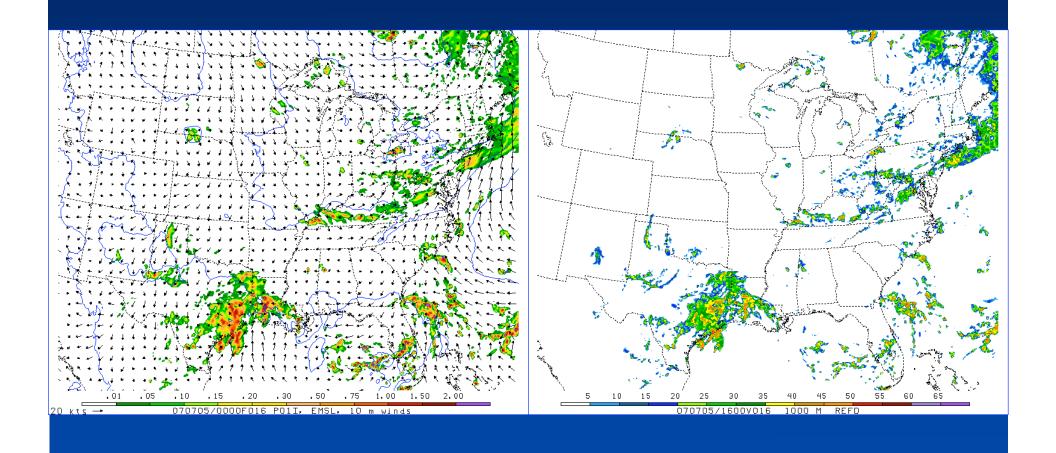
2. Create a user-defined grid by specifying a full set of grid parameters (flexible,complex)

```
central lon
                                        SW corner
  indicates user-
                 map type
                          # of points
                                                        (millidegrees)
                                        (millidegrees)
  defined grid
                 (3=LC)
                               STARTLAT STARTLON 8 CENLON
copygb.exe –xg"255 3 NX NY
     DX DY 0 64 TRUELAT1 TRUELAT2 " in.grb out.grb
horizontal spacing
                          true latitudes
(meters)
                           (millidegrees)
```

copygb –xg"255 3 185 129 12190 -133459 8 -95000 40635 40635 0 64 25000 25000" in.grb out.grb

Run copygb – Option 3

- 3. Read in grid navigation file created by *wrfpost* (NMM only, simple, restrictive)
 - Running wrfpost on WRF-NMM output produces two ASCII files containing grid navigation information which is similar in domain and grid spacing to the model integration domain.
 - copygb_gridnav.txt for a Lambert Conformal grid
 - copygb_hwrf.txt for a regular Lat-Lon grid


For example:

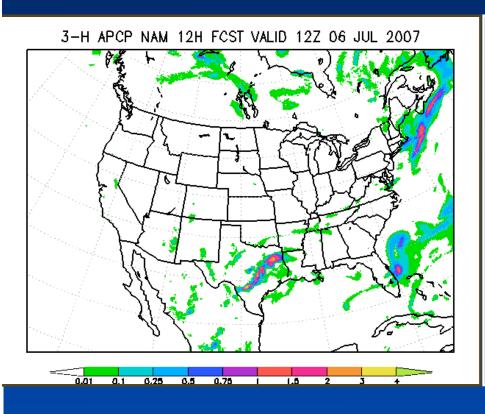
```
read nav < 'copygb_gridnav.txt'
copygb.exe -xg"${nav}" in.grb out.grb</pre>
```

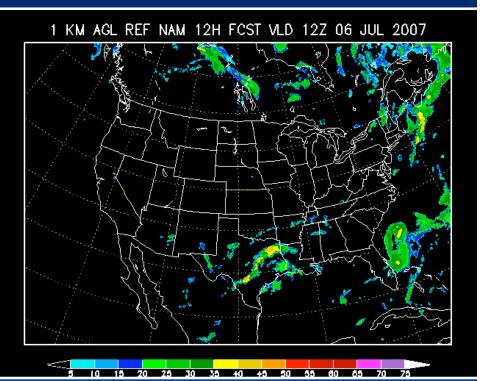
GRIB file visualization with GEMPAK

- The GEMPAK utility "nagrib" reads GRIB files from any non-staggered grid and generates GEMPAK-binary files that are readable by GEMPAK plotting programs
- GEMPAK can plot horizontal maps, vertical crosssections, meteograms, and sounding profiles.
- Package download and user guide are available online: http://my.unidata.ucar.edu/content/software/gempak/index.html
- A sample script named run_wrfpostandgempak is included in scripts/ that can be used to run wrfpost, copygb, and then plot various fields using GEMPAK.
- Further details on this script and using GEMPAK are available in the user's guide.

Forecast plotted with GEMPAK: Precipitation and derived Radar reflectivity

GRIB file visualization with GrADS


 GrADS also has utilities to read GRIB files on any nonstaggered grids and generate GrADS "control" files. The utilities grib2ctl and gribmap are available via: http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html


 Package download and user guide for GrADS are available online:

http://grads.iges.org/grads/gadoc/

 A sample script named run_wrfpostandgrads is included in scripts/ that can be used to the run wrfpost, copygb, and then plot various fields using GrADS.

Forecast plotted with GrADS: Precipitation and derived Radar reflectivity

Questions???