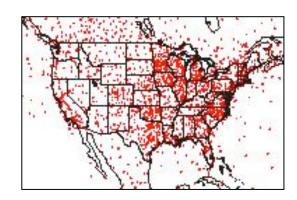


Point-Stat Tool


Point-Stat: Overview

- Compare gridded forecasts to point observations.
- Accumulate matched pairs over a defined area at a single point in time.
- Verify one or more variables/ levels.
- Analysis tool provided to aggregate through time.

Verification methods:

- Continuous statistics for raw fields.
- Categorical counts and statistics for thresholded fields.
- Parametric and non-parametric confidence intervals for statistics.
- Compute partial sums for raw fields and/or the raw matched pair values.
- Methods for probabilistic forecasts.

Point-Stat: Input/Output

- Input Files
 - Gridded forecast file
 - GRIB output of WRF Post-Processor (or other)
 - NetCDF output of PCP-Combine
 - Point observation file
 - NetCDF output of PB2NC
 - NetCDF output of ASCII2NC
 - ASCII configuration file
- Output Files
 - ASCII statistics file with all output lines (end with ".stat")
 - Optional ASCII files sorted by line type with a header row (ends with "_TYPE.txt")

Point-Stat: Usage

Usage: point_stat fcst_file obs_file config_file [-climo climo_file] [-ncfile netcdf file] [-valid beg time] [-valid_end time] [-outdir path] [-v level]

_			
fcst_file	Forecast file in GRIB or NetCDF		
obs_file	Point observation file in NetCDF (PB2NC or ASCII2NC)		
config_file	ASCII configuration file		
-climo	Climatological file for computing anomaly partial sums		
-ncfile	Additional point observation files in NetCDF		
-valid_beg	Beginning of valid time window for matching		
-valid_end	End of valid time window for matching		
-outdir	Output directory to be used		
-V	Level of logging		

Point-Stat: Configuration

- 28 configurable parameters only set a few:
 - Temperature at the surface (2-meter).
 - fcst_field[] = ["TMP/Z2"];
 - Temperature below freezing.
 - fcst_thresh[] = ["le273"];
 - Match to observations at the surface.
 - message_type[] = ["ADPSFC"];
 - Look at all the points in my domain.
 - mask_grid[] = ["FULL"];
 - Match observation to the nearest forecast value.
 - interp_wdth[] = [1];
 - Generate all possible statistic types, except probabilistic.
 - output_flag[] = [2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2];

Point-Stat: Run

METv2.0/bin/point_stat \
 sample_fcst.grb sample_pb.nc \
 PointStatConfig_TMPZ2 -outdir out -v 2

```
Forecast File: sample fcst.grb
Climatology File: none
Configuration File: PointStatConfig TMPZ2
Observation File: sample pb.nc
Reading records for TMP/Z2.
For TMP/Z2 found 1 forecast levels and 0 climatology levels.
Searching 179772 observations from 44076 PrepBufr messages.
Processing TMP/Z2 versus TMP/Z2, for observation type ADPSFC, over region FULL, for interpolation method
UW MEAN(1), using 11370 pairs.
Computing Categorical Statistics.
Computing Continuous Statistics.
Computing Scalar Partial Sums.
Output file: out/point stat 360000L 20070331 120000V.stat
Output file: out/point stat 360000L 20070331 120000V fho.txt
Output file: out/point stat 360000L 20070331 120000V ctc.txt
Output file: out/point stat 360000L 20070331 120000V cts.txt
Output file: out/point stat 360000L 20070331 120000V cnt.txt
Output file: out/point stat 360000L 20070331 120000V sl112.txt
Output file: out/point stat 360000L 20070331 120000V sal112.txt
Output file: out/point stat 360000L 20070331 120000V vl112.txt
Output file: out/point stat 360000L 20070331 120000V val112.txt
Output file: out/point stat 360000L 20070331 120000V mpr.txt
```

Point-Stat: ASCII Output Types

- Statistics line types: 13 possible
 - Categorical apply threshold
 - Contingency table counts and stats (FHO, CTC, CTS)
 - Continuous raw fields
 - Continuous statistics (CNT)
 - Partial Sums (SL1L2, SAL1L2, VL1L2, VAL1L2)
 - Probabilistic
 - Contingency table counts and stats (PCT, PSTD)
 - Continuous statistics and ROC curve (PJC, PRC)
 - Matched pairs
 - Raw matched pairs a lot of data! (MPR)
- 21 header columns common to all line types
- Remaining columns specific to each line type

Point-Stat: Sample Output

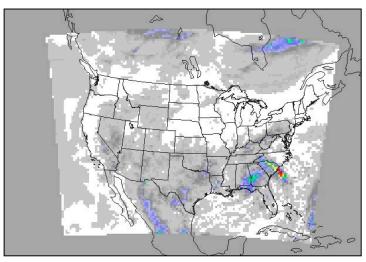
- 1. STAT file output for sample run:
 - 1 line each for FHO, CTC, CTS, CNT, SL1L2
 - 11,370 lines for MPR!
- 2. Additional TXT files for each line type

Point-Stat: CTC Output Line

VERSION	V2.0
MODEL	WRF
FCST_LEAD	360000
FCST_VALID_BEG	20070331_120000
FCST_VALID_END	20070331_120000
OBS_LEAD	000000
OBS_VALID_BEG	20070331_103000
OBS_VALID_END	20070331_133000
FCST_VAR	TMP
FCST_LEV	Z2
OBS_VAR	TMP
OBS_LEV	Z2
OBTYPE	ADPSFC

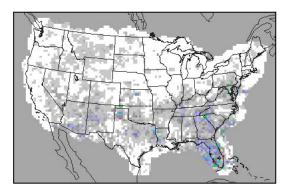
VX_MASK	FULL
INTERP_MTHD	UW_MEAN
INTERP_PNTS	1
FCST_THRESH	<273.000
OBS_THRESH	<273.000
COV_THRESH	NA
ALPHA	NA
LINE_TYPE	СТС
TOTAL	11370
FY_OY	1635
FY_ON	380
FN_OY	438
FN_ON	8917

Point-Stat: Matched Pairs


- Matched Pair (MPR) line type contains 1 line for each matched pair.
 - Data overload!

TOTAL	INDEX	OBS_LAT	OBS_LON	OBS_LVL	OBS_ELV	FCST	OBS	CLIMO
11370	1	43.93000	-60.01000	1010.79999	4.01053	271.87788	271.54999	NA
11370	2	46.43000	-71.93000	1016.09998	102.04903	268.50255	269.45001	NA
11370	3	44.23000	-78.36000	1004.50000	191.44466	272.94013	272.35001	NA
11370	4	51.67000	-124.40000	916.50000	872.82202	263.69020	264.95001	NA
11370	5	58.61000	-117.16000	973.90002	337.50449	272.37757	270.95001	NA
11370	6	52.18000	-122.04000	906.50000	938.08594	271.37738	264.35001	NA
11370	7	50.68000	-127.36000	1020.20001	22.03931	275.44020	275.04999	NA
11370	8	50.45000	-100.59000	949.09998	562.38477	272.18978	271.75000	NA
11370	9	57.13000	-61.47000	899.70001	834.87476	258.06464	254.64999	NA
11370	10	47.56000	-59.16000	1000.90002	40.06803	272.06486	269.54999	NA
11370	11	47.41000	-72.79000	1006.90002	169.37592	266.37724	265.95001	NA
11370	12	45.76000	-62.68000	1014.00000	1.99518	268.94018	268.64999	NA
11370	13	49.24000	-65.33000	1014.90002	28.96468	264.25276	267.25000	NA
11370	14	43.29000	-79.79000	1017.79999	77.03765	273.56474	275.85001	NA
11370	15	48.78000	-123.04000	1015.70001	23.93772	278.12724	280.25000	NA

Grid-Stat Tool


Grid-Stat: Overview

- Compare gridded forecasts to gridded observations on the same grid.
- Accumulate matched pairs over a defined area at a single point in time.
- Verify one or more variables/ levels.
- Analysis tool provided to aggregate through time.

Verification methods:

- Continuous statistics for raw fields.
- Categorical counts and statistics for thresholded fields.
- Parametric and non-parametric confidence intervals for statistics.
- Compute partial sums for raw fields.
- Methods for probabilistic forecasts.
- Continuous statistics and categorical counts/statistics using neighborhood verification method.

Grid-Stat: Input/Output

- Input Files
 - Gridded forecast and observation files
 - GRIB output of WRF Post-Processor (or other)
 - NetCDF output of PCP-Combine
 - ASCII configuration file
- Output Files
 - ASCII statistics file with all output lines (end with ".stat")
 - Optional ASCII files sorted by line type with a header row (ends with "_TYPE.txt")
 - Optional NetCDF matched pairs file

Grid-Stat: Usage

Usage: grid_stat

fcst_file
obs_file
config_file
[-outdir path]
[-v level]

fcst_file	Forecast file in GRIB or NetCDF	
obs_file	Observation file in GRIB or NetCDF	
config_file	ASCII configuration file	
-outdir	Output directory to be used	
-V	Level of logging	

Grid-Stat: Configuration

- 27 configurable parameters only set a few:
 - Precipitation accumulated over 24 hours.
 - fcst_field[] = ["APCP/A24"];
 - Any rain and moderate rain.
 - fcst_thresh[] = ["gt0.00 gt20.00"]; (mm)
 - Look at all the points and only the eastern United States.
 - mask_grid[] = ["FULL"];
 - mask_poly[] = ["EAST.poly"];
 - Compute neighborhood statistics with two sizes.
 - nbr_width[] = [3, 5];
 - Generate all possible statistic types, except probabilistic.
 - output_flag[] = [2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 1];

Grid-Stat: Run

METv2.0/bin/grid_stat \
 sample_fcst.grb sample_obs.nc \
 GridStatConfig APCP24 -outdir out -v 2

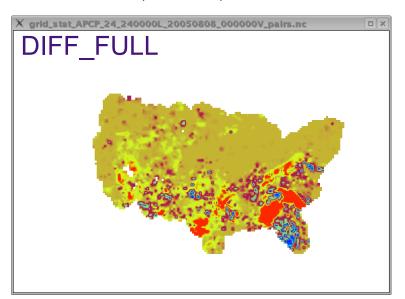
```
Forecast File: sample fcst.qrb
Observation File: sample obs.nc
Configuration File: GridStatConfig APCP24
Processing APCP/A24 versus APCP/A24, for interpolation method UW MEAN(1), over region FULL, using 6412 pairs.
Computing Categorical Statistics.
Computing Continuous Statistics.
Processing APCP/A24 versus APCP/A24, for interpolation method UW MEAN(1), over region EAST, using 2586 pairs.
Computing Categorical Statistics.
Computing Continuous Statistics.
Processing APCP/A24 versus APCP/A24, for interpolation method NBRHD(9), raw thresholds of >0.000 and >0.000,
over region EAST, using 5829 pairs.
... MORE NEIGHBORHOOD COMPUTATIONS ...
Output file: out/grid stat 240000L 20050808 000000V.stat
Output file: out/grid stat 240000L 20050808 000000V fho.txt
Output file: out/grid stat 240000L 20050808 000000V ctc.txt
Output file: out/grid stat 240000L 20050808 000000V cts.txt
Output file: out/grid stat 240000L 20050808 000000V cnt.txt
Output file: out/grid stat 240000L 20050808 000000V s1112.txt
Output file: out/grid stat 240000L 20050808 000000V nbrctc.txt
Output file: out/grid stat 240000L 20050808 000000V nbrcts.txt
Output file: out/grid stat 240000L 20050808 000000V nbrcnt.txt
Output file: out/grid stat 240000L 20050808 000000V pairs.nc
```

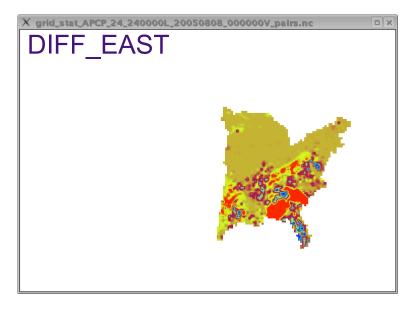
Grid-Stat: ASCII Output Types

- Statistics line types: 12 possible
 - Same as Point-Stat
 - FHO, CTC, CTS, CNT, and SL1L2
 - PCT, PSTD, PJC, and PRC
 - Omitted for Grid-Stat
 - *SAL1L2*, *VL1L2*, or *VAL1L2*
 - Neighborhood define neighborhood, apply threshold
 - Neighborhood continuous statistics (NBRCNT)
 - Neighborhood contingency table counts (NBRCTC)
 - Neighborhood contingency table statistics (NBRCTS)
- 21 header columns common to all line types
- Remaining columns specific to each line type

Grid-Stat: Sample Output

- 1. STAT file output for sample run:
 - 2 lines each for CNT and SL1L2
 - = 2 verification regions (FULL and EAST)
 - 4 lines each for FHO, CTC, and CTS
 - = 2 regions * 2 thresholds
 - 8 lines each for NBRCNT, NBRCTC, NBRCTS
 - = 2 regions * 2 thresholds * 2 neighborhood sizes
- 2. Additional TXT files for each line type
- 3. NetCDF file containing matched pairs


Grid-Stat: CTC Output Line


VERSION	V2.0
MODEL	WRF
FCST_LEAD	240000
FCST_VALID_BEG	20050808_000000
FCST_VALID_END	20050808_000000
OBS_LEAD	000000
OBS_VALID_BEG	20050808_000000
OBS_VALID_END	20050808_000000
FCST_VAR	APCP_24
FCST_LEV	A24
OBS_VAR	APCP_24
OBS_LEV	A24
OBTYPE	MC_PCP

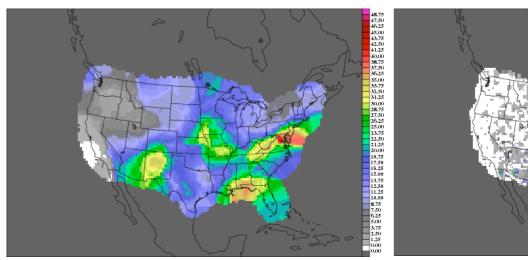
VX_MASK	EAST
INTERP_MTHD	UW_MEAN
INTERP_PNTS	1
FCST_THRESH	>=20.000
OBS_THRESH	>=20.000
COV_THRESH	NA
ALPHA	NA
LINE_TYPE	СТС
TOTAL	2586
FY_OY	5
FY_ON	104
FN_OY	70
FN_ON	2407

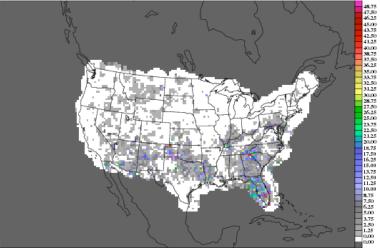
Grid-Stat: NetCDF Matched Pairs

- Forecast, observation, and difference fields for each combination of...
 - Variable, level, masking region, and interpolation method (smoothing)
- Sample output contains 6 fields:
 - FCST, OBS, and DIFF for FULL and EAST

Verifying Probabilities

- Probabilistic verification methods added for:
 - Grid-Stat, Point-Stat, and Stat-Analysis
- Define Nx2 contingency table using:
 - Multiple forecast probability thresholds
 - One observation threshold

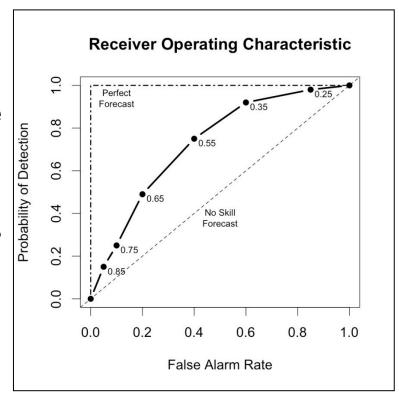

Forecast	Obser	Total	
Forecast	o = 1 (e.g., "Yes") o = 0 (e.g., "No")		
p_1 = midpoint of (0 and threshold1)	n ₁₁	n ₁₀	$n_{1} = n_{11} + n_{10}$
p ₂ = midpoint of (threshold1 and threshold2)	n ₂₁	n ₂₀	$n_2 = n_{21} + n_{20}$
:	• • •		:
p_j = midpoint of n_{ii} (threshold i and 1)		n _{io}	$n_{j} = n_{j1} + n_{j0}$
Total	$n_{\cdot 1} = \Sigma n_{i1}$	$n0 = \Sigma n_{i0}$	$T = \Sigma n_i$


Example:

- FCST: Probability of precip
 [0.00, 0.25, 0.50, 0.75, 1.00]
- OBS: Accumulated precip
- > 0.00

Verifying Probabilities: Example

Verify probability of precip with total precip:



- Configuration file settings:
 - fcst_field[] = ["POP/Z0/PROB"];
 - obs_field[] = ["APCP/A12"];
 - fcst_thresh[] = ["ge0.00 ge0.25 ge0.50 ge0.75 ge1.00"];
 - obs_thresh[] = ["gt0.00"];

Verifying Probabilities: Output

- Statistical Output (Line Type):
 - Nx2 Table Counts (PCT)
 - Joint/Conditional factorization table with calibration, refinement, likelihood, and base rate by threshold (PJC)
 - Receiver Operating Characteristic (ROC) plot points by threshold (PRC)
 - Reliability, resolution, uncertainty, area under ROC Curve, and Brier Score (PSTD)

Comparing Different Fields

- Grid-Stat and Point-Stat may be used to compare two different variables.
 - User must interpret results.
 - Example: Total Precip vs. Convective Precip
 - Configuration file settings:
 - Selecting variable/levels:
 - fcst_field[] = ["APCP/A24"];
 - obs_field[] = ["ACPCP/A24"];
 - Selecting thresholds:
 - fcst_thresh[] = ["gt0.0 ge20.0"];
 - obs_thresh[] = []; (leave blank to use fcst setting)

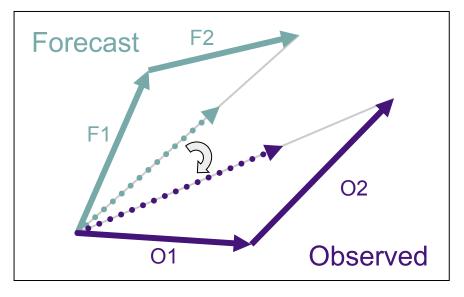
Verifying Winds

- Verify u, v, and speed, but not wind direction.
- Incremental support for wind direction:
 - Enhancements for Point-Stat and Grid-Stat:
 - Add wind speed thresholds to determine which u/v pairs are included in the vector partial sums (VL1L2).
 - Enhancements for Stat-Analysis:
 - Support new job to aggregate one or more vector partial sum lines and compute statistics for the wind direction errors.
 - Mean forecast and observation wind directions, mean error (F-O), and mean absolute error

Wind Direction: Example

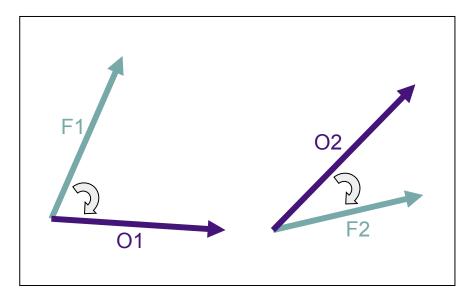
Point-Stat: VL1L2 Lines

```
VX MASK THRESH LINE TYPE TOTAL UFBAR
                                       VFBAR
                                                UOBAR
                                                         VOBAR
                                                                  UVFOBAR UVFFBAR UVOOBAR
DTC 165 >=1 000 /L1L2
                         653
                              1.91117 0.07900 1.40658 -0.06126 13.01039 18.12575 20.31649
                         279 3.13561 -0.35096 2.87061 -0.30072 26.50472 30.03257 38.25362
DTC 165 >= 3 000 /L1L2
DTC 165 >=5 000 /L1L2
                         96
                              5.21268 -2.74580 5.47813 -2.01667 49.90791 51.10427 70.78802
DTC 166 >=1 000 /L1L2
                         2431 -1.62742 0.25391 -1.23402 -0.04393 18.48309 29.70179 21.89615
DTC 166 >=3 000 /L1L2
                         1610 -1.84581 0.16061 -1.47491 -0.11217 24.45214 36.67400 29.36032
DTC 166 >=5.000 /L1L2
                         520 -0.93518 -0.45435 -0.25923 -0.49558 37.21821 52.51917 47.26483
```

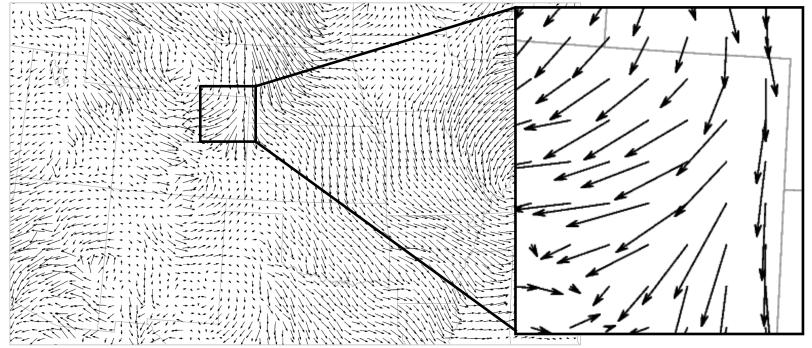

Stat-Analysis: aggregate_stat jobs

```
-job aggregate stat -fcst thresh >=1.000 -line type VL1L2 -out line type WDIR
    COL NAME: TOTAL FBAR
                             OBAR
                                      ME
                                                MAE
ROW MEAN WDIR: 2 183.25038 0.22749 -3.02289 7.88372
   AGGR WDIR: 3084 103.87238 85.96574 -17.90663 NA
            -job aggregate stat -fcst thresh >=3.000 -line type VL1L2 -out line type WDIR
JOB LIST:
    COL NAME: TOTAL FBAR
                            OBAR
ROW MEAN WDIR: 2
                    5.67967 0.81565 -4.86402 4.86402
   AGGR WDIR: 1889 94.38140 80.45939 -13.92200 NA
              -job aggregate stat -fcst thresh >=5.000 -line type VL1L2 -out line type WDIR
    COL NAME: TOTAL FBAR
                             OBAR
                                       ME
                                                 MAE
ROW MEAN WDIR: 2 0.93288
                             338.91179 -22.02109 22.02109
   AGGR WDIR: 616 358.38152 319.08761 -39.29391 NA
```

Wind Direction: Output


AGGR_WDIR

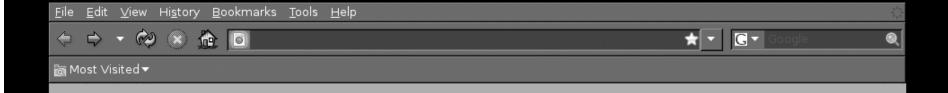
- Aggregate VL1L2 partial sums lines
- Derive wind directions and errors


ROW_MEAN_WDIR

- Derive wind directions and errors for each VL1L2 line
- Compute mean of errors

Wind Direction: Suggestions

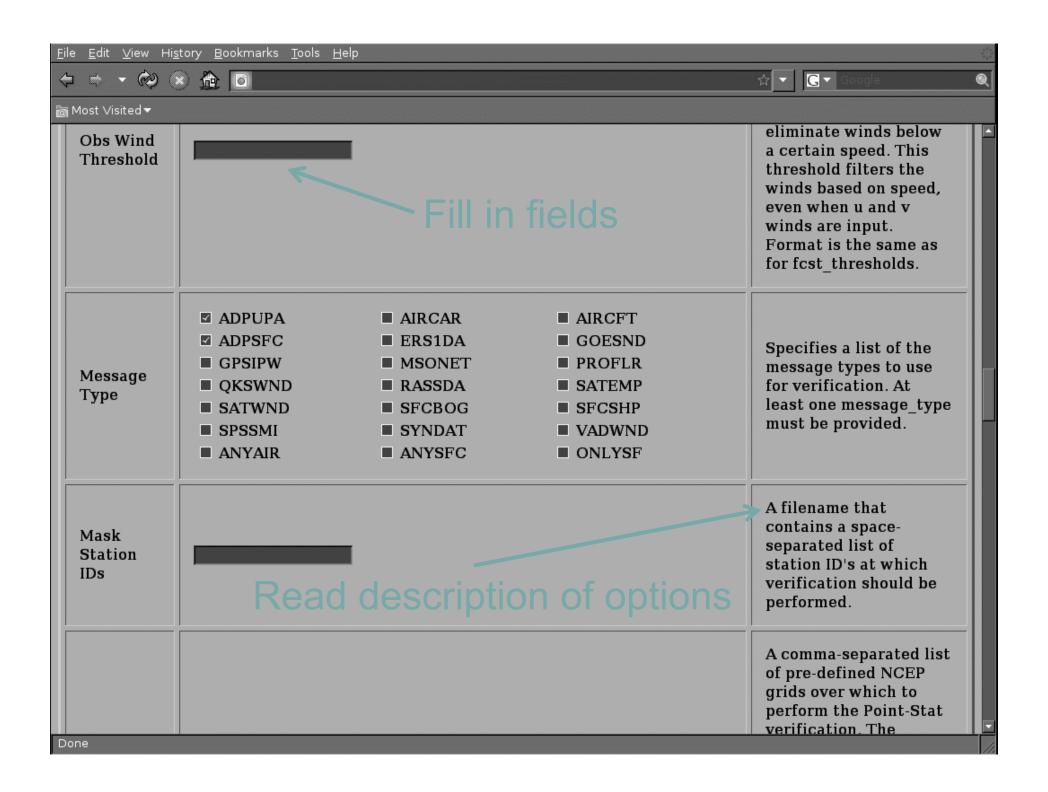
- When aggregating, wind directions can cancel out.
 - Verify over regions with unimodal wind direction.
 - Verify u and v components separately.

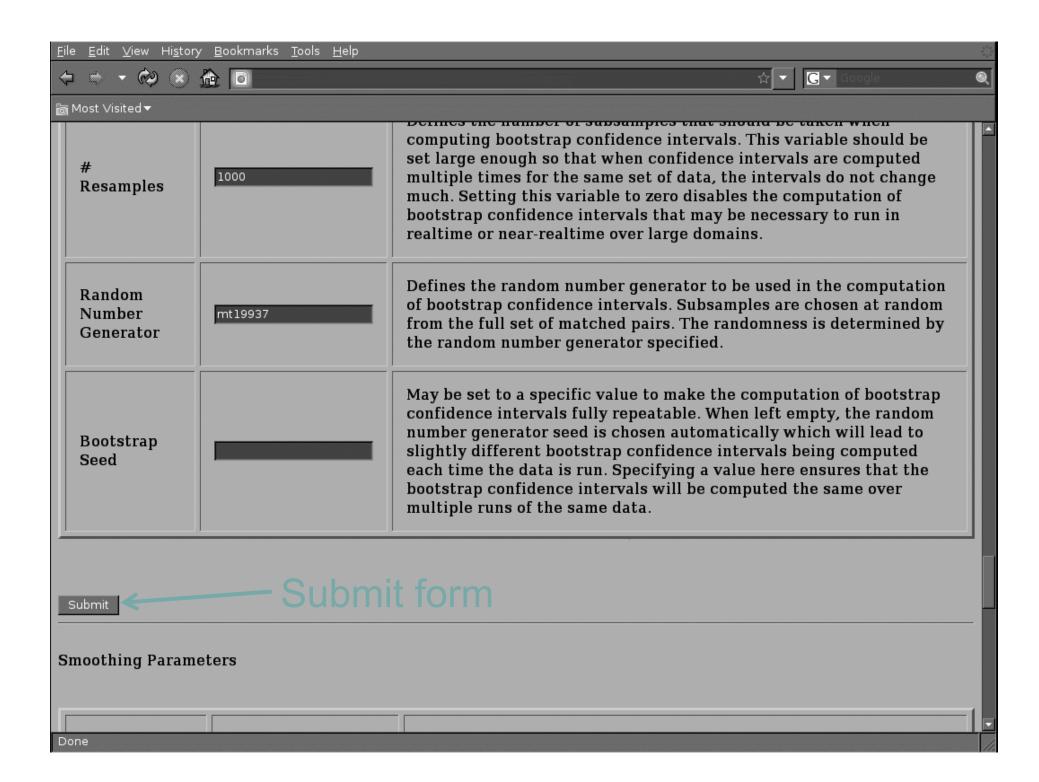

MET Config File GUI

 Now a web GUI exists to assist in creation of some of these files:

http://verif.rap.ucar.edu/cgi/metgui/base.cgi

- All fields are described.
- Fill in blank fields.
- Submit to get ASCII config file, then save from browser to your machine.


```
// Point Stat Config File
     Generated by MET Config File Web Utility
     June 23, 2009 12:33 pm MDT
model = "WRF";
beg ds = -5400;
end ds = -5400;
fcst field [] = [ "TMP/P750-900", "UGRD/Z10", "VGRD/Z10"];
obs field [] = [];
fcst_thresh [] = [ "lt273 ge273", "ge5", "ge5" ];
obs thresh [] = [];
fcst wind thresh [] = [ "NA" ];
obs wind thresh [] = [];
message_type [] = [ "ADPUPA", "ADPSFC" ];
mask grid [] = [ "DTC165", "DTC166" ];
mask_poly [] = [ "MET_BASE/data/poly/LMV.poly" ];
mask sid = "";
ci alpha [] = [ 0.10, 0.05 ];
boot interval = 1;
boot_rep_prop = 1.00;
n boot rep = 1000;
 oot rna = "mt19937"
```



Welcome to the MET config file generator!

Please choose which MET tool you're using:


```
// Point Stat Config File
   Generated by MET Config File Web Utility
   June 23, 2009 12:33 pm MDT
model = "WRF";
beg ds = -5400;
end ds = -5400;
fcst field [] = [ "TMP/P750-900", "UGRD/Z10", "VGRD/Z10"];
obs field [] = [];
fcst_thresh [] = [ "lt273 ge273", "ge5", "ge5" ];
obs_thresh [] = [];
fcst_wind_thresh [] = [ "NA" ];
obs wind thresh [] = [];
message type [] = [ "ADPUPA", "ADPSFC" ];
mask_grid [] = [ "DTC165", "DTC166" ];
mask_poly [] = [ "MET_BASE/data/poly/LMV.poly" ];
mask_sid = "";
ci_alpha [] = [ 0.10, 0.05 ];
boot_interval = 1;
boot_rep_prop = 1.00;
n_boot_rep = 1000;
```

Resulting file Save to your computer.