Modal and Sectional Aerosol Modules

Rahul Zaveri
Pacific Northwest National Laboratory

2008 WRF-chem Tutorial July 23, Boulder, CO

Overview

- Background
- Modal and Sectional Aerosol Modules in WRF-Chem
- Aerosol Thermodynamics and Gas-Particle Partitioning
- Some Results on Module Evaluation
- Future Updates
- Closing Remarks

Background

- Atmospheric particles sizes span three orders of magnitude
 - Ranges from a few nanometers to a few micrometers
- They can be composed of a wide variety of compounds
 - SO4, CH3SO3, NO3, CI, CO3, NH4, Na, Ca, K, Mg, other minerals and metal oxides, black carbon, primary organic mass, secondary organic mass, water, etc.
 - Not all particles contain all the above species they are externally mixed depending on their source/formation and processing history.
 - Different species and their mixtures have different properties
- A number of processes affect their size, number and mass concentrations, composition, and physico-chemical properties.
 - Gas and heterogeneous chemistries, gas-particle partitioning, coagulation, cloud and ice nucleation (shifts mass from one form/phase to another)
 - Dry and wet deposition (removes it completely)

Background

- Urban to global scale modeling of aerosol size, number, mass, composition, and their properties is not an easy task!
- Scientifically challenging
 - Many processes are still poorly understood at a fundamental level
 - Significant gaps in data still exist
- Computationally difficult
 - Numerical models of the various aerosol processes need to be computationally efficient and accurate
 - Require as little memory as possible

WRF-chem Aerosol Modules (official release)

GOCART

- Bulk aerosols (simple chemistry)
- Chin, M., et al. (2000) Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. JGR., 105, 24,671-24,687.

MADE-SORGAM

- Modal size distribution
- Ackermann I.J. et al. (1998) Modal Aerosol Dynamics Model for Europe: Development and first applications. Atmos. Environ., 32(17), 2981-2999.
- Schell B. et al. (2001) Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. JGR, 106(D22), 28,275-28,293.

MOSAIC

- Sectional size distribution
- Zaveri R.A. et al. (2008) Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). JGR, 113, D13204, doi:10.1029/2007JD008782.

Aerosol Size Distribution

Sub-Module Comparison

Process	MADE-SORGAM	MOSAIC
Homogeneous nucleation (new particle formation)	H ₂ SO ₄ + H ₂ O Wexler et al. [1994]	H ₂ SO ₄ + H ₂ O Wexler et al. [1994]
Coagulation	Brownian Kernel Whitby et al. [1991]	Brownian Kernel Jacobson et al. [1994]
Thermodynamics (inorganic activity coefficients)	Bromley [1973]	MTEM Zaveri et al. [2005a]
Thermodynamics (equilibrium phase state)	ISORROPIA Nenes et al. [1998]	MESA Zaveri et al. [2005b]
Gas-particle partitioning (condensation + reversible)	Dynamic Ackermann et al. [1995]	Dynamic Zaveri et al. [2008]

Thermodynamics & Gas-Particle Partitioning

Gas Phase

Together these processes typically represent the most numerically difficult and expensive portion of the overall aerosol module!

Aerosol Thermodynamics

- Mutual deliquescence point
- Solid-liquid equilibrium
- Equilibrium water content
- Water hysteresis

A good treatment for thermodynamics is needed for moderate to low RH values since it determines the particle size and composition, which have a profound effect on the aerosol optical properties

Gas-Particle Partitioning

- Mass transfer time scales range from a few seconds for small particles to a few hours for large particles
- The coupled gas-particle mass transfer ODEs are extremely stiff
- Conventional ODE solvers are very slow and/or lead to oscillatory solutions (e.g., due to numerical fluctuations in pH)

An efficient and accurate solver is needed for gas-particle mass transfer ODEs since they determine the particle size and composition evolution as a function of time.

Evaluation of Modules

- LSODES = benchmark for solving gasparticle mass transfer ODEs
- MOSAIC = dynamic mass transfer coupled with thermodynamics

Evaluation of Modules

- LSODES = benchmark for solving gasparticle mass transfer ODEs
- AIM = benchmark for equilibrium thermodynamics
- ▲ ISORROPIA = thermodynamics module used in MADE-SORGAM
- MOSAIC = dynamic mass transfer coupled with thermodynamics

Evaluation of Modules

- LSODES = benchmark for solving gasparticle mass transfer ODEs
- AIM = benchmark for equilibrium thermodynamics
- ▲ ISORROPIA = thermodynamics module used in MADE-SORGAM
- MOSAIC = dynamic mass transfer coupled with thermodynamics

Comparison of CPU Times

Test Case	MOSAIC, Average CPU time (μs) per bin per 5 min Integration Interval	ISORROPIA, CPU time (μs) per Equilibrium Calculation
Case 1	13	3.5
Case 2	20	418
Case 4	32	18
Case 5	37	52
Case 6	41	44
Case 7	40	65
Case 8	190	390
Case 9	266	107
Case 11	15	246
Case 12	32	43
Case 13	25	593
Case 14	14	46

Comparison of CPU Times

SCAQS 1987 Case: 3-day simulation

Module/Model	Process	Avg. CPU Time (ms) per Grid Cell per Hour	Relative CPU time (%)
Augmented CBM-Z	Gas photochemistry	2.5	12.5
MOSAIC (8 bins)	Dynamic aerosol chemistry and microphysics	12	60
Mie & Fast-J	Aerosol optics, radiative transfer, and photolysis rates	2.5	12.5
Modified Bott's Scheme	Horizontal and vertical transport	1.8	9
Miscellaneous	Input/output and other miscellaneous calculations	1.2	6
3-D PEGASUS (offline model)	Total	20	100

CPU times on a 3.0 GHz Intel Xeon

Future Updates

Secondary organic aerosol (SOA)

- Current schemes/modules severely underpredict SOA mass compared to observations
- Newer (and hopefully better!) SOA modules are being developed and will be added in the future

Externally-mixed aerosol representation

- Current aerosol modules assume internally mixed modes and bins
- Mixing-state will be resolved in the future updates to MOSAIC

Closing Remarks

- All models are wrong! Some are useful (if applied appropriately)
- Get to know your aerosol modules better
 - All modules are not created equal
 - Learn about their strengths and limitations (read papers!)
- Check with developer if you are trying something new
 - Most aerosol modules are not plug-n-play
 - Adding new chemistry and processes to existing aerosol modules requires caution

Acknowledgements

- Dr. Anthony Wexler and Dr. Simon Clegg for their web-based AIM thermodynamics models.
- Dr. Athanasios Nenes, Georgia Tech, for his efforts in the intercomparison of MOSAIC and ISORROPIA.
- DOE's Atmospheric Science Program and NASA Earth Science Enterprise for funding the development and evaluation of MOSAIC.

