
WRF Registry and Examples

John Michalakes, NREL

Michael Duda, NCAR

Dave Gill, NCAR

WRF Software Architecture Working Group

Outline

•  Registry Mechanics

 - - - - - - - - - - - -

•  Examples

Introduction – Intended Audience

•  Intended audience for this tutorial session: scientific users and others who wish to:

–  Understand overall design concepts and motivations

–  Work with the code

–  Extend/modify the code to enable their work/research
–  Address problems as they arise

–  Adapt the code to take advantage of local computing resources

Introduction – WRF Resources

•  WRF project home page

–  http://www.wrf-model.org

•  WRF users page (linked from above)

–  http://www.mmm.ucar.edu/wrf/users

•  On line documentation (also from above)

–  http://www.mmm.ucar.edu/wrf/WG2/software_v2

•  WRF user services and help desk

–  wrfhelp@ucar.edu

WRF Software Architecture

•  Hierarchical software architecture

–  Insulate scientists' code from parallelism and other architecture/implementation-specific
details

–  Well-defined interfaces between layers, and external packages for communications, I/O, and
model coupling facilitates code reuse and exploiting of community infrastructure, e.g. ESMF.

Registry

WRF Registry
•  "Active data-dictionary” for managing WRF data structures

–  Database describing attributes of model state, intermediate, and configuration data
•  Dimensionality, number of time levels, staggering
•  Association with physics
•  I/O classification (history, initial, restart)
•  Communication points and patterns
•  Configuration lists (e.g. namelists)
•  Nesting down-scale interpolation and up-scale feedback

WRF Registry
•  "Active data-dictionary” for managing WRF data structures

–  Program for auto-generating sections of WRF from database:
•  2000 - 3000 Registry entries ⇒ 300-thousand lines of automatically generated WRF code

cd frame
cat *.F | wc -l
 21558

cat *.f90 | wc -l
 250653
cd ../share

cat *.F | wc -l
 34040
cat *.f90 | wc -l
 124004

•  Allocation statements for state data and I1 data
•  Interprocessor communications: Halo and periodic boundary updates, transposes
•  Code for defining and managing run-time configuration information
•  Code for forcing, feedback, shifting, and interpolation of nest data

WRF Registry

•  Why?

–  Automates time consuming, repetitive, error-prone programming
–  Insulates programmers and code from package dependencies
–  Allow rapid development
–  Documents the data

•  A Registry file is available for each of the dynamical cores, plus special purpose packages

•  Reference: Description of WRF Registry, http://www.mmm.ucar.edu/wrf/WG2/software_v2

Registry Data Base

•  Currently implemented as a text file: Registry/Registry.EM

•  Types of entry:

–  Dimspec – dimensions that are used to define arrays in the model

–  State – variables and arrays in the domain structure
–  I1 – local variables and arrays in solve, typically tendency values

–  Typedef – derived types that are subtypes of the domain structure

Registry Data Base

•  Types of entry:

–  Rconfig – configuration (e.g. namelist) variable or array

–  Package – attributes of a package (e.g. physics)

–  Halo – interprocessor communications
–  Period – communications for periodic boundary updates

–  Xpose – communications for parallel matrix transposes

–  Include – similar to a CPP #include file

Registry State Entry

•  Elements
–  Entry: The keyword “state”
–  Type: The type of the state variable or array (real, double, integer, logical, character, or

derived)
–  Sym: The symbolic name of the variable or array
–  Dims: A string denoting the dimensionality of the array or a hyphen (-)
–  Use: A string denoting association with a solver or 4D scalar array, or a hyphen
–  NumTLev: An integer indicating the number of time levels (for arrays) or hypen (for

variables)

Type Sym Dims Use Tlev Stag IO Dname Descrip

state real u ikjb dyn_em 2 X i01rhusdf "U" "X WIND COMPONENT“

Registry State Entry

•  Elements
–  Stagger: String indicating staggered dimensions of variable (X, Y, Z, or hyphen)
–  IO: String indicating whether and how the variable is subject to I/O and Nesting
–  DName: Metadata name for the variable
–  Units: Metadata units of the variable
–  Descrip: Metadata description of the variable

Type Sym Dims Use Tlev Stag IO Dname Descrip

state real u ikjb dyn_em 2 X i01rhusdf "U" "X WIND COMPONENT“

Registry State Entry

•  This single entry results in over 100 lines of code automatically added to more than 40
different locations in the WRF model, the real and ideal initialization programs, and in
the WRF-Var package

•  Nesting code to interpolate, force, feedback, and smooth u

•  Addition of u to the input, restart, history, and LBC I/O streams

Type Sym Dims Use Tlev Stag IO Dname Descrip

state real u ikjb dyn_em 2 X i01rhusdf "U" "X WIND COMPONENT“

Registry State Entry

Declaration and dynamic allocation of arrays in TYPE(domain)

Two 3D state arrays corresponding to the 2 time levels of U
u_1 (ims:ime , kms:kme , jms:jme)
u_2 (ims:ime , kms:kme , jms:jme)

Eight LBC arrays for boundary and boundary tendencies
 u_b[t][xy][se]

Example for boundary in the x-direction
u_bxse (jms:jme, kms:kme, spec_bdy_width, 4)

Type Sym Dims Use Tlev Stag IO Dname Descrip

state real u ikjb dyn_em 2 X i01rhusdf "U" "X WIND COMPONENT“

State Entry: Defining a variable-set for an I/O stream

•  Fields are added to a variable-set on an I/O stream in two ways

–  At compile-time with Registry

–  At run-time with namelist option

IO is a string that specifies if the variable is to be subject to initial, restart, or history I/
O. The string may consist of 'h' (subject to history I/O), 'i' (initial dataset), or
'r' (restart dataset). The 'h', 'r', and 'i' specifiers may appear in any order or
combination.

The ‘h’ and ‘i’ specifiers may be followed by an optional integer string consisting of
‘0’, ‘1’, … , ‘9’ Zero denotes that the variable is part of the principal input or history
I/O stream. The characters ‘1’ through ‘9’ denote one of the auxiliary input or history
I/O streams.

usdf refers to nesting options: u = UP, d = DOWN, s = SMOOTH, f = FORCE

Type Sym Dims Use Tlev Stag IO Dname Descrip

state real u ikjb dyn_em 2 X i01rhusdf "U" "X WIND COMPONENT“

State Entry: Defining Variable-set for an I/O stream

irh -- The state variable will be included in the WRF model input, restart, and history I/O
streams

irh13 -- The state variable has been added to the first and third auxiliary history output
streams; it has been removed from the principal history output stream, because zero is not
among the integers in the integer string that follows the character 'h'

rh01 -- The state variable has been added to the first auxiliary history output stream; it is
also retained in the principal history output

i205hr -- Now the state variable is included in the principal input stream as well as
auxiliary inputs 2 and 5. Note that the order of the integers is unimportant. The variable is
also in the principal history output stream

ir12h -- No effect; there is only 1 restart data stream

i01 -- Data goes into real and into WRF

i1 -- Data goes into real only

Type Sym How set Nentries Default
rconfig integer spec_bdy_width namelist,bdy_control 1 1

Rconfig Entry

•  This defines namelist entries

•  Elements

–  Entry: the keyword “rconfig”
–  Type: the type of the namelist variable (integer, real, logical, string)
–  Sym: the name of the namelist variable or array
–  How set: indicates how the variable is set: e.g. namelist or derived, and if namelist,

which block of the namelist it is set in

Rconfig Entry

•  This defines namelist entries

•  Elements

–  Nentries: specifies the dimensionality of the namelist variable or array. If 1 (one) it is a
variable and applies to all domains; otherwise specify max_domains (which is an
integer parameter defined in module_driver_constants.F).

–  Default: the default value of the variable to be used if none is specified in the namelist;
hyphen (-) for no default

Type Sym How set Nentries Default
rconfig integer spec_bdy_width namelist,bdy_control 1 1

Rconfig Entry

•  Result of this Registry Entry:
–  Define an namelist variable “spec_bdy_width” in the

bdy_control section of namelist.input
–  Type integer (others: real, logical, character)

–  If this is first entry in that section, define
“bdy_control” as a new section in the namelist.input
file

–  Specifies that bdy_control applies to all domains in
the run as number of entries = 1

Type Sym How set Nentries Default
rconfig integer spec_bdy_width namelist,bdy_control 1 1

 --- File: namelist.input ---

&bdy_control
 spec_bdy_width = 5,
 spec_zone = 1,
 relax_zone = 4,
 . . .
 /

Rconfig Entry

•  Result of this Registry Entry:

–  if Nentries is “max_domains” then the entry in the
namelist.input file is a comma-separate list, each
element of which applies to a separate domain

–  The single entry in the Registry file applies to each of
the separate domains

Type Sym How set Nentries Default
rconfig integer spec_bdy_width namelist,bdy_control 1 1

 --- File: namelist.input ---

&bdy_control
 spec_bdy_width = 5,
 spec_zone = 1,
 relax_zone = 4,
 . . .
 /

Rconfig Entry

•  Result of this Registry Entry:

–  Specify a default value of “1” if nothing is specified in
the namelist.input file

–  In the case of a multi-process run, generate code to
read in the bdy_control section of the namelist.input
file on one process and broadcast the value to all
other processes

Type Sym How set Nentries Default
rconfig integer spec_bdy_width namelist,bdy_control 1 1

 --- File: namelist.input ---

&bdy_control
 spec_bdy_width = 5,
 spec_zone = 1,
 relax_zone = 4,
 . . .
 /

Package Entry

•  Elements

–  Entry: the keyword “package”,
–  Package name: the name of the package: e.g. “kesslerscheme”
–  Associated rconfig choice: the name of a rconfig variable and the value of that variable

that choses this package

specification of microphysics options
package passiveqv mp_physics==0 - moist:qv
package kesslerscheme mp_physics==1 - moist:qv,qc,qr
package linscheme mp_physics==2 - moist:qv,qc,qr,qi,qs,qg
package ncepcloud3 mp_physics==3 - moist:qv,qc,qr
package ncepcloud5 mp_physics==4 - moist:qv,qc,qr,qi,qs

namelist entry that controls microphysics option
rconfig integer mp_physics namelist,physics max_domains 0

Package Entry

•  Elements

–  Package state vars: unused at present; must specify specify hyphen (-)
–  Associated variables: the names of 4D scalar arrays (moist, chem, scalar, tracer) and

the fields within those arrays this package uses, and the state variables
(state:u_gc, ...)

specification of microphysics options
package passiveqv mp_physics==0 - moist:qv
package kesslerscheme mp_physics==1 - moist:qv,qc,qr
package linscheme mp_physics==2 - moist:qv,qc,qr,qi,qs,qg
package ncepcloud3 mp_physics==3 - moist:qv,qc,qr
package ncepcloud5 mp_physics==4 - moist:qv,qc,qr,qi,qs

namelist entry that controls microphysics option
rconfig integer mp_physics namelist,physics max_domains 0

Package Entry

USE module_state_descriptions

...

Micro_select : SELECT CASE (mp_physics)

 CASE (KESSLERSCHEME)
 CALL kessler (...

 CASE (THOMPSON)
 CALL mp_gt_driver (...

 ...

END SELECT micro_select

Packages define
automatically
enumerated
types to avoid
the usual tests
(i.e. option #17
for microphysics)

Halo Entry

•  Elements

–  Entry: the keyword “halo”,
–  Communication name: given to the particular communication, must be identical in the

source code (case matters!)
–  Associated dynamical core: dyn_em XOR dyn_nmm are acceptable
–  Stencil size: 4, or (2n+1)^2-1 (i.e. 8, 24, 48; semi-colon separated)
–  Which variables: names of the variables (comma separated)

Halo update communications
halo HALO_EM_TKE_C dyn_em 4:ph_2,phb

HALO Entry

Halo update communications
halo HALO_EM_TKE_C dyn_em 4:ph_2,phb

Place communication in dyn_em/solve_em.F

#ifdef DM_PARALLEL
include "HALO_EM_TKE_C.inc"
#endif

PERIOD and XPOSE Entry

Transpose update communications
xpose XPOSE_POLAR_FILTER_TOPO dyn_em t_init,t_xxx,dum_yyy

Period update communications
period PERIOD_EM_COUPLE_A dyn_em 2:mub,mu_1,mu_2

•  Elements

–  Entry: the keyword “period” or “xpose” (transpose)
–  Communication name: given to the particular communication, must be identical in the

source code (case matters!)
–  Associated dynamical core: dyn_em XOR dyn_nmm are acceptable
–  Stencil size for period: # rows and columns to share for periodic lateral BCs
–  Which variables for period: names of the variables (comma separated)
–  Which variables for xpose: original variable (3d), x-transposed and y-transposed fields

Registry IO: registry.io_boilerplate

•  include – method to populate Registry without duplicating information which is prone to
error

–  Entry: the keyword “include”
–  Name: file name to include in the Registry file

Entry Name
include registry.io_boilerplate

Registry IO: registry.io_boilerplate

•  rconfig - namelist entries
–  Entry: the keyword “rconfig”,
–  Type: integer, logical, real
–  Symbol: name of variable in namelist
–  How set: name of the resident record (usually)
–  Number of entries: either “1” or “max_domains”
–  Default value: what to define if not in namelist.input file
–  NOT REQUIRED name and description: for self documentation purposes

Entry Type Sym How set
rconfig character auxinput5_inname namelist,time_control

Num Entries Default
 1 "auxinput5_d<domain>_<date>”

<domain> expanded to 2-digit domain identifier
<date> expanded to the usual WRF “years down to seconds” date string

Registry IO: possible values for this single stream
Entry Type Sym How set

rconfig character auxinput5_outname namelist,time_control
rconfig character auxinput5_inname namelist,time_control
rconfig integer auxinput5_interval_mo namelist,time_control
rconfig integer auxinput5_interval_d namelist,time_control
rconfig integer auxinput5_interval_h namelist,time_control
rconfig integer auxinput5_interval_m namelist,time_control
rconfig integer auxinput5_interval_s namelist,time_control
rconfig integer auxinput5_interval namelist,time_control
rconfig integer auxinput5_begin_y namelist,time_control
rconfig integer auxinput5_begin_mo namelist,time_control
rconfig integer auxinput5_begin_d namelist,time_control
rconfig integer auxinput5_begin_h namelist,time_control
rconfig integer auxinput5_begin_m namelist,time_control
rconfig integer auxinput5_begin_s namelist,time_control
rconfig integer auxinput5_end_y namelist,time_control
rconfig integer auxinput5_end_mo namelist,time_control
rconfig integer auxinput5_end_d namelist,time_control
rconfig integer auxinput5_end_h namelist,time_control
rconfig integer auxinput5_end_m namelist,time_control
rconfig integer auxinput5_end_s namelist,time_control
rconfig integer io_form_auxinput5 namelist,time_control

Registry IO: different available input streams
Entry Type Sym How set

rconfig integer io_form_input namelist,time_control
rconfig integer io_form_history namelist,time_control
rconfig integer io_form_restart namelist,time_control
rconfig integer io_form_boundary namelist,time_control

rconfig integer io_form_auxinput1 namelist,time_control
rconfig integer io_form_auxinput2 namelist,time_control
rconfig integer io_form_auxinput3 namelist,time_control
rconfig integer io_form_auxinput4 namelist,time_control
rconfig integer io_form_auxinput5 namelist,time_control
rconfig integer io_form_auxinput6 namelist,time_control
rconfig integer io_form_auxinput7 namelist,time_control
rconfig integer io_form_auxinput8 namelist,time_control
 through
rconfig integer io_form_auxinput24 namelist,time_control

rconfig integer io_form_gfdda namelist,fdda
rconfig integer io_form_auxinput11 namelist,time_control

For any
given WRF
model fcst,
users have
access to
these input
streams

Registry IO: registry.io_boilerplate
Entry Type Sym How set

rconfig integer io_form_auxhist1 namelist,time_control
rconfig integer io_form_auxhist2 namelist,time_control
rconfig integer io_form_auxhist3 namelist,time_control
rconfig integer io_form_auxhist4 namelist,time_control
rconfig integer io_form_auxhist5 namelist,time_control
rconfig integer io_form_auxhist6 namelist,time_control
rconfig integer io_form_auxhist7 namelist,time_control
rconfig integer io_form_auxhist8 namelist,time_control
rconfig integer io_form_auxhist9 namelist,time_control
rconfig integer io_form_auxhist10 namelist,time_control
rconfig integer io_form_auxhist11 namelist,time_control
 through
rconfig integer io_form_auxhist24 namelist,time_control

… and
access to
these
output
streams

Registry Data Base - Review

•  Currently implemented as a text file: Registry/Registry.EM

•  Types of entry:

–  Dimspec – dimensions that are used to define arrays in the model

–  State – variables and arrays in the domain structure
–  I1 – local variables and arrays in solve, typically tendency values

–  Typedef – derived types that are subtypes of the domain structure

Registry Data Base - Review

•  Types of entry:

–  Rconfig – configuration (e.g. namelist) variable or array

–  Package – attributes of a package (e.g. physics)

–  Halo – interprocessor communications
–  Period – communications for periodic boundary updates

–  Xpose – communications for parallel matrix transposes

–  Include – similar to a CPP #include file

Outline

•  Registry Mechanics

 - - - - - - - - - - - -

•  Examples

–  0) Add output without recompiling
–  1) Add a variable to the namelist

–  2) Add an array

–  3) Compute a diagnostic

–  4) Add a physics package

Example 0: Add output without recompiling

•  Edit the namelist.input file, the time_control namelist record

iofields_filename = "myoutfields.txt”

io_form_auxhist7 = 2 (choose an available stream)

auxhist7_interval = 10 (every 10 minutes)

•  Place the fields that you want in the named text file myoutfields.txt

+:h:7:RAINC,RAINNC

•  Where “+” means ADD this variable to the output stream, “h” is the history
stream, and “7” is the stream number

•  iofields_filename is MAX_DOMAIN dimensioned

Example 0: Add output without recompiling

•  Edit the namelist.input file, the time_control namelist record

iofields_filename = "myoutfields.txt”

•  Place the fields that you want in the named text file myoutfields.txt

-:h:0:W,PB,P

•  Where “-” means REMOVE this variable from the output stream, “h” is the history
stream, and “0” is the stream number (standard WRF history file)

Example 1: Add a variable to the namelist

•  Use the examples for the rconfig section of the Registry

•  Find a namelist variable similar to what you want

–  Integer vs real vs logical vs character

–  Single value vs value per domain
–  Select appropriate namelist record

•  Insert your mods in all appropriate Registry files

•  Remember that ALL Registry changes require that the WRF code be cleaned and

rebuilt

./clean -a

./configure

./compile em_real

Example 1: Add a variable to the namelist

•  Adding a variable to the namelist requires the inclusion of a new line in the Registry

file:

rconfig integer my_option_1 namelist,time_control 1 0 - "my_option_1" "test namelist option”
rconfig integer my_option_2 namelist,time_control max_domains 0

•  Accessing the variable is through an automatically generated function:

USE module_configure
INTEGER :: my_option_1 , my_option_2

CALL nl_get_my_option_1(1, my_option_1)
CALL nl_set_my_option_2(grid%id, my_option_2)

Example 1: Add a variable to the namelist

•  You also have access to the namelist variables from the grid structure …

SUBROUTINE foo (grid , ...)

 USE module_domain
 TYPE(domain) :: grid

 print *,grid%my_option_1
 print *,grid%my_option_2

Example 1: Add a variable to the namelist

•  … and you also have access to the namelist variables from config_flags

SUBROUTINE foo2 (config_flags , ...)

 USE module_configure
 TYPE(grid_config_rec_type) :: config_flags

 print *,config_flags%my_option_1
 print *,config_flags%my_option_2

Example 1: Add a variable to the namelist

•  What your variable looks like in the namelist.input file

 &time_control
 run_days = 0,
 run_hours = 0,
 run_minutes = 40,
 run_seconds = 0,
 start_year = 2006, 2006, 2006,
 my_option_1 = 17
 my_option_2 = 1, 2, 3

Examples

•  1) Add a variable to the namelist

•  2) Add an array to solver, and IO stream

•  3) Compute a diagnostic

•  4) Add a physics package

Example 2: Add an Array

•  Adding an array to the solver, requires adding a single line in the Registry

•  Use the previous Registry instructions for either a state or I1 variable

•  Select a variable similar to one that you would like to add

–  1d, 2d, or 3d
–  Staggered (X, Y, Z, or not “-”, do not leave blank)

–  Associated with a package

–  Part of a 4d array

–  Input (012), output, restart

–  Nesting, lateral forcing, feedback
–  Masked

Example 2: Add an Array
•  Copy the “similar” field’s line and make a few edits

•  Remember, no Registry change takes effect until a “clean -a” and rebuild

•  Always modify Registry.core_name, where core_name might be EM for example

state real h_diabatic ikj misc 1 - r \!
 "h_diabatic" "PREVIOUS TIMESTEP CONDENSATIONAL HEATING"!

state real msft ij misc 1 - i012rhdu=(copy_fcnm) \!
 "MAPFAC_M" "Map scale factor on mass grid"!

state real ht ij misc 1 - i012rhdus \!
 "HGT" "Terrain Height" !

state real ht_input ij misc 1 - - \!
 "HGT_INPUT" "Terrain Height from FG Input File"!

state real TSK_SAVE ij misc 1 - - \!
 "TSK_SAVE" "SURFACE SKIN TEMPERATURE" "K"!

•  1) Add a variable to the namelist

•  2) Add an array

•  3) Compute a diagnostic

•  4) Add a physics package

Examples

Example 3: Compute a Diagnostic

•  Problem: Output global average and global maximum and lat/lon location of

maximum for 10 meter wind speed in WRF

•  Steps:

–  Modify solve to compute wind-speed and then compute the local sum and
maxima at the end of each time step

–  Use reduction operations built-in to WRF software to compute the global
qualities

–  Output these on one process (process zero, the “monitor” process)

Example 3: Compute a Diagnostic

•  Compute local sum and local max and the local indices of the local maximum

 --- File: dyn_em/solve_em.F (near the end) ---

! Compute local maximum and sum of 10m wind-speed
 sum_ws = 0.
 max_ws = 0.
 DO j = jps, jpe
 DO i = ips, ipe
 wind_vel = sqrt(grid%u10(i,j)**2+ grid%v10(i,j)**2)
 IF (wind_vel .GT. max_ws) THEN
 max_ws = wind_vel
 idex = i
 jdex = j
 ENDIF
 sum_ws = sum_ws + wind_vel
 ENDDO
 ENDDO

Example 3: Compute a Diagnostic

•  Compute global sum, global max, and indices of the global max (WRF intrinsics)

! Compute global sum
 sum_ws = wrf_dm_sum_real (sum_ws)

! Compute global maximum and associated i,j point
 CALL wrf_dm_maxval_real (max_ws, idex, jdex)

Example 3: Compute a Diagnostic
•  On the process that contains the maximum value, obtain the latitude and longitude of that

point; on other processes set to an artificially low value.

•  The use parallel reduction to store that result on every process

 IF (ips .LE. idex .AND. idex .LE. ipe .AND. &
 jps .LE. jdex .AND. jdex .LE. jpe) THEN
 glat = grid%xlat(idex,jdex)
 glon = grid%xlong(idex,jdex)
 ELSE
 glat = -99999.
 glon = -99999.
 ENDIF

! Compute global maximum to find glat and glon
 glat = wrf_dm_max_real (glat)
 glon = wrf_dm_max_real (glon)

Example 3: Compute a Diagnostic

•  Output the value on process zero, the “monitor”

! Print out the result on the monitor process
 IF (wrf_dm_on_monitor()) THEN
 WRITE(outstring,*)'Avg. ',sum_ws/((ide-ids+1)*(jde-jds+1))
 CALL wrf_message (TRIM(outstring))
 WRITE(outstring,*)'Max. ',max_ws,' Lat. ',glat,&
 ' Lon. ',glon
 CALL wrf_message (TRIM(outstring))
 ENDIF

Example 3: Compute a Diagnostic

•  Output from process zero of an n process run

 --- Output file: rsl.out.0000 ---
 . . .
 Avg. 5.159380
 Max. 15.09370 Lat. 37.25022 Lon. -67.44571
Timing for main: time 2000-01-24_12:03:00 on domain 1: 8.96500 elapsed secs.
 Avg. 5.166167
 Max. 14.97418 Lat. 37.25022 Lon. -67.44571
Timing for main: time 2000-01-24_12:06:00 on domain 1: 4.89460 elapsed secs.
 Avg. 5.205693
 Max. 14.92687 Lat. 37.25022 Lon. -67.44571
Timing for main: time 2000-01-24_12:09:00 on domain 1: 4.83500 elapsed secs.
 . . .

•  1) Add a variable to the namelist

•  2) Add an array

•  3) Compute a diagnostic

•  4) Add a physics package

Examples

Example 4: Input periodic SSTs

•  Add a new physics package with time varying input source to the

model

•  This is how we could supply a time varying value to the model for a

field that is traditionally fixed

•  Example is sea surface temperature (over engineered solution for

how we currently implement the SST_UPDATE option)

Example 4: Input periodic SSTs

•  Problem: adapt WRF to input a time-varying lower boundary

condition, e.g. SSTs, from an input file for a new surface scheme

•  Given: Input file in WRF I/O format containing 12-hourly SST’s

•  Modify WRF model to read these into a new state array and make

available to WRF surface physics

Example 4: Input periodic SSTs

•  Steps

–  Add a new state variable and definition of a new surface layer
package (that will use the variable) to the Registry

–  Add to variable stream for an unused Auxiliary Input stream

–  Adapt physics interface to pass new state variable to physics
–  Setup namelist to input the file at desired interval

type symbol dims use tl stag io dname description units
state real nsst ij misc 1 - i4rh "NEW_SST" "Time Varying SST" "K“

Example 4: Input periodic SSTs

•  Add a new state variable to Registry/Registry.EM or Registry/Registry.NMM and put

it in the variable set for input on AuxInput #4

•  Also added to History and Restart

•  Result:

–  2-D variable named nsst defined and available in solve_em
–  Dimensions: ims:ime, jms:jme
–  Input and output on the AuxInput #4 stream will include the

variable under the name NEW_SST

Example 4: Input periodic SSTs

•  Pass new state variable to surface physics

 --- File: dyn_em/module_first_rk_step_part1.F ---

 CALL surface_driver(&
 . . .
! Optional
 & ,QV_CURR=moist(ims,kms,jms,P_QV), F_QV=F_QV &
 & ,QC_CURR=moist(ims,kms,jms,P_QC), F_QC=F_QC &
 & ,QR_CURR=moist(ims,kms,jms,P_QR), F_QR=F_QR &
 & ,QI_CURR=moist(ims,kms,jms,P_QI), F_QI=F_QI &
 & ,QS_CURR=moist(ims,kms,jms,P_QS), F_QS=F_QS &
 & ,QG_CURR=moist(ims,kms,jms,P_QG), F_QG=F_QG &
 & ,NSST=grid%nsst & ! new
 & ,CAPG=grid%capg, EMISS=grid%emiss, HOL=hol,MOL=grid%mol &
 & ,RAINBL=grid%rainbl,SR=grid%em_sr &
 & ,RAINNCV=grid%rainncv,REGIME=regime,T2=grid%t2,THC=grid%thc &
 . . .

Example 4: Input periodic SSTs

•  Add new variable nsst to Physics Driver in Mediation Layer

•  By making this an “Optional” argument, we preserve the driver’s compatibility with other
cores and with versions of WRF where this variable hasn’t been added.

 --- File: phys/module_surface_driver.F ---

 SUBROUTINE surface_driver(&
 . . .
 ! Other optionals (more or less em specific)
 & ,nsst &
 & ,capg,emiss,hol,mol &
 & ,rainncv,rainbl,regime,t2,thc &
 & ,qsg,qvg,qcg,soilt1,tsnav &
 & ,smfr3d,keepfr3dflag &
 . . .
))
 . . .
 REAL, DIMENSION(ims:ime, jms:jme), OPTIONAL, INTENT(INOUT):: nsst

 --- File: phys/module_surface_driver ---

!$OMP PARALLEL DO &
!$OMP PRIVATE (ij, i, j, k)
 DO ij = 1 , num_tiles
 sfclay_select: SELECT CASE(sf_sfclay_physics)

 CASE (SFCLAYSCHEME)
 . . .
 CASE (NEWSFCSCHEME) ! <- This is defined by the Registry “package” entry

 IF (PRESENT(nsst)) THEN
 CALL NEWSFCCHEME(&
 nsst, &
 ids,ide, jds,jde, kds,kde, &
 ims,ime, jms,jme, kms,kme, &
 i_start(ij),i_end(ij), j_start(ij),j_end(ij), kts,kte)
 ELSE
 CALL wrf_error_fatal('Missing argument for NEWSCHEME in surface driver')
 ENDIF
 . . .
 END SELECT sfclay_select
 ENDDO
!$OMP END PARALLEL DO

Example 4: Input periodic SSTs

•  Add call to Model-Layer subroutine for new physics package to Surface Driver

•  Note the PRESENT test to make sure new optional variable nsst is available

Example 4: Input periodic SSTs

•  Add definition for new physics package NEWSCHEME as setting 4 for namelist variable
sf_sfclay_physics

•  This creates a defined constant NEWSFCSCHEME and represents selection of the new
scheme when the namelist variable sf_sfclay_physics is set to ‘4’ in the namelist.input file

•  clean –a and recompile so code and Registry changes take effect

rconfig integer sf_sfclay_physics namelist,physics max_domains 0

package sfclayscheme sf_sfclay_physics==1 - -
package myjsfcscheme sf_sfclay_physics==2 - -
package gfssfcscheme sf_sfclay_physics==3 - -
package newsfcscheme sf_sfclay_physics==4 - -

Example 4: Input periodic SSTs

•  Setup namelist to input SSTs from the file at desired interval

•  Run code with sst_input file in run-directory

 --- File: namelist.input ---

&time_control
 . . .
 auxinput4_inname = "sst_input"
 auxinput4_interval_h = 12
 . . .
/

 . . .
&physics
 sf_sfclay_physics = 4, 4, 4
 . . .
/

Example 4: Input periodic SSTs

•  A few notes…
–  The read times and the time-stamps in the input

file must match exactly
–  We haven’t done anything about what happens if

the file runs out of time periods (the last time
period read will be used over and over again,
though you’ll see some error messages in the
output if you set debug_level to be 1 or greater in
namelist.input)

–  We haven’t said anything about what generates
sst_input

Hegh!

(as close as possible, Klingon for finis)

