

WRF: More Runtime Options

Wei Wang NCAR/NESL/MMM January 2012

Mesoscale & Microscale Meteorological Division / NCAR 1

Fortran namelist

- Fortran 90 namelist is used to configure a run without recompiling the code
- Fortran 90 namelist has very specific format, so edit with care:

&namelist-record - start


- end
- As a general rule:

Multiple columns: domain dependent Single column: value valid for all domains

More options

- Have covered basic, physics / diffusion options, and nudging options..
- More are introduced here:
 - IO options
 - Vertical interpolation options
 - Options for long simulations
 - Adaptive-time step
 - Digital filter
 - Global runs
 - Moving nest
 - TC options
 - Tracer
 - Stochastic kinetic-energy backscatter scheme (SKEB)
 - IO quilting

Time series output

namelist.input

general namelist records: &time_control &domains &domains &physics &dynamics &bdy_control &namelist_quilt

specialized namelist
records:
 &dfi_control
 &fdda
 &grib2
 &scm
 &tc

IO Control (1)

History output control in &time_control

history_interval: used often, unit in minutes history_interval_h: history output interval in hours history_interval_s: history output interval in seconds history_begin_h: history output beginning time in hours history_begin_d: history output beginning time in days

Complete listing in Registry/ registry.io_boilerplate

IO Control (2)

Optional history output in **&time_control**

1. Change Registry.EM and recompile: state integer rainc ij misc 1 - h03 "RAINC" "" "ACCUMULATED TOTAL CUMULUS PRECIPITATION" state integer rainnc ij misc 1 - h03 "RAINC" "" "ACCUMULATED TOTAL GRID SCALE PRECIPITATION" 2. Edit namelist.input to output these variables: auxhist3_outname = "rainfall_d<domain>" auxhist3_interval = 10, 10,

```
frames_per_auxhist3 = 1000, 1000,
```


IO Control (3)


Starting in V3.2, there is an alternative to add additional output at **runtime** (state variables in Registry only)

1. new namelists in &time_control:

```
iofields_filename(max_dom) = `my_output.txt',
```

```
ignore_iofields_warning
```

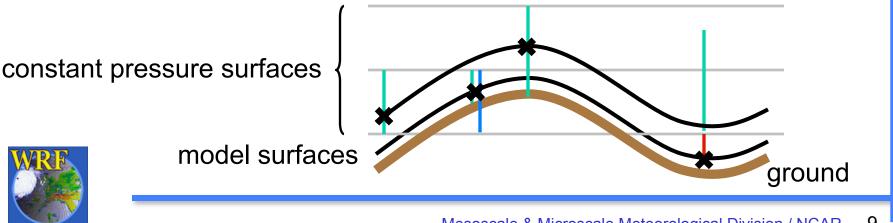
- 2. prepare text file ('my_output.txt') to define new io fields:
 +:h:3:rainc,rainnc
- 3. set other namelists under &time_control:
 auxhist3_outname = "rainfall_d<domain>"
 auxhist3_interval = 10, 10,
 frames_per_auxhist3 = 1000, 1000,

See 'Run-Time IO' section in Chapter 5, User's Guide

Vertical interpolation options (1)

Program **real** for ARW only, optional, &domains:

use_surface: whether to use surface observations


- use_levels_below_ground: whether to use data below the
 ground
- lowest_lev_from_sfc:logical, whether surface data is used to
 fill the lowest model level values
- force_sfc_in_vinterp: number of levels to use surface
 data, default is 1
- extrap_type: how to do extrapolation: 1 use 2 lowest levels; 2 - constant
- t_extrap_type : extrapolation option for temperature: 1 isothermal; 2 6.5 K/km; 3 adiabatic

Vertical interpolation options (2)

Program real for ARW only, optional: interp_type:in pressure or log pressure lagrange_order:linear or quadratic zap_close_levels:delta p where a non-surface pressure level is removed in vertical interpolation

related namelists: examples.namelist

Options for long simulations (1)

Lower boundary update control: allow SST, seaice, monthly vegetation fraction, and albedo to be updated regularly during a model run:

```
sst_update: 0 - no SST update
1 update SST
```

```
1 – update SST
```

Set before running **rea1**, and this will create additional output files: wrflowinp_d01, wrflowinp_d02, ..

Other namelists required in &time_control:

```
auxinput4_inname = "wrflowinp_d<domain>"
```

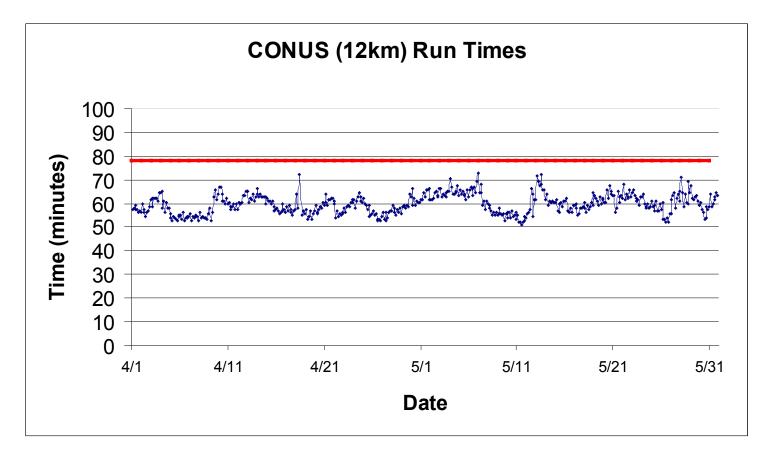
```
auxinput4_interval = 360, 360,
```

```
io_form_auxinput4 = 2 (netCDF)
```


See 'Using sst_update Option' in Chapter 5, UG (also works for NMM)

Options for long simulations (2)

sst_skin	diurnal water temp update
tmn_update	deep soil temp update, used with lagday
lagday	averaging time
bucket_mm	bucket reset value for rainfall
bucket_j	bucket reset value for radiation fluxes
spec_exp	exponential multiplier for boundary zone ramping


Adaptive time steps (1)

- Adaptive-time-step is a way to maximize the model time step while keeping the model numerically stable
- New in V3. Good to use for real-time run
- May not work in combination with other options

Also see 'Using Adaptive Time Stepping' section in Chapter 5, UG

Adaptive time steps (2): an example

On average, forecasts finish in 60 min (50-73min) as compared to 79 min standard runtime

Adaptive time steps (3)

Namelist control: &domains * USE WITH CARE				
<pre>use_adaptive_time_step</pre>	logical switch			
step_to_output_time	whether to write at exact history output times			
target_cfl	maximum cfl allowed (1.2)			
<pre>max_step_increase_pct</pre>	percentage of time step increase each time; set to 5, 51, 51 (larger value for nest)			
<pre>starting_time_step</pre>	in seconds; e.g. set to 4*DX			
<pre>max_time_step min_time_step</pre>	in seconds; e.g. set to 8*DX in seconds; e.g. set to 4*DX			

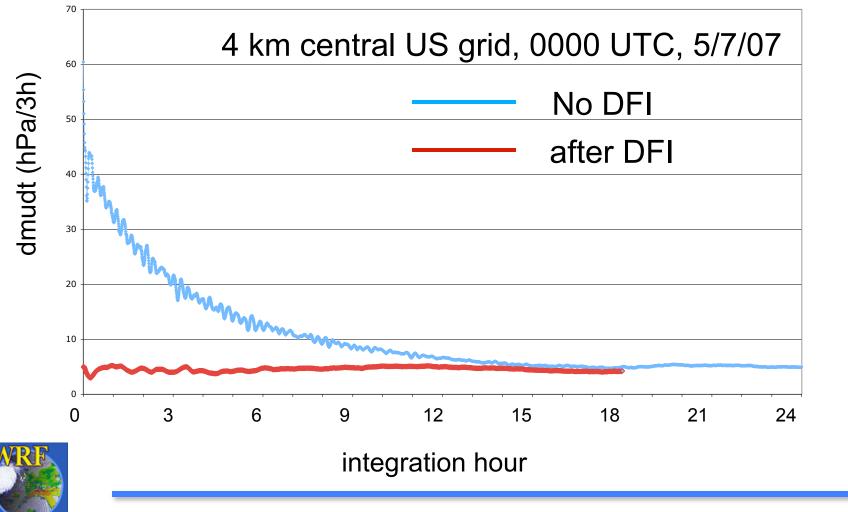
Digital filter initialization (1)

Digital filter initialization is a simple way to remove initial model imbalance:

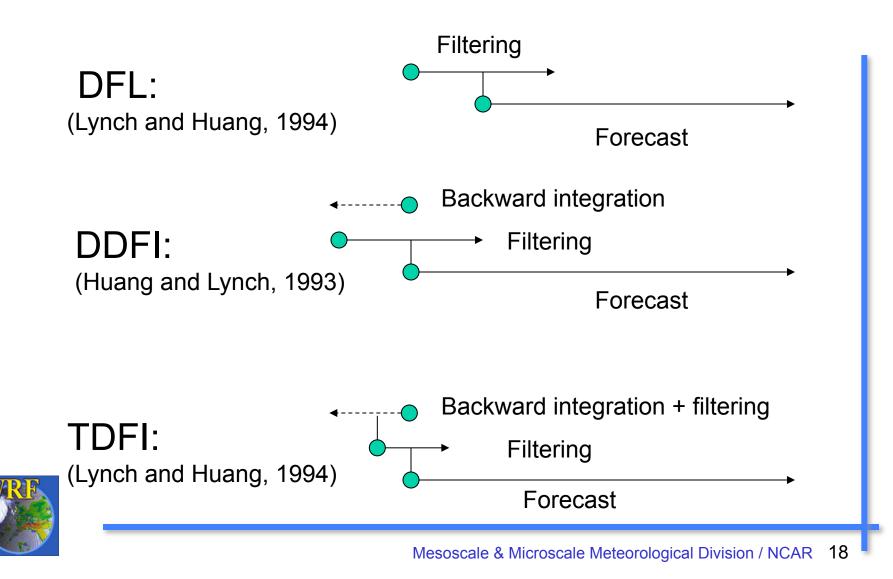
- May be introduced by simple interpolation, different topography, or by objective analysis, or data assimilation
- It may generate spurious gravity waves in the early simulation hours, which could cause erroneous precipitation, numerical instability and degrade subsequent data assimilation

Digital filter initialization (2)

Using DFI


- can construct consistent model fields which do not exist in the initial conditions, e.g. vertical motion, cloud variables
- may reduce the spin-up problem in early simulation hours

DFI is done after program **rea1**, or dataassimilation step, just before model integration


See 'Using Digital Filter Initialization', Chap 5, UG. Also works for NMM.

Digital filter initialization (3)

Mesoscale & Microscale Meteorological Division / NCAR 17

Digital filter initialization (4)

Digital filter inilialization (5)

Namelist control: &dfi

- **dfi_opt:** dfi options: 0: no DFI; 1: DFL; 2: DDFI; 3: TDFI (recommended)
- dfi_nfilter: filter options 0 8, recommended: 7

dfi_cutoff_seconds : cutoff period

dfi_write_filtered_input : whether to write
 filtered IC

- dfi_bckstop_* : stop time for backward integration
- dfi_fwdstop_* : stop time for forward integration

related namelists: examples.namelist

Global application

Setup mostly done in WPS:

map_proj = `lat-lon'
e_we, e_sn: geogrid will compute dx, dy
See template `namelist.wps.global'

In the model stage:

fft_filter_lat: default value is 45 degrees
Caution: some options do not work, or have been
tested with global domain. Start with template
`namelist.input.global'

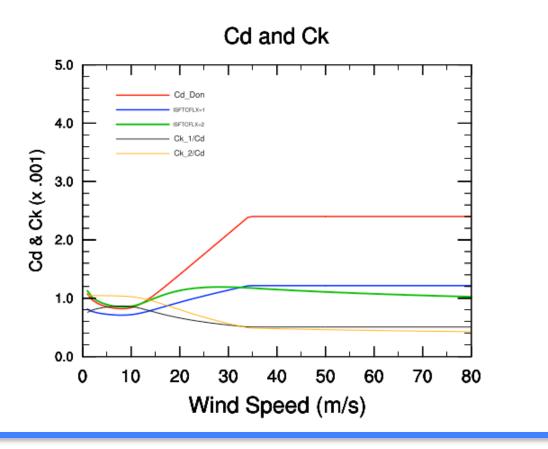
See 'Global Run' section, Chap 5, UG

Automatic moving nest options

Tropical cyclone / typhoon / hurricane applications:

vortex_interval: time interval when vortex location is estimated

max_vortex_speed: used to compute the search
radius for vortex location


corral_dist: how far the vortex can move near
 the parent domain boundary (number of grids)
 track_level: e.g. 700 or 500 mb
 time to move: hold nests still until this time

See 'Moving Nested Run', Chap 5, UG

TC options (1)

isftcflx: alternative C_d (Donelan) and C_k (=1, const z0q; =2, Garratt) formulation for TC application

Mesoscale & Microscale Meteorological Division / NCAR 22

TC options (2)

omlcall: simple ocean mixed layer
oml_hml0: initial ocean mixed layer depth
oml_gamma: lapse rate in deep water

The ocean mixed layer model can also be initialized with real-data, e.g. HYCOM

http://www.mmm.ucar.edu/wrf/users/hurricanes/wrf_ahw.html

tracer options

Add the following in **&dynamics** to activate tracer option (default no. is 8):

tracer_opt = 2,

One would need some way to initialize the tracer

This is a way to stochastically perturb forecasts. stoch_force_opt: = 1, activate the scheme
nens: = N, an integer that controls the random
number stream; a different integer will give a
differently perturbed forecast

Also see 'Option to stochastically perturb forecasts' section in Chap 5, UG

IO quilting: &namelist_quilt

Parallel I/O control:

- nio_tasks_per_group (>0) : allow IO to be done
 on separate processors. Performance improvement
 for large domain runs. A value of 2 to 4 works well.
- io_groups (>1) : number of I/O streams that the quilting applies.

See 'Using IO Quilting' section, Chap 5, UG Note that using p-netCDF is another way to improve IO

Time Series Output (1)

 It is a special output in text format with file name like

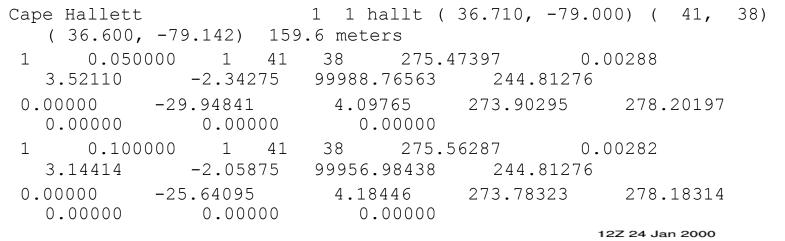
prefix.d<domain>.TS

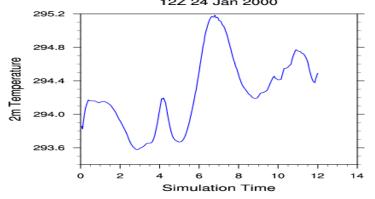
It outputs 14 surface variables at every time step:

e.g. 10 m u/v, 2 m T/qv, precipitation, radiation, surface fluxes

• One file per location (e.g. at weather station)

Time Series Output (2)


- Not a namelist option
- If output more than 5 locations, use namelist max_ts_locs
- Depends the presence of a file called 'tslist' (a sample of the file is available in WRFV3/run/


# # 24 characters for name #	pfx LAT	LON
# Cape Hallett	hallt -72.330	11
McMurdo Station	mcm -77.851	166.713

- This file provides a list of locations where you would like to output time series
 - More information in run/README.tslist and 'Output Time Series' section, Chapter 5, UG

Time Series Output (3)

Content in hallt.d01.TS:

Mesoscale & Microscale Meteorological Division / NCAR 29

Recommended

Start with the namelist template in a particular test directory, and the options specified in the file, and make modifications.

For special applications in ARW, look for related namelists in the file *examples.namelist* in *test/em_real/* directory.

Chapter 5 of User's Guide, pages 5-23 – 5-25: examples for various applications.

For more information on global extension, DFI and adaptive time step, read Tech Note, and User's Guide.

