WRF-Var Overview

Hans Huang

Acknowledge:

NCAR/MMM Division Staff
USWRP, NSF-OPP, NCAR Data Assimilation Initiative
US Air Force Weather Agency, Korean Meteorological Administration
Taiwanese Central Weather Bureau, Civil Aeronautics Administration

Outline of Talk

- 1) Introduction to data assimilation.
- 2) Basics of modern data assimilation.
- 3) Demonstration with a simple system.
- 4) WRF-Var.
- 5) Important issues.

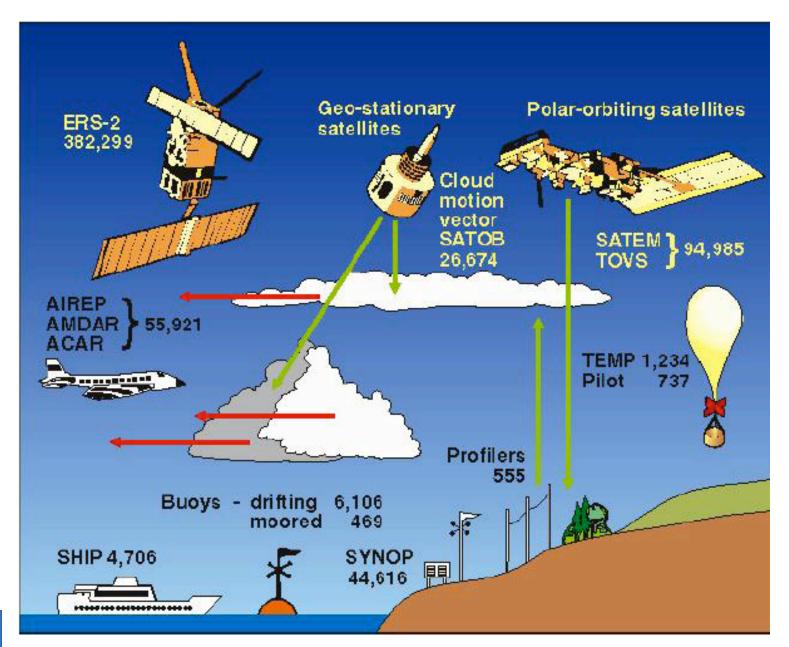
1. Introduction to data assimilation

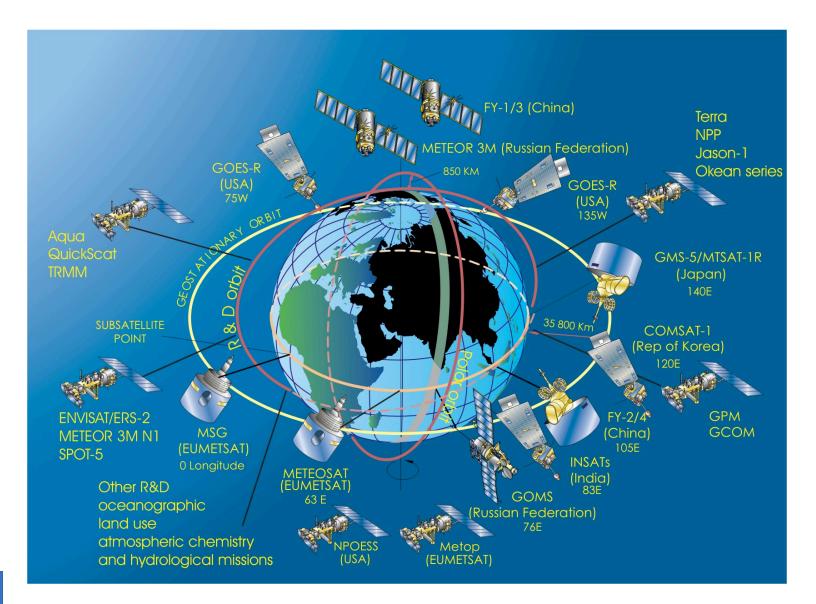
Modern weather forecast (Bjerknes, 1904)

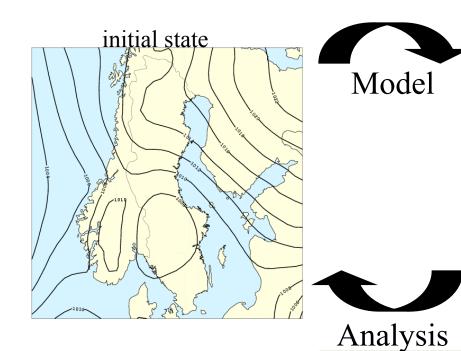
- A sufficiently accurate knowledge of the state of the atmosphere at the initial time
- A sufficiently accurate knowledge of the laws according to which one state of the atmosphere develops from another.

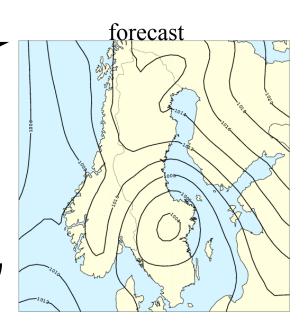
Vilhelm Bjerknes (1862–1951)

- Analysis: using observations and other information, we can specify the atmospheric state at a given initial time: "Today's Weather"
- Forecast: using the equations, we can calculate how this state will change over time: "Tomorrow's Weather"



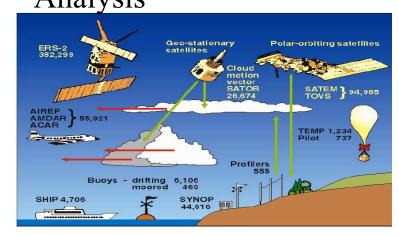






Model state x, $\sim 10^7$

Observations y^0 , $\sim 10^5$ - 10^6



Need For Data Assimilation in NWP

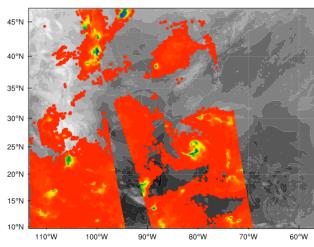
Fact: There are never enough good observations!!

Consider NWP model:

- Typical global model -425 * 325 * 50 = 7 million gridpts.
- Minimum number of variables = 6 (u, v, w, T, p, q).
- Number of degrees of freedom = 41.4 million.
- Typical number of observations = few x 10^6 but:
 - Inhomogeneous distribution of data.
 - Observations not always in sensitive areas.
 - Observations have errors.

Solutions:

- Use sophisticated (variational/ensemble) techniques.
- Use previous forecast to propagate past observations.
- Use approximate physical balance relationships.
 - __More/better observations!



Assimilation methods

- Empirical methods
 - Successive Correction Method (SCM)
 - Nudging
 - Physical Initialisation (PI), Latent Heat Nudging (LHN)
- Statistical methods
 - Optimal Interpolation (OI)
 - 3-Dimensional VARiational data assimilation (3DVAR)
 - 4-Dimensional VARiational data assimilation (4DVAR)
- Advanced methods
 - Extended Kalman Filter (EKF)
 - Ensemble Kalman Filter (EnFK)

2. Basics of modern data assimilation

The analysis problem for a given time

Consider a scalar x.

The background (normally a short-range forecast):

$$x^b = x^t + b.$$

The observation:

$$x^r = x^t + r.$$

The error statistics are assumed to be known:

$$\langle b \rangle = 0$$
, mean error (unbiased),
 $\langle r \rangle = 0$, mean error (unbiased),
 $\langle b^2 \rangle = B$, background error variance,
 $\langle r^2 \rangle = R$, observation error variance,
 $\langle br \rangle = 0$, nocorrelation between b and r,

where <.> is ensemble average.

BLUE: the Best Linear Unbiased Estimate

The analysis: $x^a = x^t + a$.

Search for the best estimate: $x^a = \alpha x^b + \beta x^r$

Substitute the definitions, we have:

$$\alpha + \beta = 1$$
.

$$< a > = 0$$

The variance:

$$A = \langle a^2 \rangle = B - 2\beta B + \beta^2 (B + R)$$

To determine β : $\frac{dA}{d\beta} = -2B + 2\beta(B+R) = 0$ we have

$$\beta = \frac{B}{B+R}.$$

$$A^{-1} = B^{-1} + R^{-1}$$

The analysis: $x^a = x^b + \frac{B}{B+R} (x^r - x^b)$.

"3DVAR"

The analysis is obtained by minimizing the cost function J, defined as:

$$J = \frac{1}{2} (x - x^b)^T B^{-1} (x - x^b) + \frac{1}{2} (x - x^r)^T R^{-1} (x - x^r).$$

The gradient of J with respect to x:

$$J' = B^{-1}(x - x^b) + R^{-1}(x - x^r).$$

At the minimum, J' = 0, we have:

$$x^{a} = x^{b} + \frac{B}{B+R} \left(x^{r} - x^{b} \right),$$

the same as BLUE.

Sequential data assimilation (I)

```
True states : ..., x_{i-1}^t, x_i^t, x_{i+1}^t, ...
```

Observations: ...,
$$x_{i-1}^r$$
, x_i^r , x_{i+1}^r , ...

Observations: ...,
$$x_{i-1}^r$$
, x_i^r , x_{i+1}^r , ...
Forecasts: ..., x_{i-1}^f , x_i^f , x_{i+1}^f , ...

Analyses : ...,
$$x_{i-1}^a$$
, x_i^a , x_{i+1}^a , ...

Sequential data assimilation (II)

Forecast model:

$$x_{i+1}^t = M(x_i^t) + q_i,$$

where q_i is the model error.

As q_i is unknown and x_i^a is the best estimate of x_i^t , the forecast model usually takes the form:

$$x_{i+1}^f = M(x_i^a).$$

OI (and 3DVAR):

$$x_i^a = x_i^f + \frac{B}{B+R} \left(x_i^r - x_i^f \right).$$

Sequential data assimilation (III)

4DVAR

4DVAR analysis is obtained by minimizing the cost function J, defined as:

$$J(x_i) = \frac{1}{2} \left(x_i - x_i^f \right)^T B^{-1} \left(x_i - x_i^f \right)$$
$$+ \frac{1}{2} \sum_{k=0}^K \left[M_{k-1} \left(x_i \right) - x_{i+k}^r \right]^T R^{-1} \left[M_{k-1} \left(x_i \right) - x_{i+k}^r \right]$$

where, K is the assimilation window and

$$M_{-1}(x_i) = x_i$$

$$M_0(x_i) = M(x_i)$$

$$M_{k-1}(x_i) = \underbrace{M(M(\dots M(x_i) \dots))}_{k}$$

Sequential data assimilation (IV)

4DVAR (continue)

The gradient of J with respect to x:

$$J = B^{-1} \left(x_i - x_i^f \right) + \sum_{k=0}^K \prod_{j=0}^{k-1} \mathbf{M}_{i+j}^T R^{-1} \left[M_{k-1} \left(x_i \right) - x_{i+k}^r \right]$$

where, \mathbf{M}_{i+j}^T is the adjoint model of M at time step i+j.

Sequential data assimilation (V)

Extended Kalman Filters:

True states: $x_{i+1}^t = M(x_i^t) + q_i$

Model states: $x_{i+1}^f = M(x_i^a)$

Forecast error: $x_{i+1}^f - x_{i+1}^t = M(x_i^a) - M(x_i^t) - q_i$

A major assumption in KF:

$$M(x_i^a) - M(x_i^t) \approx \mathbf{M}_i(x_i^a - x_i^t)$$

Sequential data assimilation (VI)

Extended Kalman Filters (continue):

Forecast error covariance matrix:

$$P_{i+1}^{f} = \left\langle \left(x_{i+1}^{f} - x_{i+1}^{t} \right) \left(x_{i+1}^{f} - x_{i+1}^{t} \right)^{T} \right\rangle$$

$$\approx \mathbf{M}_{i} \left\langle \left(x_{i}^{a} - x_{i}^{t} \right) \left(x_{i}^{a} - x_{i}^{t} \right)^{T} \right\rangle \mathbf{M}_{i}^{T} + \left\langle q_{i} q_{i}^{T} \right\rangle$$

$$= \mathbf{M}_{i} P_{i}^{a} \mathbf{M}_{i}^{T} + Q_{i}$$

Sequential data assimilation (VII)

Extended Kalman Filters (continue):

For the analysis step:

$$K_i = P_i^f \left(P_i^f + R \right)^{-1}$$
$$x_i^a = x_i^f + K_i (x_i^r - x_i^f)$$
$$P_i^a = (I - K_i) P_i^f$$

For the forecast step:

$$x_{i+1}^f = M(x_i^a)$$
$$P_{i+1}^f = \mathbf{M}_i P_i^a \mathbf{M}_i^T + Q_i$$

Sequential data assimilation (VIII)

From scalar to vector:

Number of grid points $\approx 10^7$:

$$x \to \mathbf{x}$$

$$x^b \to \mathbf{x^b}$$

Dimension of B, $P \approx 10^7 \times 10^7$.

Number of observations, 10⁶:

$$x^r \to \mathbf{y^o}$$

$$x - x^r \to H(\mathbf{x}) - \mathbf{y}^\mathbf{o}$$

Dimension of $R \approx 10^6 \times 10^6$.

Sequential data assimilation (IX)

OI:

$$\mathbf{x}_{i}^{a} = \mathbf{x}_{i}^{f} + \mathbf{B}\mathbf{H}^{T} \left(\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R}\right)^{-1} \left[\mathbf{y}^{o} - H(\mathbf{x}_{i}^{f})\right]$$
$$\mathbf{x}_{i+1}^{f} = M(\mathbf{x}_{i}^{a})$$

4DVAR:

$$J(\mathbf{x}_i) = \frac{1}{2} \left(\mathbf{x}_i - \mathbf{x}_i^f \right)^T \mathbf{B}^{-1} \left(\mathbf{x}_i - \mathbf{x}_i^f \right)$$
$$+ \frac{1}{2} \sum_{k=0}^K \left[H\left(M_{k-1} \left(\mathbf{x}_i \right) \right) - \mathbf{y}^{\mathbf{o}}_{i+k} \right]^T \mathbf{R}^{-1} \left[H\left(M_{k-1} \left(\mathbf{x}_i \right) \right) - \mathbf{y}^{\mathbf{o}}_{i+k} \right]$$

$$J' = \mathbf{B}^{-1} \left(\mathbf{x}_{i} - \mathbf{x}_{i}^{f} \right) + \sum_{k=0}^{K} \prod_{j=0}^{k-1} \mathbf{M}_{i+j}^{T} \mathbf{H}^{T} \mathbf{R}^{-1} \left[H \left(M_{k-1} \left(\mathbf{x}_{i} \right) \right) - \mathbf{y}_{i+k}^{o} \right]$$

Sequential data assimilation (X)

The Extended Kalman Filter:

For the analysis step i:

$$\mathbf{K}_{i} = \mathbf{P}_{i}^{f} \mathbf{H}_{i}^{T} \left(\mathbf{H}_{i} \mathbf{P}_{i}^{f} \mathbf{H}_{i}^{T} + \mathbf{R} \right)^{-1}$$

$$\mathbf{x}_{i}^{a} = \mathbf{x}_{i}^{f} + \mathbf{K}_{i} \left[\mathbf{y}^{o} - H(\mathbf{x}_{i}^{f}) \right]$$

$$\mathbf{P}_{i}^{a} = (\mathbf{I} - \mathbf{K}_{i} \mathbf{H}_{i}) \mathbf{P}_{i}^{f}$$

For the forecast step, from i to i + 1:

$$\mathbf{x}_{i+1}^f = M(\mathbf{x}_i^a)$$
$$\mathbf{P}_{i+1}^f = \mathbf{M}_i \mathbf{P}_i^a \mathbf{M}_i^T + \mathbf{Q}_i$$

Issues on data assimilation

- ullet Observations \mathbf{y}^o
- Observation operator *H*
- Observation errors R
- ullet Background ${f x}^b$
- Size of B: statistical model and tuning
- ullet M and \mathbf{M}^T : development and validity
- Minimization algorithm (Quasi-Newton; Conjugate Gradient; ...)
- Model errors Q
- ullet Size of ${f P}^f$ and ${f P}^a$: simplifications

3. Demonstration with a simple system

The Lorenz 1964 equation

Nonlinear equation (NL):

$$x_{i+1} = ax_i - x_i^2 = M(x_i)$$
.

Depending on a, three types of solution are found: steady state; limited cycle; chaotic.

Tangent Linear equations (TL):

$$x_{i+1}^{tl} = (a - 2x_i^{bs}) x_i^{tl} = \mathbf{M}_i x_i^{tl}.$$

(linearized around basic state x_i^{bs})

Adjoint equation (AD):

$$x_i^{ad} = (a - 2x_i^{bs}) x_{i+1}^{ad} = \mathbf{M}_i^T x_{i+1}^{ad}.$$

Note here for this simple case we have

$$\mathbf{M}_i = \mathbf{M}_i^T = \left(a - 2x_i^{bs}\right).$$

Issues on data assimilation for the system based on the Lorenz 64 eqation

- Observation operator $H = \mathbf{H} = \mathbf{H}^T = \mathbf{1}$
- Estimate of the true states generated (with model error!)
- Observation error $x^o x^t = \sigma_o G$
- Size of B is 1, but $B = \sigma_b^2$ still needs attention
- Model errors Q: $q_i = \sigma_m G$ when "true" states are generated; but we assume Q = B/4
- \bullet Size of \mathbf{P}^f or \mathbf{P}^a is 1.
- ullet M and M T : no e ort in development but their validity is still a major problem (model, assimilation window length, ...)
- Gaussian statistics

Too simple?

Try: Lorenz63 model

Try: 1-D advection equation

Try: 2-D shallow water equation

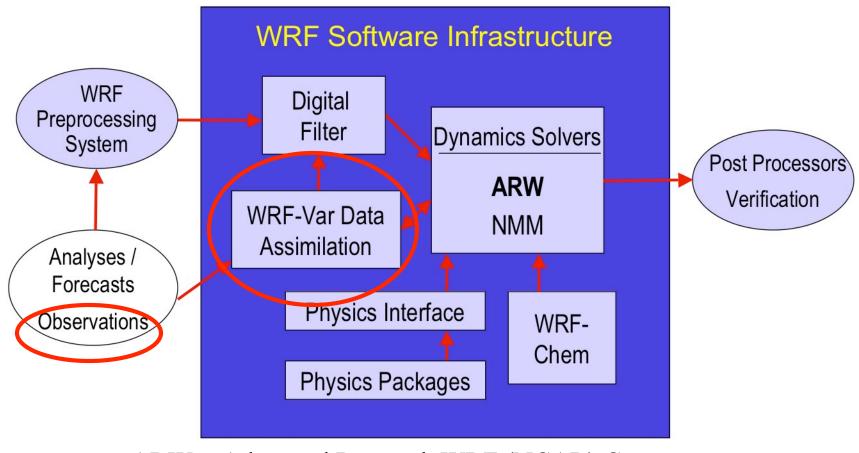
• • •

Try: ARW!!!

4. WRF-Var

...WRF-Var is a **Var**iational data assimilation system built within the software framework of **WRF**, used for application in both research and operational environments....

WRF Modeling System

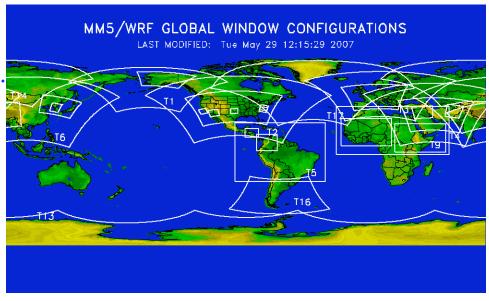


ARW = Advanced Research WRF (NCAR) Core NMM = Nonhydrostatic Mesoscale Model (NCEP) Core

WRF-Var (WRFDA) Data Assimilation Overview

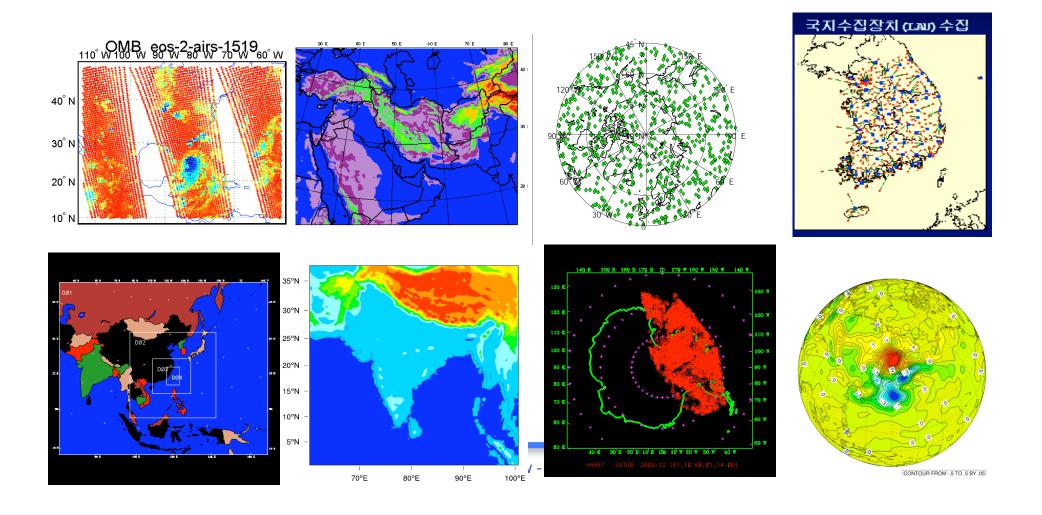
- Goal: Community WRF DA system for regional/global, research/operations, and deterministic/probabilistic applications.
- Techniques:
 - 3D-Var
 - 4D-Var (regional)
 - Ensemble DA,
 - Hybrid Variational/Ensemble DA.
- **Models:** WRF, MM5, KMA global.
- Support:
 - NCAR/ESSL/MMM/DAG
 - NCAR/RAL/JNT/DATC
- Observations: Conv.+Sat.+Radar

AFWA Theaters:



The WRF-Var Program

- NCAR staff: 23FTE, ~12 projects.
- Non-NCAR collaborators (AFWA, KMA, CWB, BMB, etc): ~10FTE.
- Community users: ~30 (more in 4000 general WRF downloads?).



WRF-Var (Latest Code)

- Major new features:
 - Direct assimilation of satellite radiances (AMSU, AIRS, SSMI/S, etc.).
 - Four-Dimensional Variational Data Assimilation (4D-Var).
 - Ensemble Transform Kalman Filter (ETKF).
 - Hybrid variational/ensemble DA.
 - Enhanced forecast error covariances (e.g. ensemble-based).
 - Major software engineering reorganization.
 - Remove obsolete features (e.g. MM5/GFS-based errors).
 - Verification package
 - Utilization of observations packed in NCEP PREPBUFR format
 - Inclusion of various scripts and NCL based graphics
- Unified WRF/WRF-Var code repository.
- Unified WRF/WRF-Var namelist
- Extended wiki-based documentation.

WRF-Var Version 3.0 (Release April 2008)

- Major new features:
 - Direct assimilation of satellite radiances (AMSU, AIRS, SSMI/S, etc.).
 - Four-Dimensional Variational Data Assimilation (4D-Var).
 - Ensemble Transform Kalman Filter (ETKF).
 - Hybrid variational/ensemble DA.
 - Enhanced forecast error covariances (e.g. ensemble-based).
 - Major software engineering reorganization.
 - Remove obsolete features (e.g. MM5/GFS-based errors).
 - Verification package
 - Utilization of observations packed in NCEP PREPBUFR format
 - Inclusion of various scripts and NCL based graphics
- Unified WRF/WRF-Var code repository.
- Unified WRF/WRF-Var namelist
- Extended wiki-based documentation.

Not included in public release due to lack of funding.

Collaborations welcome!

Future Plans

General Goals:

- Unified, multi-technique WRF DA system.
- Retain flexibility for research, multi-applications.
- Leverage international WRF community efforts.

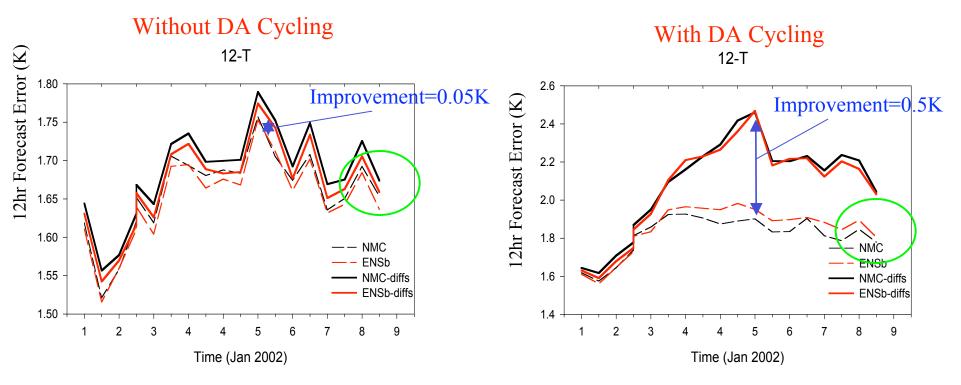
WRF-Var Development (MMM Division):

- 4D-Var (additional physics, optimization).
- Sensitivities tools (adjoint, ensemble, etc.).
- EnKF within WRF-Var -> WRFDA.
- Instrument-specific radiance QC, bias correction, etc.

Data Assimilation Testbed Center (DATC):

- Technique intercomparison: 3/4D-Var, EnKF, Hybrid
- Obs. impact: AIRS, TMI, SSMI/S, METOP.
- New Regional testbeds: US, India, Arctic, Tropics.

Importance of Data Assimilation For General WRF Development/Testing



Warning: Cycling with insufficient observations leads to degradation (1.8K vs. 1.7K)

Experiment (Mi-Seon Lee, KMA)

5. Important issues covered by this tutorial

- yº observations collection, quality control, bias correction, thinning, ...
- H observation operator, including the tangent linear operator H and the adjoint operator H^T .
- *M* forecast model, including the tangent linear model M and adjoint model M^T.
- **B** background error covariance ($\sim 10^7 \times 10^7$).
- R observation error covariance which includes the representative error $(10^6 \times 10^6)$.
- Minimization algorithm

