

Overview of WRF Physics

Jimy Dudhia NCAR

WRF Physics

- Radiation
 - Longwave (ra_lw_physics)
 - Shortwave (ra_sw_physics)
- Surface
 - Surface layer (sf_sfclay_physics)
 - Land/water surface (sf_surface_physics)
- PBL (bl_pbl_physics)
- Cumulus parameterization (cu_physics)
- Microphysics (mp_physics)
- Turbulence/Diffusion (diff_opt, km_opt)

Direct Interactions of Parameterizations

Radiation

Provides

Atmospheric temperature tendency profile
Surface radiative fluxes

Radiation parameterizations

 Shortwave (solar) – use astronomical equations to calculate the sun's position as a function of time of day and day of the year.

49 absorbed at surface

Radiation as part of the entire model energy budget

Illustration of Free Atmosphere Radiation Processes

WRF Longwave Radiation Schemes (ra_lw_physics)

- Compute clear-sky and cloud upward and downward radiation fluxes
 - Consider IR emission from layers
 - Surface emissivity based on land-type
 - Flux divergence leads to cooling in a layer
 - Downward flux at surface important in land energy budget
 - IR radiation generally leads to cooling in clear air (~2K/day), stronger cooling at cloud tops and warming at cloud base

Longwave Radiation schemes

ra_lw_physics	Scheme	Reference	Added
1	RRTM	Mlawer et al. (1997, JGR)	2000
3	CAM	Collins et al. (2004, NCAR Tech. Note)	2006
4	RRTMG	Iacono et al. (2008, JGR)	2009
5	New Goddard	Chou and Suarez (2001, NASA Tech Memo)	2011
31	Held-Suarez		2000
99	GFDL	Fels and Schwarzkopf (1981, JGR)	2004

Clear Sky: IR-active Gases

- H2O from model prognostic vapor
- CO2 well-mixed, specified constant in whole atmosphere (CAM has year-dependent table of values)
- O3 schemes have own climatologies
 - CAM has monthly, zonal, pressure-level data
 - Others use single profiles (Goddard has 5 profiles to choose from)

Radiation effects in clear sky

Spectral Bands

- Schemes divide IR spectrum into bands dominated by different absorption gases
- Typically 8-16 bands are used
- Computations use look-up tables for each band
 - Tables were generated from results of line-by-line calculations (LBLRTM models)

Clouds

- All schemes interact with resolved model cloud fields allowing for ice and water clouds and precipitating species
- Clouds strongly affect IR at all wavelengths (considered "grey bodies") and are almost opaque to it

Cloud Fractions

- Schemes are capable of handling cloud fractions
- WRF can provide cloud fractions based on RH,
 but mostly the fraction is 0 or 1 in a grid box
- Cloud fraction methods
 - cldfra2 used by CAM and RRTMG
 - cldfra used by others except GFDL (computes its own)

Cloud Fraction

- Overlap assumptions needed with multiple layers of varying fraction
 - Random overlap
 - Maximum overlap (clouds stacked as much as possible)
 - Maximum-random overlap (maximum for neighboring cloudy layers, random for layers separated by clear air)
- WRF schemes use max-random overlap

WRF Shortwave Radiation Options (ra_sw_physics)

- Compute clear-sky and cloudy solar fluxes
- Include annual and diurnal solar cycles
- Most schemes consider downward and upward (reflected) fluxes
 - Dudhia scheme only has downward flux
- Primarily a warming effect in clear sky
- Important component of surface energy balance

Shortwave Radiation schemes

ra_sw_physics	Scheme	Reference	Added
1	Dudhia	Dudhia (1989, JAS)	2000
2	Goddard	Chou and Suarez (1994, NASA Tech Memo)	2000
3	CAM	Collins et a. (2004, NCAR Tech Note)	2006
4	RRTMG	Iacono et al. (2008, JGR)	2009
5	New Goddard	Chou and Suarez (1999, NASA TM)	2011
99	GFDL	Fels and Schwarzkopf (1981, JGR)	2004

Clear Sky

- Main effect in troposphere is water vapor absorption (CO2 minor effect)
- Aerosols would be needed for additional scattering (WRF-Chem interacts with Goddard and RRTMG shortwave)
 - Dudhia scheme has tunable scattering

Ozone

- Ozone heating maintains warm stratosphere
- Important for model tops above about 20 km (50 hPa)
- Usually specified from profiles as with longwave options
 - Dudhia scheme has no ozone effect
- CAM, RRTMG, Goddard can also handle trace gases (set zero or constant)

Spectral Bands

- 11-19 spectral bands used by CAM, RRTMG and Goddard schemes
- Look-up tables

Clouds and Cloud Fraction

- Similar considerations to longwave
- Interacts with model resolved clouds
- Fraction and overlap assumptions
- Cloud albedo reflection
- Surface albedo reflection based on landsurface type and snow cover

Slope effects on shortwave

- In V3.2 available for all shortwave options
- Represents effect of slope on surface solar flux accounting for diffuse/direct effects
- slope_rad=1: activates slope effects may be useful for complex topography and grid lengths < 2 km.
- topo_shading=1: shading of neighboring grids by mountains - may be useful for grid lengths < 1 km.

radt

Radiation time-step recommendation

- Radiation is too expensive to call every step
- Frequency should resolve cloud-cover changes with time
- radt=1 minute per km grid size is about right (e.g. radt=10 for dx=10 km)
- Each domain can have its own value but recommend using same value on all 2-way nests

Surface schemes

Surface layer of atmosphere diagnostics (exchange/transfer coeffs)

Land Surface: Soil temperature / moisture / snow prediction /sea-ice temperature

Surface Physics Components

Surface Fluxes

Heat, moisture and momentum

$$H = \rho c_p u_* \theta_* \qquad E = \rho u_* q_* \qquad \tau = \rho u_* u_*$$

$$u_* = \frac{kV_r}{\ln(z_r / z_0) - \psi_m} \qquad \theta_* = \frac{k\Delta\theta}{\ln(z_r / z_{0h}) - \psi_h} \qquad q_* = \frac{k\Delta q}{\ln(z_r / z_{0q}) - \psi_h}$$

Subscript r is reference level (lowest model level, or 2 m or 10 m) z_0 are the roughness lengths

Roughness Lengths

- Roughness lengths are a measure of the "initial" length scale of surface eddies, and generally differ for velocity and scalars
- Roughness length depends on land-use type
- Some schemes use smaller roughness length for heat than for momentum
- For water points roughness length is a function of surface wind speed

Exchange Coefficient

 C_{hs} is the exchange coefficient for heat, defined such that

$$H = \rho c_p C_{hs} \Delta \theta$$

It is related to the roughness length and u* by

$$C_{hs} = \frac{ku_*}{\ln\left(\frac{z}{z_0}\right) - \psi_h}$$

WRF Surface Layer Options (sf_sfclay_physics)

- Use similarity theory to determine exchange coefficients and diagnostics of 2m T and q and 10 m winds
- Provide exchange coefficient to land-surface models
- Provide friction velocity to PBL scheme
- Provide surface fluxes over water points
- Schemes have variations in stability functions, roughness lengths

Hurricane Options

- Ocean Mixed Layer Model (omlcall=1)
 - 1-d slab ocean mixed layer (specified initial depth)
 - Includes wind-driven ocean mixing for SST cooling feedback
- Alternative surface-layer options for high-wind ocean surface (isftcflx=1,2)
 - Use with sf_sfclay_physics=1
 - Modifies Charnock relation to give less surface friction at high winds (lower Cd)
 - Modifies surface enthalpy (Ck, heat/moisture) either with constant z0q (isftcflx=1), Garratt formulation (option 2)

Fractional Sea Ice

 fractional_seaice=1 - with input sea-ice fraction data can partition land/water fluxes within a grid box

WRF Land-Surface Model Options (sf_surface_physics)

- Simple 5-layer soil model
 - No vegetation or snow cover prediction, just thermal diffusion in soil layers
- Noah LSM, RUC LSM, PX LSM land-surface models
 - Sophisticated vegetation model and snow cover prediction

Illustration of Surface Processes

Land-Surface Model Processes

Land-Surface Model

- Predicts soil temperature and soil moisture in layers (4 for Noah, 6 for RUC, 2 for PX)
- Predicts snow water equivalent on ground.
 May be in layers (RUC)
- May predict canopy moisture (Noah)

Land-Surface Options

- 5-layer thermal diffusion
- Noah LSM
- RUC LSM
- Pleim-Xiu LSM

Vegetation and Soil

- Processes include evapotranspiration, root zone and leaf effects
- Vegetation fraction varies seasonally
- Considers vegetation categories (e.g. cropland, forest types, etc.)
- Considers soil categories (e.g. sandy, clay, etc.)
 for drainage and thermal conductivity

Urban Effects

- Urban category in LSM is usually adequate for larger-scale studies
- Or can use an urban model (sf_urban_physics) with Noah LSM
 - Urban Canopy Model
 - Building Environment Parameterization (multilayer model)
 - Building Energy Model (adds heating/AC effects to BEP)

LSM Tables

- Properties can be changed in text files (tables)
- VEGPARM.TBL used by Noah and RUC for vegetation category properties
- SOILPARM.TBL used by Noah and RUC for soil properties
- LANDUSE.TBL used by 5-layer model
- URBPARM.TBL used by urban models

Initializing LSMs

- Noah and RUC LSM require additional fields for initialization
 - Soil temperature
 - Soil moisture
 - Snow liquid equivalent
- These are in the Grib files, but are not from observations
- They come from "offline" models driven by observations (rainfall, radiation, surface temperature, humidity wind)

Initializing LSMs

- There are consistent model-derived datasets for Noah and RUC LSMs
 - Eta/GFS/AGRMET/NNRP for Noah (although some have limited soil levels available)
 - RUC for RUC
- But, resolution of mesoscale land-use means there will be inconsistency in elevation, soil type and vegetation
- This leads to spin-up as adjustments occur in soil temperature and moisture
- This spin-up can only be avoided by running offline model on the same grid (e.g. HRLDAS for Noah)
- Cycling land state between forecasts also helps, but may propagate errors (e.g. in rainfall effect on soil moisture)

sst_update=1

Reads lower boundary file periodically to update the sea-surface temperature (otherwise it is fixed with time)

- For long-period simulations (a week or more)
- wrflowinp_d0n created by real
- Sea-ice can be updated since Version 3.0
- Vegetation fraction update is included
 - Allows seasonal change in albedo, emissivity, roughness length in Noah LSM
- usemonalb=.true. to use monthly albedo input

Regional Climate Options

- tmn_update=1 updates deep-soil temperature for multi-year future-climate runs
- sst_skin=1 adds diurnal cycle to sea-surface temperature
- bucket_mm and bucket_J a more accurate way to accumulate water and energy for long-run budgets (see later)
- output_diagnostics=1 (in 3.3.1) ability to output max/min/mean/std of surface fields in a specified period

Planetary Boundary Layer

Provides

Boundary layer fluxes (heat, moisture, momentum)

Vertical diffusion in whole column

Illustration of PBL Processes

Planetary Boundary Layer

WRF PBL Options (bl_pbl_physics)

- Purpose is to distribute surface fluxes with boundary layer eddy fluxes and allow for PBL growth by entrainment
- Classes of PBL scheme
 - Turbulent kinetic energy prediction (Mellor-Yamada Janjic, MYNN, Bougeault-Lacarrere, TEMF, QNSE, CAM UW)
 - Diagnostic non-local (YSU, GFS, MRF, ACM2)
- Above PBL all these schemes also do vertical diffusion due to turbulence

PBL schemes in V3.3

bl_pbl_ physics	Scheme	Reference	Added
1	YSU	Hong, Noh and Dudhia (2006, MWR)	2004
2	MYJ	Janjic (1994, MWR)	2000
3	GFS	Hong and Pan (1996, MWR)	2005
4	QNSE	Sukoriansky, Galperin and Perov (2005, BLM)	2009
5	MYNN2	Nakanishi and Niino (2006, BLM)	2009
6	MYNN3	Nakanishi and Niino (2006, BLM)	2009
7	ACM2	Pleim (2007, JAMC)	2008
8	BouLac	Bougeault and Lacarrere (1989, MWR)	2009
9	UW	Bretherton and Park (2009, JC)	2011
10	TEMF	Angevine, Jiang and Mauritsen (2010, MWR)	2011
99	MRF	Hong and Pan (1996, MWR)	2000

Different approaches

TKE schemes

- Solve for TKE in each column
 - Buoyancy and shear production
 - Dissipation
 - Vertical mixing

$$\frac{\partial}{\partial z}K_{v}\frac{\partial}{\partial z}\theta$$

- TKE and length-scale are used to determine the Kv for local vertical mixing
- Schemes differ most in diagnostic length-scale computations

Nonlocal Schemes

- Diagnose a PBL top (either stability profile or Richardson number)
- Specify a K profile $\frac{\partial}{\partial z}(K_v \frac{\partial}{\partial z}\theta + \Gamma)$
- YSU, MRF, GFS include a non-local term (Γ)
- ACM2, TEMF include a mass-flux term which is a flux between non-neighboring layers

Vertical Mixing Coefficient

- Several schemes also output exch_h which is Kv for scalars that is used by WRF-Chem
- WRF in the future will also use this for scalar and tracer vertical mixing outside the PBL scheme since these arrays are currently only advected and horizontally mixed when using a PBL scheme
- PBL schemes themselves only mix limited variables: momentum, heat, vapor and some specific cloud variables

PBL schemes in V3.3

bl_pbl_ physics	Scheme	Cores	sf_sfclay_ physics	Prognostic variables	Diagnostic variables	Cloud mixing
1	YSU	ARW NMM	1		exch_h	QC,QI
2	MYJ	ARW NMM	2	TKE_PBL	EL_PBL, exch_h	QC,QI
3	GFS(hwrf)	NMM	3			QC,QI
4	QNSE	ARW NMM	4	TKE_PBL	EL_PBL, exch_h, exch_m	QC,QI
5	MYNN2	ARW	1,2,5	QKE	Tsq, Qsq, Cov, exch_h, exch_m	QC
6	MYNN3	ARW	1,2,5	QKE, Tsq, Qsq, Cov	exch_h, exch_m	QC
7	ACM2	ARW	1,7			QC,QI
8	BouLac	ARW	1,2	TKE_PBL	EL_PBL, exch_h, exch_m	QC
9	UW	ARW	2	TKE_PBL	exch_h, exch_m	QC
10	TEMF	ARW	10	TE_TEMF	*_temf	QC, QI
99	MRF	ARW NMM	1			QC,QI

PBL Scheme Options

PBL schemes can be used for most grid sizes when surface fluxes are present

- With ACM2, GFS and MRF PBL schemes, lowest full level should be .99 or .995 not too close to 1 (YSU can now handle thin layers)
- TKE schemes can use thinner surface layers
- Assumes that PBL eddies are not resolved
- At grid size dx << 1 km, this assumption breaks down
 - Can use 3d diffusion instead of a PBL scheme in Version 3 (coupled to surface physics)
 - Works best when dx and dz are comparable

Large-Eddy Simulation

- For grid sizes of up to about 100 m, LES is preferable
- LES treats turbulence three-dimensionally instead of separate vertical (PBL) and horizontal diffusion schemes
- TKE and 3d Smagorinsky options exist for the sub-grid turbulence

Large-Eddy Simulation

- To run LES mode
 - Use bl_pbl_physics=0 and diff_opt=2 with km_opt=2 or 3
 - This scheme can also use real surface fluxes from the surface physics (heat, moisture, momentum stress) or idealized constant values

LES schemes

Unified horizontal and vertical mixing (for dx~dz).

Typically needed for dx<~200 m. Also use mix_isotropic=1.

bl_pbl_p hysics	diff_opt	km_opt	Scheme	Cores	sf_sfclay _physics	isfflx	Prognostic variables
0	2	2	tke	ARW	0,1,2	0,1,2	tke
0	2	3	3d Smagorinsky	ARW	0,1,2	0,1,2	

Namelist isfflx controls surface flux methods

isfflx	sf_sfclay_physics	Heat flux	Drag	Real/Ideal
0	0	From namelist tke_heat_flux	From namelist tke_drag_coefficient	Ideal
1	1,2	From LSM/sfclay physics (HFX, QFX)	From sfclay physics (UST)	Real
2	1,2	From namelist tke_heat_flux	From sfclay physics (UST)	Ideal

Other Options

- Gravity-wave drag can be added for low resolution (> 10 km) runs to represent sub-grid orographic gravity-wave vertical momentum transport (gwd_opt=1)
- A wind-farm model has been added to investigate wind-farm effects on the environment (extra stress and turbulence generation)

bldt

- Minutes between boundary layer/LSM calls
- Typical value is 0 (every step)

Turbulence/Diffusion

Sub-grid eddy mixing effects on all fields, e.g.

$$\frac{\partial}{\partial x} K_h \frac{\partial}{\partial x} \theta + \frac{\partial}{\partial y} K_h \frac{\partial}{\partial y} \theta + \frac{\partial}{\partial z} K_v \frac{\partial}{\partial z} \theta$$

Difference between diff_opt 1 and 2

diff_opt=1
Horizontal diffusion acts along model levels
Simpler numerical method with only neighboring points on the same model level

Difference between diff_opt 1 and 2

diff_opt=2
Horizontal diffusion acts on horizontal gradients
Numerical method includes vertical correction term
using more grid points

km_opt

- km_opt selects method for computing K coefficient
 - km_opt=1: constant (use khdif and kvdif to specify idealized)
 - km_opt=2: 3d tke prediction used to compute K (requires diff_opt=2)
 - km_opt=3: 3d Smagorisnky diagnostic K (requires diff_opt=2)
 - km_opt=4: 2d Smagorinsky for horizontal K (to be used with PBL or kvdif for vertical K)

sfs_opt

- Sub-filter-scale stress model for LES applications impacting momentum mixing (Kosovic, Mirocha)
 - sfs_opt=0 (default) off
 - sfs_opt=1 Nonlinear Backscatter and Anisotropy (NBA) option 1: using diagnostic stress terms (km_opt=2,3)
 - sfs_opt=2 NBA option 2: using tke-based stress terms (km_opt=2 only)
 - Also m_opt=1 for added outputs of SGS stresses

Diffusion Option Choice

- Real-data case with PBL physics on
 - Best is diff_opt=1, km_opt=4
 - This complements vertical diffusion done by PBL scheme
- High-resolution real-data cases (~100 m grid)
 - No PBL
 - diff_opt=2; km_opt=2,3 (tke or Smagorinsky scheme)
- idealized cloud-resolving modeling (smooth or no topography)
 - diff_opt=2; km_opt=2,3
- Complex topography with no PBL scheme
 - diff_opt=2 is more accurate for sloped coordinate surfaces, and prevents diffusion up/down valley sides
- Note: WRF can run with no diffusion (diff_opt=0)

diff_6th_opt

- 6th order optional added horizontal diffusion on model levels
 - Used as a numerical filter for 2*dx noise
 - Suitable for idealized and real-data cases
 - Affects all advected variables including scalars
- diff_6th_opt
 - 0: none (default)
 - 1: on (can produce negative water)
 - 2: on and prohibit up-gradient diffusion (better for water conservation)
- diff_6th_factor
 - Non-dimensional strength (typical value 0.12, 1.0 corresponds to complete removal of 2*dx wave in a time-step)

Upper damping (damp_opt) ARW only

Purpose is to prevent unrealistic reflections of waves from model top. Can be important over high topography.

Options

- 1: Upper level diffusive layer
- 2: Rayleigh damping (idealized only needs input sounding)
- 3: w-Rayleigh damping (damps w only)

All options use

- Cosine function of height
- Additional parameters
 - · zdamp: depth of damping layer
 - · dampcoef: nondimensional maximum magnitude of damping

Cumulus Parameterization

Provides

Atmospheric heat and moisture/cloud tendency profiles

Surface sub-grid-scale (convective) rainfall

Illustration of Cumulus Processes

Cumulus Schemes

- Use for grid columns that completely contain convective clouds
- Re-distribute air in column to account for vertical convective fluxes
 - Updrafts take boundary layer air upwards
 - Downdrafts take mid-level air downwards
- Schemes have to determine
 - When to trigger a convective column
 - How fast to make the convection act

Parameterizations of cumulus convection

WRF Cumulus Parameterization Options

- Cumulus schemes fall into two main classes
 - Adjustment type (Betts-Miller-Janjic)
 - Relaxes towards a post-convective (mixed) sounding
 - Mass-flux type (all others in WRF)
 - Determines updraft (and often downdraft) mass flux and other fluxes (sometimes including momentum transport)

Cumulus schemes in V3.3

mp_physics	Scheme	Reference	Added
1	Kain-Fritsch	Kain (2004, JAM)	2000
2	Betts-Miller-Janjic	Janjic (1994, MWR; 2000, JAS)	2002
3	Grell-Devenyi	Grell and Devenyi (2002, GRL)	2002
4	Simplified Arakawa-Schubert	Grell et al. (1994, MM5 NCAR Tech Note)	2002/ 2011
5	Grell-3	Grell and Devenyi (2002, GRL)	2008
6	Tiedtke	Tiedtke (1989, MWR), Zhang, Wang and Hamilton (2011, MWR)	2011
7	Zhang-McFarlane	Zhang and McFarlane (1995, AO)	2011
14	New SAS	Han and Pan (2010,)	2011
99	Old Kain-Fritsch	Kain and Fritsch (1990, JAS; 1993 Meteo. Monogr.)	2000

Deep Convection

- Schemes work in individual columns that are considered convectively unstable
- Mass-flux schemes transport surface air to top of cloud and include subsidence
- Subsidence around cloud warms and dries troposphere removing instability over time
- Additionally downdrafts may cool PBL

Triggers

- Clouds only activate in columns that meet certain criteria
 - Presence of some convective available potential energy (CAPE) in sounding
 - Not too much convective inhibition (CIN) in sounding (cap strength)
 - Minimum cloud depth from parcel ascent

Closures

- Closure determine cloud strength (mass-flux) based on various methods
 - Clouds remove CAPE over time
 - Specified CAPE-removal time scale (KF, Tiedtke, ZM, BMJ)
 - Quasi-equilibrium (Arakawa-Schubert) with large-scale destabilization d(CAPE)/dt (SAS, NSAS)
 - Column moisture convergence
 - Low-level large-scale ascent (mass convergence)

Ensemble methods

- G3 and GD use ensemble of triggers and closures with varying parameters (effectively 144 members)
- Take mean of ensemble to feed back to model
- In principle, can be tuned to emphasize various members under different conditions

Shallow Convection

- Non-precipitating shallow mixing dries PBL, moistens and cools above
- This can be done by an enhanced mixing approach (SAS) or mass-flux approach (KF, NSAS, Tiedtke, G3)

Shallow Convection

- Several schemes include shallow convection (KF, SAS schemes, G3, BMJ, Tiedtke)
 - WRF also has UW Park-Bretherton stand-alone scheme (shcu_physics=2)
 - Note: TEMF PBL option (bl_bl_physics=10) also includes a mass-flux shallow convection component and some future PBL schemes may add it
 - This development will require making shallow convectional independent of deep schemes in a future WRF version

Momentum Transport

- Some cumulus parameterizations also have momentum transport (SAS, NSAS, Tiedtke, ZM)
- Most schemes transport momentum as a passive scalar but ZM and NSAS include a convective pressure gradient term

Cloud Detrainment

- Most schemes detrain cloud and ice at cloud top (except BMJ)
- KF schemes also detrain snow and rain
- These are then used by the microphysics

cudt

- Time steps between cumulus scheme calls
- Typical value is 5 minutes
 - Note: for KF scheme this is also used for averaging time for vertical velocity trigger
 - Not used by G3 or GD schemes

Cumulus schemes in V3.3

cu_physics	Scheme	Cores	Moisture Tendencies	Momentum Tendencies	Shallow Convection
1	Kain-Fritsch Eta	ARW NMM	Qc Qr Qi Qs	no	yes
2	Betts-Miller-Janjic	ARW NMM	-	no	yes
3	Grell-Devenyi	ARW	Qc Qi	no	no
4	Simplified Arakawa- Schubert	ARW NMM	Qc Qi	yes (NMM)	yes (ARW)
5	Grell-3	ARW	Qc Qi	no	yes
6	Tiedtke	ARW	Qc Qi	yes	yes
7	Zhang-McFarlane	ARW	Qc Qi	yes	no
14	New SAS	ARW	Qc Qi	yes	yes
99	Old Kain-Fritsch	ARW	Qc Qr Qi Qs	no	no

Cumulus scheme

Recommendations about use

- For dx ≥ 10 km: probably need cumulus scheme
- For $dx \le 3$ km: probably do not need scheme
 - However, there are cases where the earlier triggering of convection by cumulus schemes help
- For dx=3-10 km, scale separation is a question
 - Few schemes are specifically designed with this range of scales in mind
 - G3 has an option to spread subsidence in neighboring columns
- Issues with 2-way nesting when physics differs across nest boundaries (seen in precip field on parent domain)
 - best to use same physics in both domains or 1-way nesting

Microphysics

Provides

Atmospheric heat and moisture tendencies

Microphysical rates

Surface resolved-scale rainfall

Resolved clouds

- Formed by radiative, dynamical or convective processes
- Model only considers grid-scale average so will not resolve fine-scale structures

Microphysics Parameterization

Illustration of Microphysics Processes

WRF Microphysics Options (mp_physics)

- Range of levels of sophistication
 - Warm rain (i.e. no ice) Kessler (idealized)
 - Simple ice (3 arrays) WSM3
 - Mesoscale (5 arrays, no graupel) WSM5
 - Cloud-scale single-moment (6 arrays, graupel) –
 WSM6, Lin, Goddard, SBU, Eta-Ferrier
 - Double-moment (8-13 arrays) Thompson,
 Morrison, Milbrandt-Yau, WDM5, WDM6

Microphysics schemes in V3.3

mp_physics	Scheme	Reference	Added
1	Kessler	Kessler (1969)	2000
2	Lin (Purdue)	Lin, Farley and Orville (1983, JCAM)	2000
3	WSM3	Hong, Dudhia and Chen (2004, MWR)	2004
4	WSM5	Hong, Dudhia and Chen (2004, MWR)	2004
5	Eta (Ferrier)	Rogers, Black, Ferrier et al. (2001)	2000
6	WSM6	Hong and Lim (2006, JKMS)	2004
7	Goddard	Tao, Simpson and McCumber (1989,MWR)	2008
8	Thompson (+old)	Thompson et al. (2008, MWR)	2009
9	Milbrandt 2-mom	Milbrandt and Yau (2005, JAS)	2010
10	Morrison 2-mom	Hong and Pan (1996, MWR)	2008
13	SBU-Ylin	Lin and Colle (2011, MWR)	2011
14	WDM5	Lim and Hong (2010,)	2009
16	WDM6	Lim and Hong (2010,)	2009

Microphysics

- Latent heat release from
 - Condensation, evaporation, deposition, sublimation, freezing, melting
- Particle types
 - Cloud water, rain drops, ice crystals, snow, graupel (also hail in some)
 - Total mass contributes to liquid loading in dynamics
- Processes
 - Aggregation, accretion, growth, fall-out

Microphysics: Single and Double Moment Schemes

- Single-moment schemes have one prediction equation for mass (kg/kg) per species (Qr, Qs, etc.) with particle size distribution being derived from fixed parameters
- Double-moment (DM) schemes add a prediction equation for number concentration (#/kg) per DM species (Nr, Ns, etc.)
- DM schemes may only be double-moment for a few species
- DM schemes allow for additional processes such as size-sorting during fall-out and sometimes aerosol (CCN) effects

Microphysics: Fall terms

- Microphysics schemes handle fall terms for particles (usually everything except cloud water has a fall term)
- For long time-steps (such as mesoscale applications dt ~ 60 s, Vt= 5 m/s), drops may fall more than a grid level in a time-step
- This requires splitting the time-step (most schemes) or lagrangian numerical methods (WSM and WDM schemes) to keep the scheme numerically stable

ARW only

no_mp_heating=1

- Turn off heating effect of microphysics
 - Zeroes out the temperature tendency
 - Equivalent to no latent heat
 - Other microphysics processes not affected
 - Since Version 3.0

Microphysics schemes in V3.3

mp_physics	Scheme	Cores	Mass Variables	Number Variables
1	Kessler	ARW	Qc Qr	
2	Lin (Purdue)	ARW (Chem)	Qc Qr Qi Qs Qg	
3	WSM3	ARW	Qc Qr	
4	WSM5	ARW NMM	Qc Qr Qi Qs	
5	Eta (Ferrier)	ARW NMM	Qc Qr Qs (Qt*)	
6	WSM6	ARW NMM	Qc Qr Qi Qs Qg	
7	Goddard	ARW	Qc Qr Qi Qs Qg	
8	Thompson	ARW NMM	Qc Qr Qi Qs Qg	Ni Nr
9	Milbrandt 2-mom	ARW	Qc Qr Qi Qs Qg Qh	Nc Nr Ni Ns Ng Nh
10	Morrison 2-mom	ARW (Chem)	Qc Qr Qi Qs Qg	Nr Ni Ns Ng
13	SBU-YLin	ARW	Qc Qr Qi Qs	
14	WDM5	ARW	Qc Qr Qi Qs	Nn** Nc Nr
16	WDM6	ARW	Qc Qr Qi Qs Qg	Nn** Nc Nr

Microphysics Options

Recommendations about choice

- Probably not necessary to use a graupel scheme for dx > 10 km
 - Updrafts producing graupel not resolved
 - Cheaper scheme may give similar results
- When resolving individual updrafts, graupel scheme should be used
- All domains use same option

Rainfall Output

- Cumulus and microphysics can be run at the same time
- ARW outputs rainfall accumulations since simulation start time (0 hr) in mm
- RAINC comes from cumulus scheme
- RAINNC comes from microphysics scheme
- Total is RAINC+RAINNC
 - RAINNCV is time-step value
 - SNOWNC/SNOWNCV are snow sub-set of RAINC/RAINNCV (also GRAUPELNC, etc.)

Rainfall Output

Options for "buckets"

- prec_acc_dt (minutes) accumulates separate prec_acc_c, prec_acc_nc, snow_acc_nc in each time window (we recommend prec_acc_dt is equal to the wrf output frequency to avoid confusion)
- bucket_mm separates RAIN(N)C into RAIN(N)C and I_RAIN (N)C to allow accuracy with large totals such as in multi-year accumulations
 - Rain = I_RAIN(N)C*bucket_mm + RAIN(N)C
 - bucket_mm = 100 mm is a reasonable bucket value
 - bucket_J also for CAM and RRTMG radiation budget terms (1.e9 J/m² recommended)

Physics Interactions

Direct Interactions of Parameterizations

&physics

Seven major physics categories:

```
mp_physics: 0,1,2,3,4,5,6,8,10
ra_lw_physics: 0,1,3,99
ra_sw_physics: 0,1,2,3,99
sf_sfclay_physics: 0,1,2
sf_surface_physics: 0,1,2,3,99 (set before running real or ideal, need to match with num_soil_layers variable)
    ucm_call = 0,1
bl_pbl_physics: 0,1,2,99
cu_physics: 0,1,2,3,99
```

End