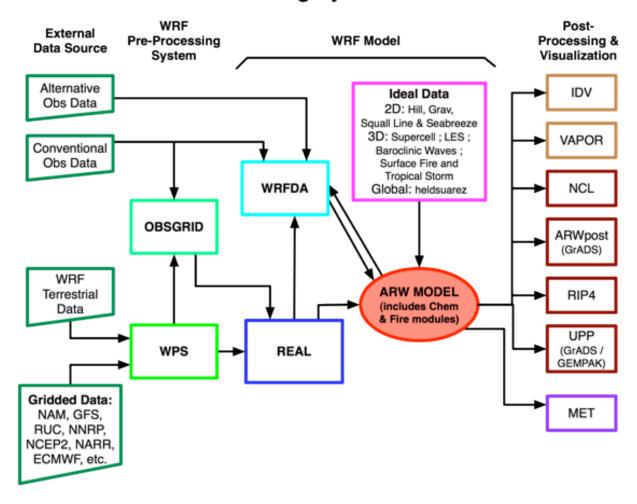
Purpose of this Lecture

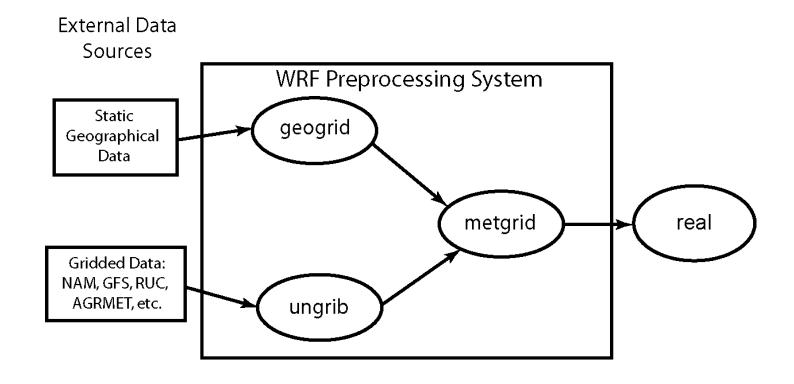
In this lecture, our goals are to:


- 1) Understand the purpose of the WPS
- 2) Learn what each component of the WPS does
- 3) Understand why the components work as they do

- The details of actually running the WPS are covered later this afternoon
- Advanced features of the WPS are described on Wednesday

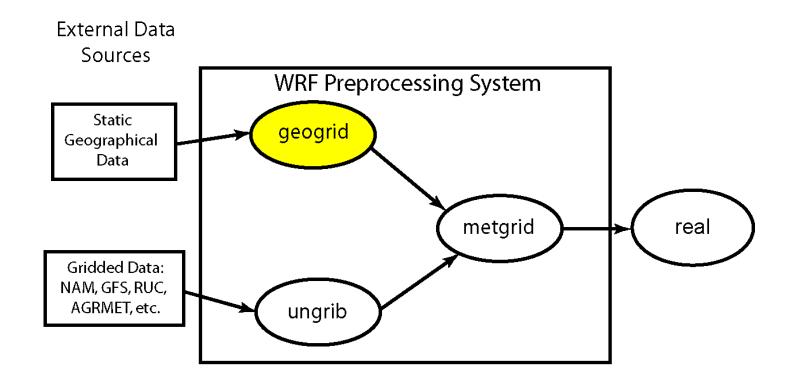
WRF Modeling System Flowchart

WRF Modeling System Flow Chart


Purpose of the WPS

The purpose of the WPS is to prepare input to WRF for real-data simulations:

- Defines simulation coarse domain and nested domains
- Computes latitude, longitude, map scale factors, and Coriolis parameters at every grid point
- 3. Interpolates time-invariant terrestrial data to simulation grids (e.g., terrain height and soil type)
- Interpolates time-varying meteorological fields from another model onto simulation domains



WPS Program Flowchart

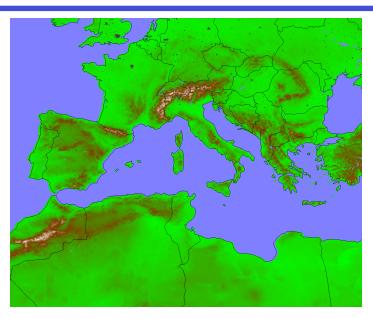
The *geogrid* program

geogrid: think geographical

The *geogrid* program

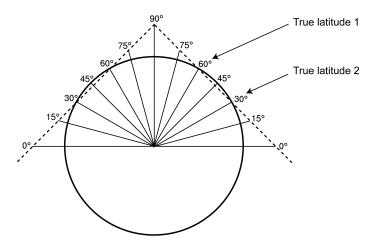
- For WRF model domains, geogrid defines:

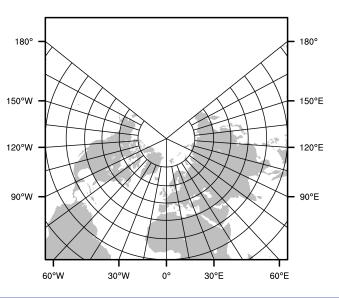
 - □ Dimensions of domains
- Geogrid provides values for static (time-invariant) fields at each model grid point


 - Horizontally interpolate static terrestrial data (e.g., topography height, land use category, soil type, vegetation fraction, monthly surface albedo)

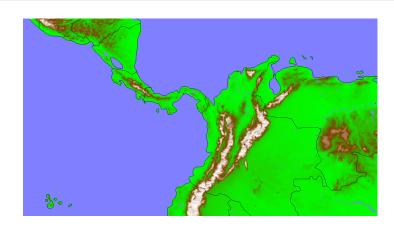
Geogrid: Defining model domains

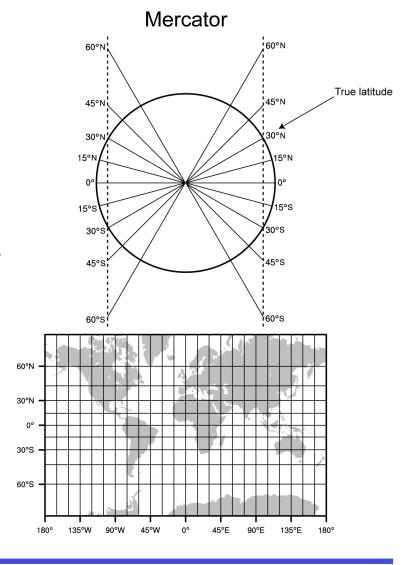
- First, we choose a map projection to use for the domains; why?
 - The real earth is (roughly) an ellipsoid
 - But WRF computational domains are defined by rectangles in the plane
- ARW can use any of the following projections:
 - Lambert conformal
 - 2. Mercator
 - 3. Polar stereographic
 - 4. Latitude-longitude (for global domain, you *must* choose this projection!)



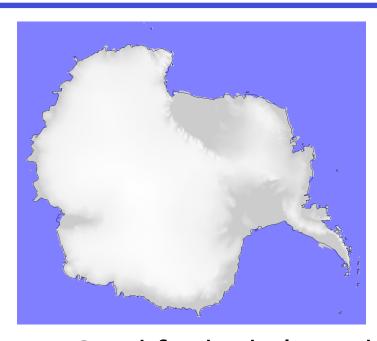

ARW Projections: Lambert Conformal

- Well-suited for mid-latitudes
- Domain cannot contain either pole
- Domain cannot be periodic in westeast direction
- Either one or two *true latitudes* may be specified
 - If two are given, the order doesn't matter

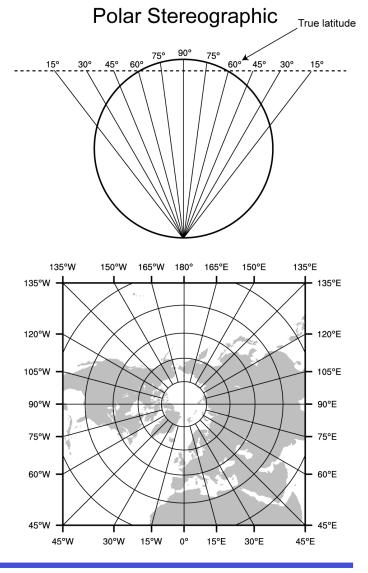

Lambert Conformal



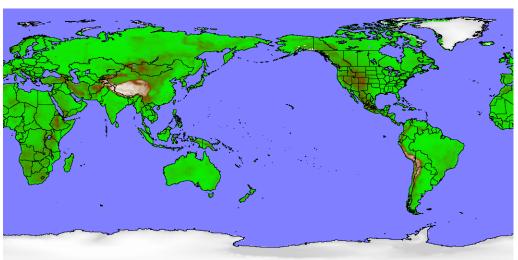
ARW Projections: Mercator



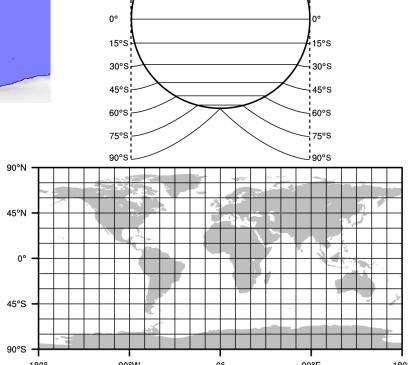
- Well-suited for low-latitudes
- May be used for "channel" domain (periodic domain in west-east direction)
- A single true latitude is specified
 - Cylinder intersects the earth's surface at +/- truelat



ARW Projections: Polar Stereographic

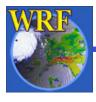


- Good for high-latitude domains, especially if domain must contain a pole
- A single true latitude is specified



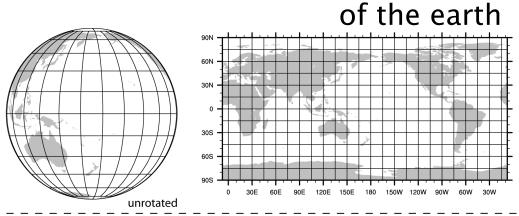
ARW Projections: Cylindrical Equidistant

- Required for global domains
- May be used for regional domains
- Can be used in its normal or rotated aspect



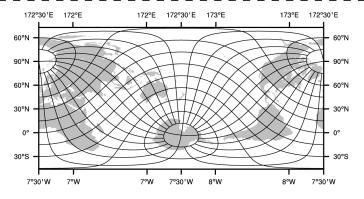
Cylindrical Equidistant

60°N


75°N 60°N

45°N 30°N 15°N

Rotating the Lat-lon Grid

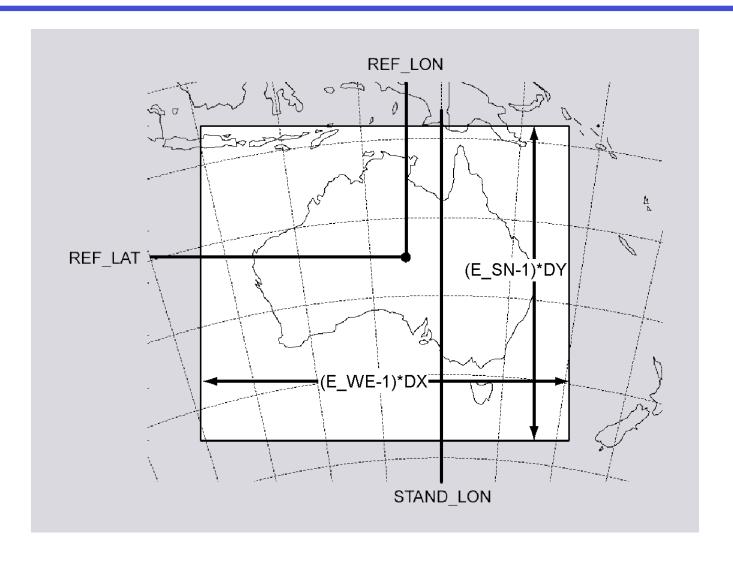

In certain cases, it may be desirable or necessary to rotate the poles of the projection away from the poles

- When placing a nest over a region that would otherwise lie within a filtered region
- When using the lat-lon projection for limited area grids

See p. 3-12

Computational grid

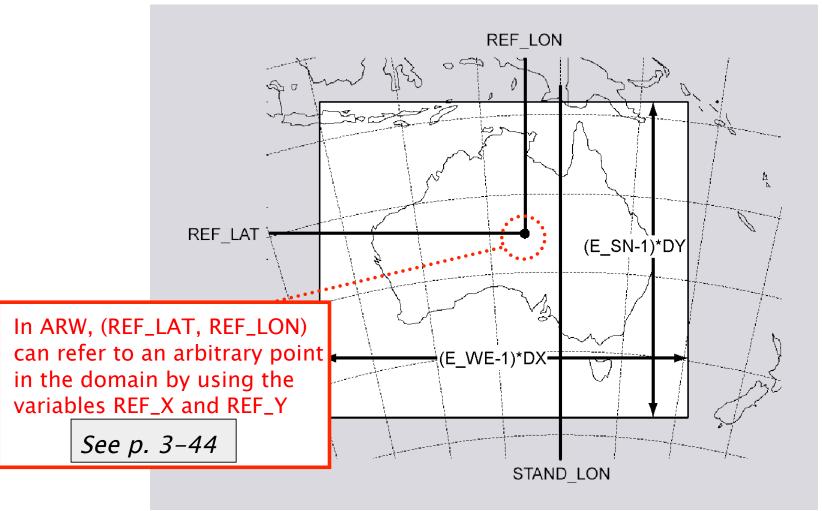
Geographic grid



Geogrid: Defining Model Domains

- Define projection of domains using a subset of the following parameters
 - MAP_PROJ: 'lambert', 'mercator', 'polar', or 'lat-lon'
 - **TRUELAT1**: First true latitude
 - TRUELAT2: Second true latitude (*only for Lambert conformal*)
 - ☑ POLE_LAT, POLE_LON: Location of North Pole in WRF computational grid (only for 'lat-lon')
 - lacktriangle STAND_LON: The meridian parallel to y-axis
- All parameters reside in the file *namelist.wps*

Geogrid: Defining ARW Domains

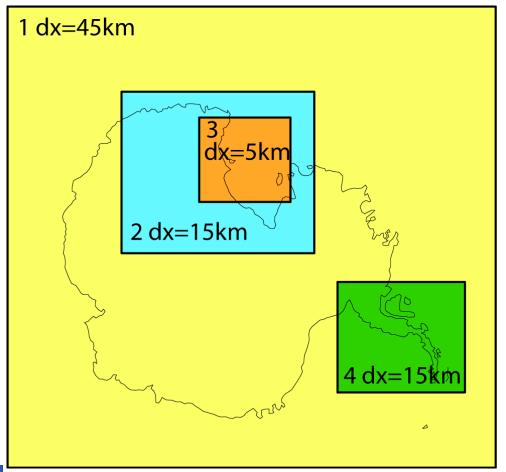


Geogrid: Defining Model Domains

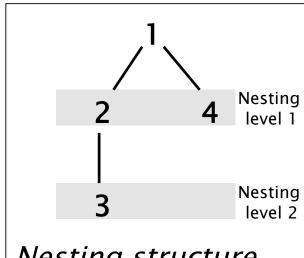
- Define the area covered (dimensions and location) by coarse domain using the following:
 - REF_LAT, REF_LON: The (lat,lon) location of a known location in the domain (by default, the center point of the domain)
 - \square **DX**, **DY**: Grid distance where map factor = 1
 - For Lambert, Mercator, and polar stereographic: meters
 - For (rotated) latitude-longitude: degrees
 - **E_WE**: Number of velocity points in west-east direction
 - E_SN: Number of velocity points in south-north direction

 See p. 3-13 and 3-42

Geogrid: Defining ARW Domains


Geogrid: Nesting Basics

- A nested domain is a domain that is wholly contained within its parent domain and that receives information from its parent, and that may also feed information back to its parent
 - A nested domain has exactly one parent
 - A domain may have one or more *children*
- 2-way nests on the same nesting level must not overlap in coverage!

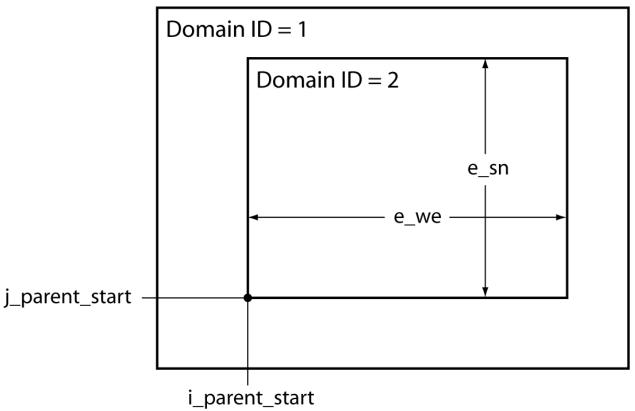


Geogrid: Nesting Example

Example configuration - 4 domains

Each domain is assigned a domain ID #

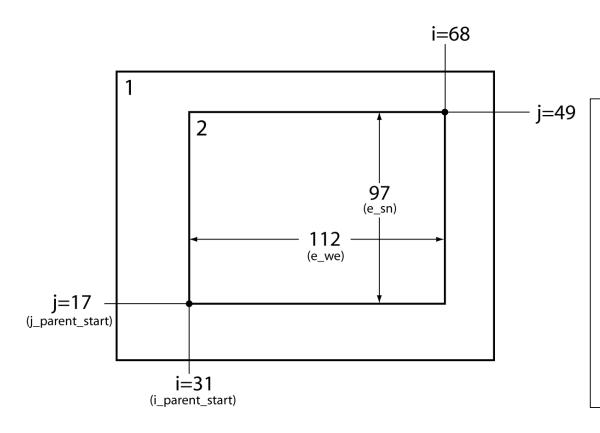
Nesting structure shown as a tree for the domains at left


Geogrid: Defining Nested Domains

- Define the dimensions and location of nested domains using:
 - M PARENT_ID: Which domain is the parent?
 - PARENT_GRID_RATIO: What is the ratio of grid spacing in parent to grid spacing in this nest?
 - I_PARENT_START: i-coordinate in parent of this nest's lower-left corner
 - J_PARENT_START: *j*-coordinate in parent of this nest's lower-left corner
 - **E_WE**: Number of velocity points in west-east direction
 - E_SN: Number of velocity points in south-north direction

 See p. 3-20 and 3-42

Geogrid: Defining Nested Domains



The grid spacing (dx) of domain 2 is determined by grid spacing of domain 1 and the parent_grid_ratio

Geogrid: Nesting example

Assuming *parent_grid_ratio* = 3

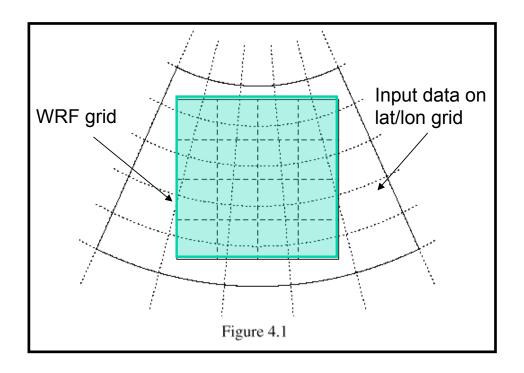
In ARW, nest dimensions must be

(n*parent_grid_ratio + 1)

for some integer *n*

$$112 = 3*n+1 \text{ for } n=37$$

$$97 = 3*n+1 \text{ for } n=32$$



Geogrid: Interpolating Static Fields


- Given definitions of all computational grids, geogrid interpolates terrestrial, timeinvariant fields
 - Topography height
 - Land use categories
 - Soil type (top layer & bottom layer)
 - M Annual mean soil temperature
 - Monthly vegetation fraction
 - Monthly surface albedo

Geogrid: Interpolating Static Fields

In general, source data are given on a different projection from the model grid

Geogrid: Interpolation Options

- 4-point bilinear
- 16-point overlapping parabolic
- 4-point average (simple or weighted)
- 16-point average (simple or weighted)
- Grid cell average
- Nearest neighbor
- Breadth-first search

See p. 3-55

Why have so many interpolation options?

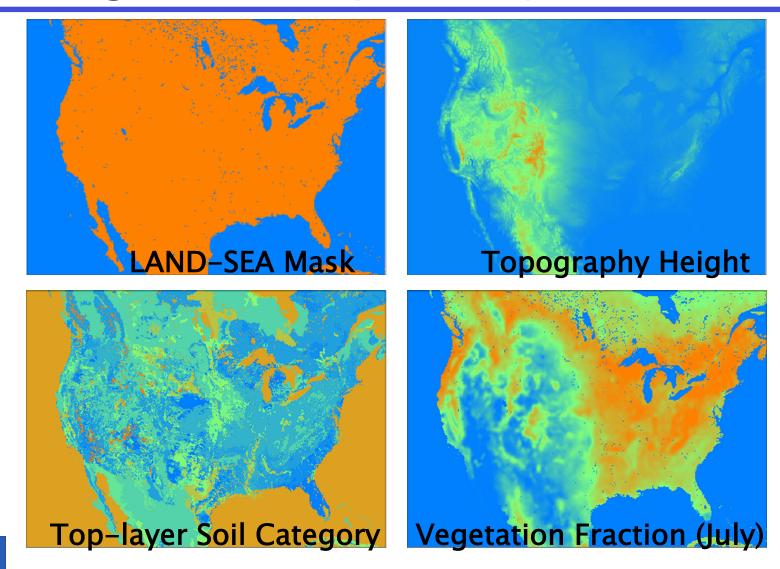
- Different interpolators work best for different fields and different relative grid resolutions
 - Some interpolators preserve positive definiteness
 - Some interpolators produce "smoother" fields
 - Some interpolators are best suited for discrete or categorical fields
 - Some are good when going from a fine grid to a coarse grid
- Having a choice of how to interpolate fields is good!
 - We'll see in Friday's WPS lecture how several different options can be used for different regions of the same field

Geogrid: Program Flexibility

- The GEOGRID.TBL file determines
 - 1. Which fields will be produced by geogrid
 - 2. What sources of data will be used
 - 3. How the data will be interpolated/smoothed
 - 4. Any derived fields (e.g., dominant cat., df/dx)
- Acceptable defaults exist in GEOGRID.TBL, so user will not generally need to edit the file (but more on this in Wednesday's WPS lecture!)

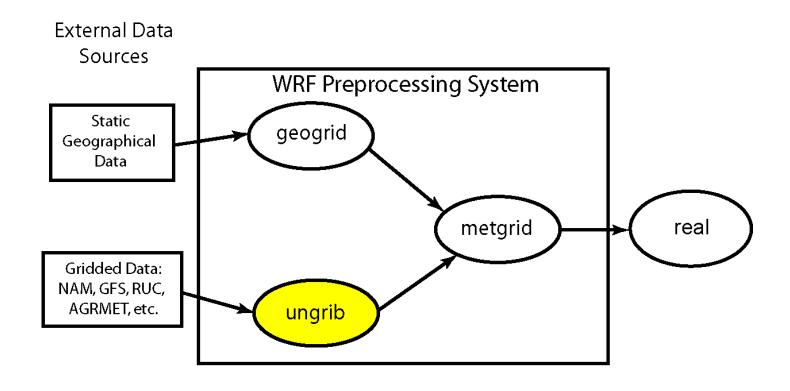
Geogrid: Program Flexibility

- geogrid is flexible enough to ingest and interpolate new static fields
 - mandles either continuous or categorical fields
- New data sets must be written to simple binary format
- User needs to add an entry to the file GEOGRID.TBL


Geogrid: Program Output

- The parameters defining each domain, plus interpolated static fields, are written using the WRF I/O API
 - One file per domain for ARW
- Filenames: geo_em.d0n.nc
 (where n is the domain ID #)
- Example:

```
geo_em.d01.nc
geo_em.d02.nc (nest)
geo_em.d03.nc (nest)
```



Geogrid: Example Output Fields

The *ungrib* program

ungrib: think un+grib

What is a GRIB file, anyway?

- GRIB is a WMO standard file format for storing regularly-distributed (e.g., gridded) fields
 - "General Regularly-distributed Information in Binary"
- Fields within a GRIB file are compressed with a lossy compression
 - Think of truncating numbers to a fixed number of digits
- A record-based format
- Fields in a file are identified only by code numbers
 - These numbers must be referenced against an external table to determine the corresponding field

The *ungrib* program

- Read GRIB Edition 1 and GRIB Edition 2 files
- Extract meteorological fields
- If necessary, derive required fields from related ones
- Write requested fields to an intermediate file format

Ungrib: Vtables

How does ungrib know which fields to extract?

Using Vtables (think: <u>Variable tables</u>)

- Vtables are files that give the GRIB codes for fields to be extracted from GRIB input files
- One Vtable for each source of data
- Vtables are provided for: NAM 104, NAM 212, GFS, AGRMET, and others

Ungrib: Example Vtable

	•	From Level1		UNGRIB Name	UNGRIB Units	UNGRIB Description
11 33 34 52 7 11 52 33 34 1 130 144 144 144 144 144 144 144 144 144 14	Type + 100 100 100 100 105 105 105 105 102 112 112 112 112 112 112 112 1112 1112 1112 1112 1112 1112 1112	+	Level2 +	T U V RH HGT T HGT T FSFC PMSL SM000010 SM010040 SM040100 ST010040 ST010040 ST040100 ST04	K m s-1 m s-1 % m s-1 K Pa Pa Pa kg m-3 kg m-3 kg m-3 K K K K F Proprtn m K kg m-2 kg m-2 kg m-2	Temperature U V Relative Humidity Height Temperature at 2 m Relative Humidity at 2 m U at 10 m V at 10 m Surface Pressure Sea-level Pressure Soil Moist 0-10 cm below grn layer (Up) Soil Moist 10-40 cm below grn layer Soil Moist 40-100 cm below grn layer Soil Moist 100-200 cm below grn layer T 0-10 cm below ground layer (Upper) T 10-40 cm below ground layer (Upper) T 40-100 cm below ground layer (Upper) T 100-200 cm below ground layer (Bottom) Ice flag Land/Sea flag (1=land, 2=sea in GRIB2) Terrain field of source analysis Skin temperature (can use for SST also) Water equivalent snow depth Plant Canopy Surface Water
224 225 	ı ± 1 ++:	0 0 +	 	SOILCAT VEGCAT	Tab4.213 Tab4.212	

Ungrib: GRIB2 Vtable Entries

Temperature 0 U 0 V 0 Relative Humidity 0 Height 0 Temperature at 2 m 0 Relative Humidity at 2 m 0	0 2 2 1 3	0 2 3 1	100 100 100
U at 10 m		5 0 1 2 3 0 192 192 192 192 192 0 0 0 0 0 0 0 13 198	100 100 103 103 103 103 106 106

Ungrib: Vtables

What if a data source has no existing Vtable?

Create a Vtable

- Get a listing of GRIB codes for fields in the source
 - Check documentation from originating center or use utility such as wgrib, g1print, g2print
- Use existing Vtable as a template
- Check documentation in Chapter 3 of the Users' Guide for more information about Vtables

See p. 3-35

Ungrib: Intermediate File Format

- After extracting fields listed in Vtable, ungrib writes those fields to intermediate format
- For meteorological data sets not in GRIB format, the user may write to intermediate format directly $See\ p.\ 3-33$
 - MAllows WPS to ingest new data sources; basic programming required of user
 - Simple intermediate file format is easily read/ written using routines from WPS (read_met_module.F and write_met_module.F)

Ungrib: Program Output

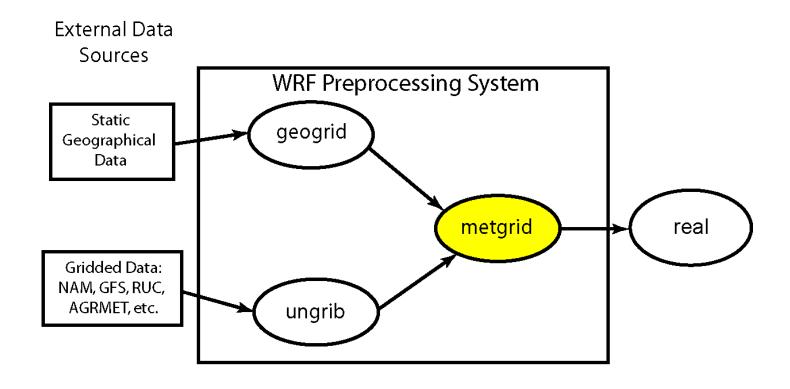
- Output files named FILE: YYYY-MM-DD_HH
 - YYYYY is year of data in the file; MM is month;
 DD is day; HH is hour
 - M All times are UTC
- Example:

FILE:2007-07-24_00

FILE:2007-07-24_06

FILE:2007-07-24_12

ungrib can also write intermediate files in the MM5 or WRF SI format! (To allow for use of GRIB2 data with MM5, for example)


Ungrib: Obtaining GRIB Data

- Where does one get GRIB data?
 - **™**User's responsibility

 - whttp://www.mmm.ucar.edu/wrf/users/
 - > under the "Downloads" tab:
 - Some NCEP data in the past year
 - NCEP operational data available daily

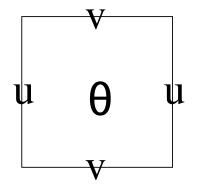
The *metgrid* program

metgrid: think <u>met</u>eorological



The *metgrid* program

 Horizontally interpolate meteorological data (extracted by ungrib) to simulation domains (defined by geogrid)


Masked interpolation for masked fields

Rotate winds to WRF grid

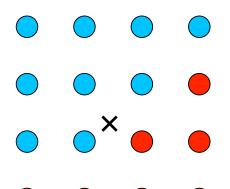
Metgrid: ARW Grid Staggering

- For ARW, wind U-component interpolated to "u" staggering
- Wind V-component interpolated to "v" staggering
- Other meteorological fields interpolated to "θ" staggering by default (can change this!)

A single ARW grid cell, with "u", "v", and "θ" points labeled.

Metgrid: Interpolation Options*

- 4-point bilinear
- 16-point overlapping parabolic
- 4-point average (simple or weighted)
- 16-point average (simple or weighted)
- Grid cell average
- Nearest neighbor
- Breadth-first search

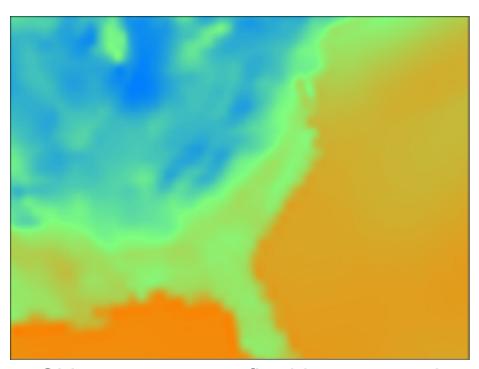

* These are the same options available for geogrid!

Metgrid: Masked Interpolation

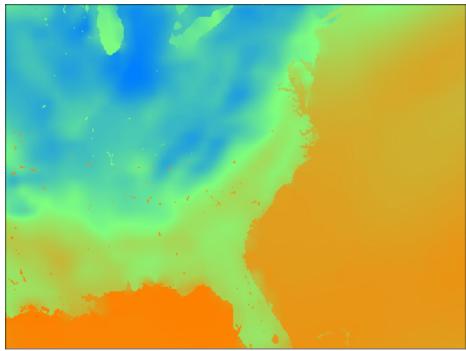
- Masked fields may only have valid data at a subset of grid points
 - E.g., SST field only valid on water points
- When metgrid interpolates masked fields, it must know which points are invalid (masked)
 - Can use separate mask field (e.g., LANDSEA)
 - $oxed{oxed}$ Can rely on special values (e.g., 1×10^{30}) in field itself to identify masked grid points

Metgrid: Masked Interpolation

- = valid source data
- = masked/invalid data


Suppose we need to interpolate to point X

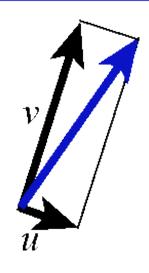
- Using red points as valid data can give a bad interpolated value!
- Masked interpolation only uses valid blue points to interpolate to X

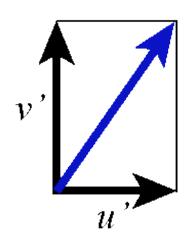

Not every interpolation option can handle masked points; we'll address this issue in the advanced WPS lecture

Example: Masked Interpolation

Skin temperature field interpolated from GFS 0.5-deg field with no mask using a sixteen-point interpolator.

Skin temperature field interpolated using masks: GFS water points interpolated to model water points, GFS land points interpolated to model land points.




Metgrid: Wind Rotation

- Input wind fields (U-component + Vcomponent) are either:
 - Earth-relative: U-component = westerly component;
 V-component = southerly component
 - Relative to source grid: U-component (V-component) parallel to source model x-axis (y-axis)
- WRF expects wind components to be relative to the simulation grid

Metgrid: Wind Rotation Example

A wind vector, shown in terms of its U and V components with respect to the source grid.

The same vector, in terms of its U and V components with respect to the WRF simulation grid.

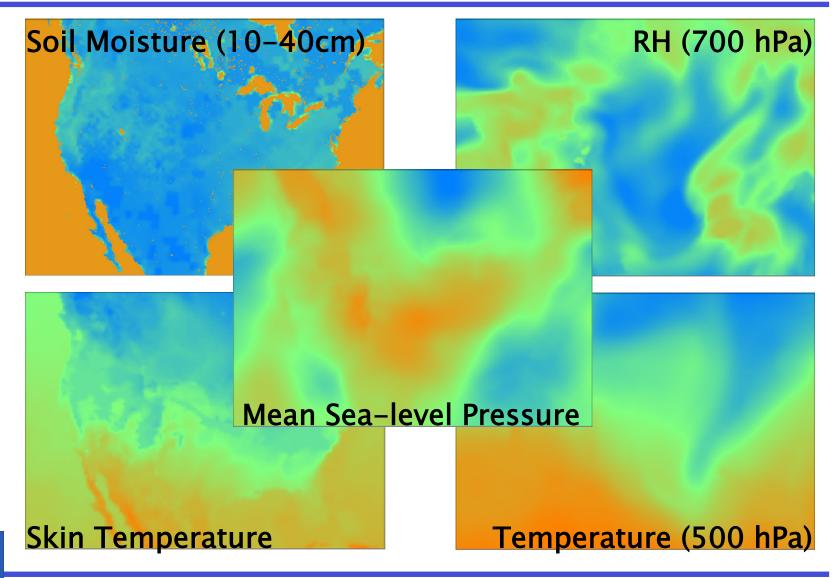
This process may require *two* rotations: one from source grid to earth grid and a second from earth grid to WRF grid

Metgrid: Constant Fields

- For short simulations, some fields may be constant
 - E.g., SST or sea-ice fraction
- Use namelist option constants_name option to specify such fields:
 - CONSTANTS_NAME = 'SST_FILE:2007-07-24_00'

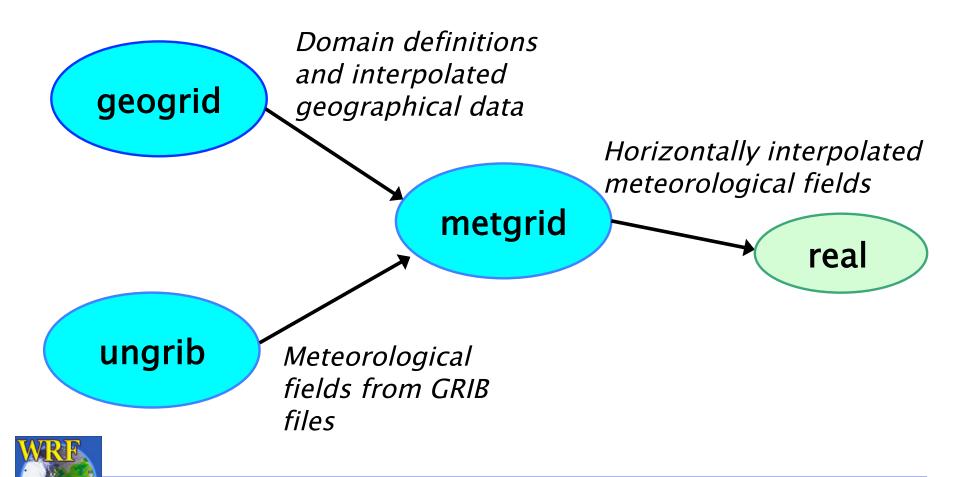
Metgrid: Program Flexibility

- metgrid is capable of interpolating both isobaric and native vertical coordinate data sets
- User may specify interpolation methods and related options in the METGRID.TBL file
 - METGRID.TBL file similar in format to the file GEOGRID.TBL

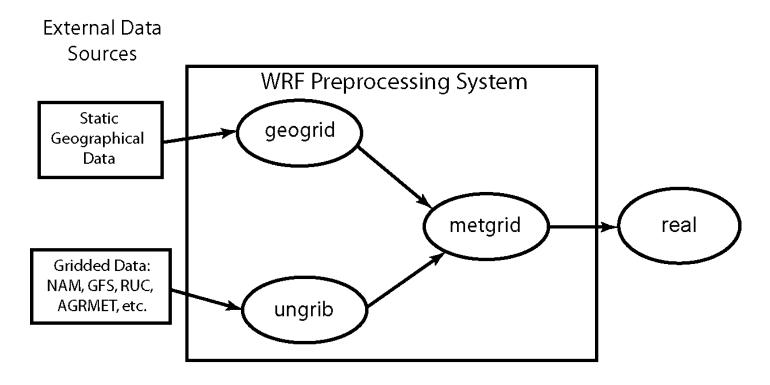

Metgrid: Program Output

- For coarse domain, one file per time period
 - In ARW, we also get the first time period for all nested grids
- Files contain static fields from geogrid plus interpolated meteorological fields
- Filenames:

```
met_em.d0n.YYYY-MM-DD_HH:mm:ss.nc
    (where n is the domain ID #)
```



Metgrid: Example Output



WPS Summary


And finally...

Vertical interpolation to WRF eta levels is performed in the *real* program

Questions?

