

Post-processing Tools

Cindy Bruyère

WRF Users' Tutorial Mesoscale & Microscale Meteorological Division / NCAR

Graphical Packages

•	NCL UG: 9-2 – Graphical package	 VAPOR Generation Converter and graphical package Support: VAPOR 		
•	ARWpost UG: 9-28 - Converter (GrADS & vis5d)	 IDV GRIB (from WPP) GEMPAK (from wrf2gem) 		
•	RIP4 UG: 9-19 - Converter and interface to graphical package NCAR Graphics	 vis5d (from ARWpost) CF complaint data (from wrf_to_cf) Support: unidata 		
•	UPP – Converter (GrADS & GEMPAK)	 GEMPAK Data from wrf2gem or WPP Support: unidata 		
DAR		MatLab / IDL / R / ferret		
RF				

RIP4

- Read Interpolate Plot version 4
- Develop by Mark Stoelinga (3TIER/UW/NCAR) & MMM/NCAR Staff
- Originally developed for the MM5 model
- Generate a number of graphical plots
 - Horizontal, cross-section, skewT
- Current Version: 4.6
 - \circ configure / compile

RIP4 - Examples

ina Init: 0000 UTC Sun 28 Aug 05 Valid: 1200 UTC Sun 28 Aug 05 (0600 MDT Sun 28 Aug 05)

Dataset: katrina RIP: katrina Fest: 0.00 h Valid: 0000 UTC Sun 28 Aug 05 (1800 MDT Sat 27 Aug 05) Land use category

WRF Users' Tutorial Mesoscale & Microscale Meteorological Division / NCAR

RIP4 - General Information

- Documentation
 - $_{\circ}$ In program tar file under the Doc/ directory
 - o <u>http://www.mmm.ucar.edu/wrf/users/docs/ripug.htm</u>
 - <u>http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/</u> <u>RIP/ripug.htm</u>
- OnLine Tutorial:
 - o <u>http://www.mmm.ucar.edu/wrf/users/graphics/RIP4/RIP4.htm</u>
 - <u>http://www.dtcenter.org/wrf-nmm/users/OnLineTutorial/</u> <u>NMM/RIP/index.php</u>

RIP4 - General Information

- Requires NCAR Graphics low-level routines
 - <u>http://ngwww.ucar.edu</u>
- NCL Version 5 / 6:
 - o <u>http://www.ncl.ucar.edu</u>
 - Released November 2007
 - Combine NCL and NCAR Graphics
 - Open Source
 - Recommended
- Download Code:
 - o <u>http://www.mmm.ucar.edu/wrf/users/download/get_source.html</u>
 - o <u>http://www.dtcenter.org/wrf-nmm/users/downloads/index.php</u>

RIP4 Input Data

RIP4

WRF Users' Tutorial Mesoscale & Microscale Meteorological Division / NCAR

RIP4 - Grids

RIP4 - WRF Grids

RIP4 - NMM Grid (iinterp 0)

WRF Users' Tutorial Mesoscale & Microscale Meteorological Division / NCAR

RIP4 - NMM Grid (iinterp 1)

new projection ; no direct relationship

WRF Users' Tutorial Mesoscale & Microscale Meteorological Division / NCAR

RIP4 on your computer

set environment variables

setenv RIP_ROOT /usr/\$USER/RIP4 (rip_root)
setenv NCARG_ROOT /usr/local/ncl (/usr/local/ncarg)

Configure

./configure (check configure.rip to ensure netCDF paths are correct)

Compile

./compile

• RIP4 has 2 parts (RIPDP and RIP)

ripdp mm5

WRF

ripdp_wrfarw

ripdp_wrfnmm

Running ripdp & rip

rip [-f] <model_data_name> rip-execution-name

rip UIF

WRF Users' Tutorial Mesoscale & Microscale Meteorological Division / NCAR

Creating a Plot

Common Error Message

- Most often this is NOT a graphics error.
- More often this is an error with the times you are asking RIP to process
 - $_{\circ}$ Check the ptimes in your .in file
 - $_{\circ}~$ Check the xtimes files created by RIPDP

GKS ERROR NUMBER 2 ISSUED FROM SUBROUTINE GCLKS :--GKS NOT IN PROPER STATE: GKS SHALL BE IN STATE GKOPFORTRAN STOP

ARWpost

• Converter

- Requires GrADS to display data
- GrADS software only needed to display data, not needed to compile the code
- Generate a number of graphical plots
 - Horizontal, cross-section, skewT, meteogram, panel
- Version 2 (old not recommended)
 - Could produce vis5d output
 - Needed WRFV3 complied

ARWpost - Examples

Mesoscale & Microscale Meteorological Division / NCAR

ARWpost - converter

- Download Code (<u>http://www.mmm.ucar.edu/wrf/users</u>)
- OnLine Tutorial

http://www.mmm.ucar.edu/wrf/users/graphics/ARWpost/ARWpost.htm

- Compile (similar to WPS) ./configure & ./compile
- For GrADS output
 - GrADS libraries only needed to display data (freely available)
 - <u>http://grads.iges.org/grads/grads.html</u>

namelist.ARWpost

input_root_name	Path and root name of files to use as input. <i>Do not only provide directory name.</i> Can use wild characters.
output_root_name	Output root name.
	output_root_name. dat & output_root_name. ctl
mercator_defs	Set to true if mercator plots are distorted

namelist.ARWpost

split_output	Split your GrADS output files into a number of smaller files <i>(a common .ctl file will be used for all .dat files).</i>	
frames_per_outfile	If <i>split_output</i> is . True ., how many time periods are required per output (.dat) file.	
plot	Which fields to process. (<i>all, list, all_list)</i> Order has no effect, i.e., "all_list" and "list_all" "list" – list variables in " fields "	
fields	Fields to plot. Only used is list was used in the "plot" variable. Must use to generate diagnostics.	
Available diagnostics: cape geopt, height, lcl, lfc, umet, vmet, u10m, v10	e, cin, mcape, mcin, clfr, dbz, max_dbz, pressure, rh, rh2, theta ,tc, tk, td, td2, slp, 0m, wdir, wspd, wd10, ws10	

namelist.ARWpost

interp_method	0 = sigma levels, -1 = code defined "nice" height levels, 1 = user defined height or pressure levels
interp_levels	Only used if interp_method=1 Supply levels to interpolate to, in hPa (<i>pressure</i>) or km (<i>height above sea level</i>) Supply levels bottom to top
extrapolate	<section-header></section-header>

GrADS - .ctl file

dset ^test.dat options byteswapped undef 1.e37 title OUTPUT FROM WRF V2.2 MODEL pdef 259 163 lcc 40.000 -98.000 130.000 82.000 60.00000 30.00000 -98.00000 22000.000 22000.000 xdef 877 linear -141.49254 0.09909910 ydef 389 linear 18.88639 0.09909910

options byteswapped

Needed on some machines - if you get NaNs when you plot, **remove** this line from .ctl file

GrADS - .ctl file

WRF Users' Tutorial Mesoscale & Microscale Meteorological Division / NCAR

Creating a Plot

open em_real.ctl set mpdset hires set display color white

define tf=1.8*tc + 32 set gxout shaded set z 1 d tf run cbar.gs

set gxout contour set ccolor 1 set cint 4 d slvl

How to add diagnostics

• RIP4

- $_{\odot}$ Create a subroutine (note RIP4 expects the code to be in "j/I/-k" orientation)
- Add links to the RIP4/src/fields.f routine
- Add new subroutine to RIP4/src/Makefile

ARWpost

- Create a subroutine
- Add links to ARWpost/src/module_diagnostics.f90
- Add new subroutine to ARWpost/src/Makefile

VAPOR visualization of WRF-ARW data

Visualization and Analysis Platform for Oceanic, atmospheric and solar Research

Alan Norton alan@ucar.edu vapor@ucar.edu National Center for Atmospheric Research

VAPOR visualization of WRF-ARW data

VAPOR visualization of WRF-ARW data

A short summary of VAPOR capabilities

- 1. VAPOR installation
- 2. Read or convert WRF-ARW output files
- 3. Apply geo-referenced images to the terrain
- 4. Calculate 2D and 3D derived variables in Python
- 5. Volume render 3D variables
- 6. Display isosurfaces of 3D variables
- 7. Display color-mapped 2D variables on planes or terrain-mapped.
- 8. Use wind barbs to show flow direction and speed
- 9. Display streamlines or path lines in scene
- 10. Insert contour planes, use them to position flow seeds.
- 11. Image-based flow shows flow motion in 2D slices
- 12. Create animated 3D sequences

VAPOR Installation

- Available for Linux, Windows, or Mac systems
- Should have a reasonably modern graphics card
 - nVidia, ATI or AMD graphics cards are good; others may not perform all visualizations.
- From the VAPOR website <u>http://www.vapor.ucar.edu</u>: Download appropriate binary installer from the VAPOR download page, follow the installation instructions.
- You will need Administrative privileges on Mac
- Note that on Linux and Mac you need to source vaporinstall.csh in your shell before running any VAPOR commands.
- Run the vaporgui application to visualize your data

Reading or converting WRF-ARW output files

- To directly read WRF output:
 - Run vaporgui
 - All data must be on the same grid, using the same nesting level.
 - Specify "Import WRF-ARW output files" from the Data menu, and select all the wrfout files to visualize
- For interactive visualization of large WRF-ARW datasets, it's best to convert WRF data to the VAPOR data format, using wrfvdfcreate and wrf2vdf utilities.
 - wrfvdfcreate wrfoutfiles... vdffile.vdf
 creates a VAPOR metadata file "vdffile.vdf" that describes a set of wrfout files.
 - wrf2vdf vdffile.vdf wrfoutfiles...
 - converts the specified wrfout files to a vapor data collection
 - From the vaporgui Data menu, load the file "vdffile.vdf" to visualize the converted data

Apply images to use in the VAPOR scene

- Geo-referenced satellite images can be retrieved from the Web, and VAPOR will insert them at the correct world coordinates.
 - VAPOR provides a shell script "getWMSImage.sh" that can be used to retrieve Web Mapping Service images for a specified longitude/latitude rectangle
- Also, several useful images are installed with vapor; e.g. state or national boundary maps, NASA's Blue Marble image of the earth.
- From the image panel, specify the image file, apply to terrain.

Create derived variables with Python

- From the Edit menu, "Edit Python program defining a new variable"
- Use Python script editor to define variables as arithmetic expressions of other variables.
- Variables are evaluated and cached as needed for visualization
- Python functions are also provided to derive several useful variables from WRF data; e.g. cloud-top temperature, relative humidity, potential vorticity, sea-level pressure, dewpoint temperature, radar reflectivity, equivalent potential temperature, wind shear, temperature in degrees Kelvin.

Input 2D Variables	Output 2D Variables	Input 3D Variables	Output 3D Variables	
LU_INDEX			WindSpeed	
NEST_POS	Add 2D Variable	PH PHB	Add 3D Variable	
	Remove Selected Variable		Remove Selected Variable	
WindSpeed = nu	mpy.sqrt (U*U+V*)	V+₩*₩)		
				The

Volume-render 3D variables to identify important features in the data

- Volume rendering can be used to identify significant 3D features of the WRF data.
- Use a transfer function to control transparency and color:
 - Make the unimportant features transparent, to highlight items of interest
 - Color can be used to distinguish different values of variable

NCAR

Isosurfaces indicate the surface where a variable has a specific value NCAR

- From the Iso panel, identify the variable
- The isovalue slider controls the isosurface that is drawn
- Optionally use a transfer function to control transparency and color on the surface
 - The color and transparency can be mapped from any variable in the data.

Wind Barbs

- Specify a grid of seed points in the scene where barbs will appear
 - This grid can be aligned to the WRF data grid
- Specify variables that define X, Y, and Z components of velocity field.
- Grid can be displaced by terrain height.

Streamlines and Path lines

- In the Flow panel, specify flow type and velocity components.
- Streamlines indicate the instantaneous direction of the wind flow.
- Path lines track the movement of massless particles over time.

Contour planes and the Probe

NCAR

- Use the Probe panel to position rectangle in scene
- Use transfer function to color-map the rectangle
- Probe can also enable interactive specification of flow seeds.

Integrated Data Viewer

Yuan Ho and Julien Chastang Unidata Program Center/UCAR

What is the IDV?

- Visualization and analysis tool for geoscience data developed and supported by Unidata
- Freely available Java[™] framework and application
- Integrated 2D/3D displays of a wide range of data
- Built on VisAD library

IDV Strengths

- Easy to download and install on any platform
- Remote and local access to datasets
- 2D/3D visualization
- Bundle mechanism
- Support for multi-disciplinary datasets integrated from a variety of sources
- Flexible framework supports customization (GEON-IDV, field projects, McIDAS-V)
- Extensive documentation
- Community driven development

Model simulation of wind, isentropic potential vorticity and low level moisture flow over the Great Salt Lake basin

Supported Data Sources

- Data Types:
 - Gridded model output
 - Satellite imagery
 - Radar data
 - Point observations
 - Balloon soundings
 - NOAA Profiler Network winds
 - Aircraft Tracks
 - Fronts
 - GIS data (WMS, shapefile)
 - Quick Time movies
 - Web Cams
- Vertical Coordinates
 - Pressure
 - Height/Depth
 - Other (2D only)

ADDE = Abstract Data Distribution Environment TDS (THREDDS) = Thematic Realtime Environmental Distributed Data Services

> WRF Users' Tutorial Mesoscale & Microscale Meteorological Division / NCAR

- Sample of Supported Formats:
 - netCDF
 - GRIB
 - Vis5D
 - KML
 - CSV
 - GEMPAK grid
 - ADDE
- Access Methods:
 - Local files
 - HTTP
 - ADDE, TDS and OPeNDAP servers
 - WMS

For Further Information

- Integrated Data Viewer homepage
 - o <u>http://www.unidata.ucar.edu/software/idv</u>
- RAMADDA homepage
 - o <u>http://www.unidata.ucar.edu/software/ramadda/</u>
- VisAD homepage
 - o <u>http://www.ssec.wisc.edu/~billh/visad.html</u>
- All IDV questions/comments
 - support-idv@unidata.ucar.edu

