WRF 4D-Var System

Xin Zhang and Xiang-Yu Huang

MMM Division
National Center for Atmospheric Research
Boulder, Colorado, USA

Contents

- Current status of WRF 4D-Var
- Scientific Performance of WRF 4D-Var
- Software Engineering Performance of WRF 4D-Var
- On-going Works

4D Variational Data Assimilation

Current Status of WRF 4D-Var

Black - WRF-3DVar [**B**, **R**, $U=B^{1/2}$, $v^n=U^{-1}(x^n-x^{n-1})$]

Green – modification required

Blue – existing (for 4DVar)--WRF

Red – new development

$$J'_{\mathbf{v}n} = \mathbf{v}^{n} + \sum_{i=1}^{n-1} \mathbf{v}^{i} + \mathbf{U}^{T} \mathbf{S}_{V-W}^{T} \sum_{k=1}^{K} \mathbf{M}_{k}^{T} \mathbf{S}_{W-V}^{T} \mathbf{H}_{k}^{T} \mathbf{R}^{-1} [\mathbf{H}_{k} \mathbf{S}_{W-V}^{M} \mathbf{M}_{k}^{N} \mathbf{V}_{-W}^{M} \mathbf{U}^{-1} \mathbf{v}^{n} + H_{k} (\mathbf{M}_{k}(\mathbf{x}^{n-1})) - \mathbf{y}_{k}]$$

$$\mathbf{W} \mathbf{R} \mathbf{F} \mathbf{A} \mathbf{D}$$

$$\mathbf{W} \mathbf{R} \mathbf{F} \mathbf{T} \mathbf{L}$$

$$\mathbf{A} \mathbf{R} \mathbf{W} \mathbf{W} \mathbf{R} \mathbf{F}$$

(Huang, et.al. 2006: Preliminary results of WRF 4D-Var. WRF users' workshop, Boulder, Colorado.)

Basic system: 3 exes, disk I/O, parallel, full dyn, simple phys, JcDF

Single Observation Experiments

The idea behind single ob tests:

The solution of 3D-Var should be

$$\mathbf{x}^{a} = \mathbf{x}^{b} + \mathbf{B}\mathbf{H}^{T} [\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R}]^{-1} [\mathbf{y} - H\mathbf{x}^{b}]$$

Single observation

$$\mathbf{x}^a - \mathbf{x}^b = \mathbf{B}_i \left[\boldsymbol{\sigma}_b^2 + \boldsymbol{\sigma}_o^2 \right]^{-1} \left[\mathbf{y}_i - \mathbf{x}_i \right]$$

3D-Var \rightarrow 4D-Var: $H \rightarrow HM$; $H \rightarrow HM$; $H^T \rightarrow M^TH^T$

The solution of 4D-Var should be

$$\mathbf{x}^{a} = \mathbf{x}^{b} + \mathbf{B}\mathbf{M}^{T}\mathbf{H}^{T} \left[\mathbf{H} \left(\mathbf{M}\mathbf{B}\mathbf{M}^{T} \right) \mathbf{H}^{T} + \mathbf{R} \right]^{-1} \left[\mathbf{y} - HM\mathbf{x}^{b} \right]$$

Single observation, solution at observation time

$$\mathbf{M}(\mathbf{x}^a - \mathbf{x}^b) = (\mathbf{M}\mathbf{B}\mathbf{M}^T)_i [\boldsymbol{\sigma}_b^2 + \boldsymbol{\sigma}_o^2]^{-1} [\boldsymbol{y}_i - \boldsymbol{x}_i]$$

Analysis increments of 500mb θ

from 3D-Var at 00h and from 4D-Var at 06h due to a 500mb T observation at 06h

500mb θ increments at 00,01,02,03,04,05,06h to a 500mb T ob at 06h

500mb θ difference at 00,01,02,03,04,05,06h from two nonlinear runs (one from background; one from 4D-Var)

500mb θ difference at 00,01,02,03,04,05,06h from two nonlinear runs (one from background; one from FGAT)

Scientific Performance of WRF 4D-Var

Typhoon Haitang experiments:

5 experiments, every 6 h, 00Z 16 July - 00 Z 18 July, 2005. Typhoon Haitang hit Taiwan 00Z 18 July 2005

- 1. FGS forecast from the background [The background fields are 6-h WRF forecasts from NCEP GFS analysis.]
- 2. AVN forecast from the NCEP GFS analysis
- 3. 3DVAR forecast from WRF 3D-Var
- 4. FGAT first guess at appropriate time (A option of WRF-3DVAR)
- 5. 4DVAR forecast from WRF 4D-Var

Domain size: 91x73x17

Resolution: 45 km

Time Window: 6 Hours,

Observations: GTS conventional observations, bogus data from CWB

Typhoon Haitang Verification

48-h forecast typhoon tracks from FGS, AVN, 3DVAR, FGAT, 4DVAR, together with the observed best track. Forecasts are all started from 0000 UTC 16 July 2005.

KMA Heavy Rain Case

- Period: 12 UTC 4 May 00 UTC
 - 9 May, 2006
- **Grid**: (60,54,31)
- **Resolution**: 30km
- **Domain size**: the same as the operational 10km do-main.
- **Assimilation window**: 6 hours
- Warm started cycling run

Precipitation Verification

- For general cases, the performance of WRF 4D-Var is comparable with WRF 3D-Var.
- For some fast developing, fine scale cases such as squall line, tropical cyclone, heavy rainfall case, WRF 4D-Var does a much better job than 3D-Var.

Software Engineering Performance of WRF 4D-Var

- Ability to assimilation all kinds of observation as 3D-Var (Radiance and Radar).
- Both serial and parallel runs are supported.
- Tested Platforms: IBM with XLF, Linux with PGI & G95, Mac G5 with G95 & XLF.
- Multi-incremental 4D-Var.
- Flexible assimilation time window (for example, 15 minutes \sim 6 hours)

Timing of a Radar Assimilation Case on IBM blueice

Wall-clock time

Domain size:151x118x31

Resolution:4km

Time-step: 25s

Time window:15m

of iterations: 60

Obs.: OSSE radar wind

of obs.: 262517

Obs Freq: 5m

(P5.6 ASSIMILATION OF DOPPLER RADAR DATA WITH WRF 4DVAR FOR A CONVECT IVE CASE. Yong-Run Guo et al. 9th Annual WRF Users' Workshop)

On-going Works

- Remove Disk IO which is used as communication among WRF 4D-Var components, ESMF is a candidate.(~50% wall-clock time reduction, improve parallel scalability)
- Cleanup solve_em_ad (~90% cost), trade re-computation with memory (another ~50% wall-clock time reduction).

Welcome Collaboration

- Don't have enough resource to provide support to WRF-4DVAR
- Welcome collaboration!
 - Research Intention
 - Opportunity to write joint proposal
- People of Contact:
 - Hans Huang: huangx@ucar.edu
 - Xin Zhang: xinzhang@ucar.edu