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– Terrain representation
– Vertical coordinate
– Equations / variables
– Time integration scheme
– Grid staggering
– Advection scheme
– Time step parameters
– Filters
– Boundary conditions
– Nesting
– Map projections

ARW Dynamical Solver
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ARW, Terrain Representation

Vertical coordinate:
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Lower boundary condition for the geopotential 
specifies the terrain elevation, and specifying
the lowest coordinate surface to be the terrain
results in a terrain-following coordinate.
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Flux-Form Equations in ARW

( )
ts

t !!µ
µ

!!
" #=

#
= ,

Hydrostatic pressure coordinate:

!µµµµµ ="=== ,,,, wWvVuU

Conserved state variables:

hydrostatic pressure !

Non-conserved state variable: gz=!



July 2008

Flux-Form Equations in ARW
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Moist Equations in ARW

Moist Equations:
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Time Integration in ARW

3rd Order Runge-Kutta time integration
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Phase and amplitude errors for LF, RK3

Oscillation 
equation
analysis
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Time-Split Runge-Kutta Integration Scheme

t t+dtt+dt/3

t t+dtt+dt/2

t t+dt

Ut = Lfast(U) + Lslow(U)

Ls(Ut) U*

Ls(U*) U**

Ls(U**) Ut+dt

3rd order Runge-Kutta, 3 steps

• RK3 is 3rd order accurate for
linear eqns, 2nd order
accurate for nonlinear eqns.

• Stable for centered and
upwind advection schemes.

• Stable for Courant number
Udt/dx < 1.73

• Three Lslow(U) evaluations per
timestep.
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Runge-Kutta loop (steps 1, 2, and 3)
      (i) advection, p-grad, buoyancy using 
      (ii) physics if step 1, save for steps 2 and 3
      (iii) mixing, other non-RK dynamics, save…
      (iv) assemble dynamics tendencies
      Acoustic step loop
         (i) advance U,V, then µ, Θ, then w, φ
         (ii) time-average U,V, Ω
      End acoustic loop
      Advance scalars using time-averaged U,V, Ω
End Runge-Kutta loop
Adjustment physics (currently microphysics)

Begin time step

End time step

WRF ARW Model Integration Procedure
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Flux-Form Perturbation Equations

Introduce the
perturbation variables: !!!
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Flux-Form Perturbation Equations: Acoustic Step

Acoustic mode separation:

Recast Equations in terms of perturbation about time t
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Acoustic Integration in ARW

Forward-backward scheme, first advance the horizontal momentum

Second, advance continuity equation,
diagnose omega,
and advance thermodynamic equation
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Finally, vertically-implicit integration of the acoustic and 
gravity wave terms
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Hydrostatic Option

Instead of solving vertically implicit equations for        and    

Integrate the hydrostatic equation to obtain                :

Solve the linearized
ideal gas law for               :

and recover              from: !!
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         is no longer required during the integration.
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ARW model, grid staggering
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Advection in the ARW Model

2nd, 3rd, 4th, 5th and 6th order centered and upwind-biased schemes
are available in the ARW model.

Example:  5th order scheme
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For constant U, the 5th order flux divergence tendency becomes
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Advection in the ARW Model

The odd-ordered flux divergence schemes are equivalent to
the next higher ordered (even) flux-divergence scheme plus
a dissipation term of the higher even order with a
coefficient proportional to the Courant number.
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Mass Conservation in the ARW Model

control volume
(2D example)

Mass in a control volume is proportional to

since



July 2008

Mass Conservation in the ARW Model

Mass in a control volume
2D example

Mass conservation equation

Change in mass over a time step mass fluxes through 
control volume faces 
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Mass Conservation in the ARW Model

Mass in a control volume

Mass conservation equation

Horizontal fluxes through the 
vertical control-volume faces
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Mass Conservation in the ARW Model

Mass in a control volume

Mass conservation equation

Vertical fluxes through the 
horizontal control-volume faces
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Mass Conservation in the ARW Model

The same mass fluxes are used for neighboring 
grid cells - hence mass is conserved locally and globally.
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Scalar Mass Conservation in the ARW Model

Mass in a control volume

Mass conservation equation:

change in mass over a time step mass fluxes through control volume faces 

Scalar mass

change in tracer mass 
over a time step 

tracer mass fluxes through 
control volume faces 

Scalar mass conservation equation:
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ARW scheme is conservative, 
but not positive definite nor monotonic.
Removal of negative q      
results in spurious source of q      .

Moisture Transport in ARW
1D advection

overshoot

undershoot
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Positive-Definite Flux Renormalization

(1) Decompose flux:          fi
  = fi

upwind  + fi
c

(3) Update scalar eqn. (1) using   fi
  = fi

upwind  + R(fi
c)

 

Scalar update, last RK3 step

(2) Renormalize high-order correction fluxes  fi
c  such that

solution is positive definite:     fi
c  = R(fi

c)

(1)

Skamarock, MWR 2006, 2241-2250
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PD Limiter in ARW - 1D Example
Top-Hat Advection

Cr = 0.5, 1 revolution (200 steps)
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3rd order Runge-Kutta time step 

Acoustic time step

ARW Model: Dynamics Parameters

Courant number limited,    1D: 73.1<
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Generally stable using a timestep approximately
twice as large as used in a leapfrog model.

2D horizontal Courant number limited:  
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( )stepsacousticofnumber
RKsound
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Guidelines for time step
Δt in seconds should be about 6*Δx (grid size in
kilometers). Larger Δt can be used in smaller-scale
dry situations, but time_step_sound (default = 4)
should increase proportionately if larger Δt is used.
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Maximum Courant Number for Advection

(Wicker & Skamarock, 2002)

xtUaC !!= /

U = unstable

 3rd  4th  5th

Leapfrog (α=0.1)       U  0.66    U  0.57

RK2  0.90    U  0.39    U

RK3  1.63  1.26  1.43  1.09

Time
Integration

Scheme  6th 2nd

Advection Scheme

 0.91

   U

 1.73
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ARW Filters: Divergence Damping

Purpose: filter acoustic modes

γd = 0.1 recommended (default)

since
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ARW Filters: External Mode Filter
Purpose: filter the external mode

Additional terms:

γe = 0.01 recommended (default)

(primarily for real-data applications)
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ARW Filters: Vertically Implicit
Off-Centered Acoustic Step

Purpose: damp vertically-propagating acoustic modes

β = 0.1 recommended (default)
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ARW Filters: Vertical Velocity Damping

Purpose: damp anomalously-large vertical velocities
(usually associated with anomalous physics tendencies)

Additional term:

γw = 0.3 m/s2 recommended (default)
Crβ  = 1.0  typical value (default)
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ARW Filters: 2nd-Order Horizontal Mixing,
Horizontal-Deformation-Based Kh

Purpose: mixing on horizontal coordinate surfaces
(real-data applications)

where

Cs = 0.25 (Smagorinsky coefficient, default value)
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ARW Filters: Upper Level
Gravity-Wave Absorbers

(1) Absorbing layer using spatial filtering

Horizontal and vertical 2nd order diffusion operators with
eddy viscosities that increase with height.

zd - depth of the damping layer
Kdh, Kdv - horizontal and vertical eddy viscosities
γg - dimensionless damping coefficient, typical value 0.003

Not recommended !
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ARW Filters: Upper Level
Gravity-Wave Absorbers

(2)   Traditional Rayleigh Damping - idealized cases only!

τ(z) - damping rate (t-1)
zd - depth of the damping layer
γr - dimensionless damping coefficient
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ARW Filters: Upper Level
Gravity-Wave Absorbers

(3)   Implicit Rayleigh W - damping  (nonhydrostatic equations only!)

τ(z) - damping rate (t-1)
zd - depth of the damping layer
γr - dimensionless damping coefficient
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  Global WRF - Latitude-Longitude Grid
                 WRF Version 3 Release

Additions to WRF Version 2

 Map factors are generalized - mx and my

– Computational grid poles need not be geographic poles.
– Limited area and nesting capable.

 Polar boundary conditions
 Polar filtering
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ARW Map Projections
ARW map factors

Map-scale factor:

Continuity 
equation:

Control
volume:
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Lat-Long Grid Global WRF
Lat-Long WRFV3

Polar boundary condition (pole point).

Zero meriodional flux at
the poles (cell-face area is
zero).

v (poles) only needed for
meridional derivative of v
near the poles (some
approximation needed).

All other meriodional
derivatives are well-
defined near/at poles.

Meridional velocity (v) is
undefined at the poles.
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ARW Filters: Polar Filter
Converging gridlines severely limit timestep.
The polar filter removes this limitation.

Filter procedure - Along a grid latitude circle:
1. Fourier transform variable.
2. Filter Fourier coefficients.
3. Transform back to physical space.



July 2008

Runge-Kutta loop (steps 1, 2, and 3)
      (i) advection, p-grad, buoyancy, physics
      Acoustic step loop
         (i) advance U,V
         (ii) advance µ, Θ    
         (iii) advance w, φ  
      End acoustic loop
      Advance scalars
End Runge-Kutta loop
Adjustment physics (currently microphysics) 

Begin time step

End time step

WRF ARW Model Integration Procedure
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Runge-Kutta loop (steps 1, 2, and 3)
      (i) advection, p-grad, buoyancy, physics
      Acoustic step loop
         (i) advance U,V   (Fourier Filter U,V)
         (ii) advance µ, Θ    (Fourier Filter µ, Θ) 
         (iii) advance w, φ  (Fourier Filter w, φ)
      End acoustic loop
      Advance scalars  (Fourier Filter Sc)  
End Runge-Kutta loop
Adjustment physics (currently microphysics) (Fourier Filter Sc)

Begin time step

End time step

WRF ARW Model Integration Procedure

Timestep limited by minimum Δx outside of polar-filter region.
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ARW Model: Coordinate Options

1. Cartesian geometry:
          idealized cases
2.  Lambert Conformal:
          mid-latitude applications
3. Polar Stereographic:
          high-latitude applications
4. Mercator:
          low-latitude applications
5. Latitude-Longitude  (new in ARW V3)
          global
          regional

Projections 1-4 are isotropic (mx = my)
Latitude-Longitude projection is anistropic (mx = my)/
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ARW Model: Boundary Condition Options

1. Specified  (Coarse grid, real-data applications).
2. Open lateral boundaries (gravity-wave radiative).
3. Symmetric lateral boundary condition (free-slip wall).
4. Periodic lateral boundary conditions.
5. Nested boundary conditions (specified).

Lateral boundary conditions

Top boundary conditions
1. Constant pressure.

Bottom boundary conditions
1. Free slip.
2. Various B.L. implementations of surface drag, fluxes.
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ARW Model: Nesting

1. Multiple domains run concurrently
2. Multiple levels, multiple nests per level
3. Any integer ratio grid size and time step
4. Parent domain provides nest boundaries
5. Nest feeds back interior values to parent

2-way nesting

1-way nesting
1. Parent domain is run first
2.  ndown uses coarse output to generate nest boundary conditions
3. Nest initial conditions from fine-grid input file
4. Nest is run after ndown
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WRF ARW code
WRFV3WRFV3

testtest dyndyn__emem

idealized casesidealized cases

mainmain

real
Initialization codeInitialization code

++
dynamics solver codedynamics solver code

physphys
(physics)(physics)

shareshare

(b.c routines)
(model constants)

lots oflots of
otherother
stuffstuff

WRF ARW Tech Note
A Description of the Advanced Research WRF Version 3 (June 2008)

http://www.mmm.ucar.edu/wrf/users/pub-doc.html


