ARW Nudging # WRF Four-Dimensional Data Assimilation (FDDA) Jimy Dudhia **ARW** only ### **FDDA** - Method of nudging model towards observations or analysis - May be used for - Dynamical initialization (pre-forecast period) - Creating 4D meteorological datasets (e.g. for air quality model) - Boundary conditions (outer domain nudged towards analysis) ### Method - Model is run with extra nudging terms for horizontal winds, temperature and water vapor - In analysis nudging, these terms nudge pointby-point to a 3d space- and time-interpolated analysis field - In obs-nudging, points near observations are nudged based on model error at obs site - The nudging is a relaxation term with a userdefined time scale around an hour or more - Nudging will work with nesting and restarts ## **Dynamic Initialization** - Model domains are nudged towards analysis in a preforecast period of 6-12 hours - This has benefit of smooth start up at forecast time zero ## Four-Dimensional Met Analysis - Produces analyses between normal analysis times - High-resolution balanced and mass-continuity winds can be output to drive off-line air quality models ## **Boundary Conditions** - Nudge an outer domain towards analysis through forecast - This has benefit of providing smoother boundary conditions to domain of interest than if 15 km domain is the outer domain with interpolated-analysis boundary conditions ### FDDA Methods - Two Methods - Grid or analysis nudging (suitable for coarse resolution) - Observation or station nudging (suitable for finescale or asynoptic obs) - Nudging can be applied to winds, temperature, and water vapor - **Note:** nudging terms are fake sources, so avoid FDDA use in dynamics or budget studies # Analysis Nudging (grid_fdda=1) Each grid-point is nudged towards a value that is time-interpolated from analyses $$\frac{\partial p^* \alpha}{\partial t} = F(\alpha, \mathbf{x}, t) + G_{\alpha} \cdot W_{\alpha} \cdot \epsilon_{\alpha}(\mathbf{x}) \cdot p^* (\hat{\alpha}_0 - \alpha)$$ In WRF p* is mu ## **Analysis Nudging** $$\frac{\partial p^* \alpha}{\partial t} = F(\alpha, \mathbf{x}, t) + G_{\alpha} \cdot W_{\alpha} \cdot \epsilon_{\alpha}(\mathbf{x}) \cdot p^* (\hat{\alpha}_0 - \alpha)$$ - G is nudging inverse time scale - W is vertical weight (upper air and surface) - ε is a horizontal weight for obs density (not implemented yet) ## **Analysis Nudging** - ◆ 3d analysis nudging uses the WRF input fields at multiple times that are put in wrffdda_d01 file by program real when run with grid_fdda=1 - With low time-resolution analyses, it is recommended not to use 3d grid-nudging in the boundary layer, especially for temperature - Surface (2d) analysis nudging available in Version 3.1 - Nudges surface and boundary layer only # Analysis-Nudging namelist options #### Can choose - Frequency of nudging calculations (fgdt in minutes) - Nudging time scale for each variable (guv, gt, gq in inverse seconds) - Which variables not to nudge in the PBL (if_no_pbl_nudging_uv, etc.) - Model level for each variable below which nudging is turned off (if_zfac_uv, k_zfac_uv, etc.) - Ramping period over which nudging is turned off gradually (if_ramping, dt_ramp_min) # Obs Nudging (obs_nudge_opt=1) Each grid point is nudged using a weighted average of differences from observations within a radius of influence and time window $$egin{aligned} rac{\partial p^* lpha}{\partial t} &= F(lpha, \mathbf{x}, t) + G_lpha \cdot p^* rac{\sum_{i=1}^N W_i^2(\mathbf{x}, t) \cdot \gamma_i \cdot (lpha_o - \hat{lpha})_i}{\sum_{i=1}^N W_i(\mathbf{x}, t)} \ & W(\mathbf{x}, t) &= w_{xy} \cdot w_\sigma \cdot w_t \end{aligned}$$ $$w_{xy} = rac{R^2 - D^2}{R^2 + D^2}$$ $$0 \le D \le R$$ $$w_{xy}=0$$ $$D>R$$, - R is radius of influence - D is distance from ob modified by elevation difference $$w_t = 1$$ $$w_t = rac{ au - |t - t_0|}{ au/2}$$ $$|t-t_0|< au/2$$ $$au/2 \leq |t-t_0| \leq au$$ - \bullet τ is the specified time window for the obs - This is a function that ramps up and down - w_{σ} is the vertical weighting usually the vertical influence is set small (0.005 sigma) so that data is only assimilated on its own sigma level - obs input file is a special ascii file (OBS_DOMAIN101) with obs sorted in chronological order - each record is the obs (u, v, T, Q) at a given model position and time - Utility programs exist to convert data to this format from other common formats - •In V3.1 obsgrid.exe can create this file from standard observations that are in little_r format ## Obs-Nudging namelist options #### Can choose - Frequency of nudging calculations (iobs_ionf) - Nudging time scale for each variable (obs_coef_wind, etc.) - Horizontal and vertical radius of influence (obs_rinxy, obs_rinsig) - Time window (obs_twindo) - Ramping period over which nudging is turned off gradually (obs_idynin, obs_dtramp) ### New in Version 3.1 - Added 2d (surface) nudging (grid_sfdda=1) for surface analyses - wrfsfdda_d01 file created by obsgrid.exe - Added spectral nudging (grid_fdda=2) to do 3d nudging of only selected larger scales - Cut-off wavenumbers selected in namelist - Nudges u, v, theta, geopotential ## FDDA Summary - FDDA grid nudging is suitable for coarser grid sizes where analysis can be better than model-produced fields - Obs nudging can be used to assimilate asynoptic or high-frequency observations - Grid and obs nudging can be combined - FDDA has fake sources and sinks and so should not be used on the domain of interest and in the time period of interest for scientific studies and simulations | | | - | |-----|--|-------| | | | | | | |
_ | | | | | | | | | | | | | | End |