WRF Software Architecture

lohn Michalakes, Head WRF Software Architecture
Michael Duda
Dave Gill

Outline

e [ntroduction
Computing Overview

e WRF Software Overview

Outline

e Introduction

e WRF Software Overview

Introduction — Intended Audience

* Intended audience for this tutorial session: scientific users
and others who wish to:
— Understand overall design concepts and motivations
— Work with the code
— Extend/modify the code to enable their work/research
— Address problems as they arise

Introduction — WRF Resources

WRF project home page
— http://www.wrf-model.org

WRF users page (linked from above)

— http://www.mmm.ucar.edu/wrf/users

On line documentation (also from above)

— http://www.mmm.ucar.edu/wrf/WG2/software_v2

WRF user services and help desk

— wrfhelp@ucar.edu

Introduction — WRF Software Characteristics

Developed from scratch beginning around 1998, primarily Fortran
and C

* Requirements emphasize flexibility over a range of platforms,

applications, users, performance

* WRF develops rapidly. First released Dec 2000; current release WRF
v3.3.1 (Sep 2011); next release WRF v3.4 (April 2012)

* Supported by flexible efficient architecture and implementation called
the WRF Software Framework

Introduction - WRF Software Framework Overview

* Implementation of WRF Architecture
— Hierarchical organization
— Multiple dynamical cores
— Plug compatible physics
— Abstract interfaces (APIs) to external packages
— Performance-portable

 Designed from beginning to be adaptable to today’s computing
environment for NWP

http://box.mmm.ucar.edu/wrf/WG2/bench/

Top-level Control,
Memory Management, Nesting,
Parallelism, External APls

ARW solver

NMM solver

Physics Interfaces

Plug-compatible physics

P

Vpere
L s by
e esald

<A

‘-
|~
i
|-
“Is
i~
I~
“Is
i
= 8
=55

R

.2

N

C=ro
COMMENT.

STATEMENT
NUMBEH

CONTINUATION

Early Unix Interface to WRF model

i cd WRFV2 ; echo 1 1 ./configure ; ./compile em real

FORTRAN STATERMENT

IOEMTIFICATION

§i0000
LIRRR
22222
1213333
44444
515555
%ssss
ﬁ7777
HEE 88

I
19999
2345

il

b >
142 3.4 5|2

— D

2
3
4
5
6
/)
8

o

000 0D00OD000O0D00000000000000000000000000000000000060000000000000D00
7 8 S 1011273 4 1506 17 18 1920 21 2225 2425 96 27 202000 31 32 X3 34 3538 37,383 40 41 42-33 44 45 45 47 41 43 50 5152 53 $4 53 55 37,58 5040 61 82 £3 &1 63 %5 67 64 6% 70 71 72
TN U 0 8 1 (0 e O 5 8 0 O A o 4 5 5 I G O T) D e O A 1 L 0 0 60 A0 1 Tl L
22272222222222222222222
33
4424448444444 408404844444448A444884044484404844844448444484444444444
555555855555655555855855585550558555558055598535355888505555558555355%
G66B6666666666G65686666666h66666666666666C6666666666666666666666G65666
oy 5 0y R 0 [S e A A £ S O [R 8 {8 R A A A A B o A (S A
6888¢2888880388388808888630888888806858880888880880808888888686888888838

a9

WHREBWSE D

9999999999%89999999999999999999999999899899999399993%99989993993939

16 ¥ 20 213223 24 35 26 27 282830 31 3233 34 3536 37 08 39 40 41 42 41 44 45 45 47 4849 50 51 52 53 54 6556 3) 58 5860 61 62 03 64 £5 646764 63 10 1N 12

9 9
188

60000000
ERARER IR R
11111111
22222222
33333533
44444744
5555¢ 9585
5666856
1711127111
88888883

333989

g
7 7 157

W 0

N

FADG9

Early Unix Interface to WRF model

) cd WRFV2 3 echo 1 1 ./configure ; ./compile em real

FORTRARN STATERRERNT

nnannNnNONNMONANRNNONNARRNOANAOONNANARRNANONONORAODNAORNNNORADRN

Early Unix Interface to WRF model

——————— et e

nna~n
i

cd WRFV2Z : echo l(:) /configure ; ./compile em real
mose e, G . ? B A0 8 T QIR S TR A% RIS D, e

& = { L‘“}v ; ~s_§zﬁ‘% L‘“ 'i‘rf'.? L :‘E".'b:';. E &_,-.: h O B e -"_' .“’ L:i
iannnNNANAANDAAGRARNAARARN

”IIH?II'.'Y.' naonnnan

N
i 1

Snnnnanek 1 N ﬂ ;f ﬂ n [“ ananannnl

Note usage of lower case “L”
for the pipe character on
keypuch machine

Outline

Introduction

Computing Overview

WRF Software Overview

Computing Overview

APPLICATION

Computing Overview

APPLICATION

SYSTEM

Computing Overview

APPLICATION

SYSTEM

HARDWARE

Patches
Tiles
WRF Comms

Processes
Threads
Messages

Processors
Nodes
Networks

APPLICATION

Hardware: The Computer

000000 00
HARDWARE [J
000000 O0CO

* The ‘N"in NWP
* Components
— Processor
* A program counter
* Arithmetic unit(s)
* Some scratch space (registers)
e (Circuitry to store/retrieve from memory device
* (ache
— Memory
— Secondary storage
— Peripherals

* The implementation has been continually refined, but the basic idea hasn't
changed much

APPLICATION

SYSTEM

HARDWARE ([

bee ST S

IBM p690

Hardware has not changed much...

A computer in 1960

6-way superscalar
36-bit floating point precision
~144 Kbytes

~50,000 flop/s

. 48hr 12km WRF CONUS in 600 years
A computer in 2002 g

T
1

ISUE = TTeY
i 4-way superscalar

64-bit floating point precision
1.4 Mbytes (shown)

> 500 Mbytes (not shown)

~5,000,000,000 flop/s
48 12km WRF CONUS in 52 Hours

APPLICATION

SYSTEM

:

HARDWARE ([
0000060 O0CO

IBM P6

T R S S NI
,,,,,

A computer in 1960

—

Hardware has not changed much...

6-way superscalar
36-bit floating point precision
~144 Kbytes

~50,000 flop/s
48hr 12km WRF CONUS in 600 years

Dual core, 4.7 GHz chip
64-bit floating point precision
1.9MB L2, 36 MB L3

Upto 16 GB per processor

~5,000,000,000 flop/s
48 12km WRF CONUS in 52 Hours

APPLICATION

HARDWARE [J
000000 O0CO

 Fundamentally, processors haven't changed much since 1960

* (Quantitatively, they haven't improved nearly enough

— 100,000x increase in peak speed
— 100,000x increase in memory size

» We make up the difference with parallelism

— Ganging multiple processors together to achieve 1012 flop/second
— Aggregate available memories of 10'!-12 bytes

~1,000,000,000,000 flop/s ~250 procs
48-h, 12-km WRF CONUS in under 15 minutes

Gflop/second

6000

5000 -

4000

w
o
o
o

2000

1000

140

5,140 120

- 100

- 80

60

—=—|ntel Xeon 5670 (6 core)
—e—|ntel Xeon 5560 (4 core)

1024 2048

- 40
—a—Cray XT5
——|BM Power6
~=-Sun/AMD (Ranger) - 20
0

3072 4096 5120 6144 7168 8192 9216

Number of cores

paadg uonenwis

APPLICATION

Parallel Computing Terms -- Hardware

SYSTEM

HARDWARE [J
000000 O0CO

* Processor:

— A device that reads and executes instructions in sequence to
produce perform operations on data that it gets from a memory
device producing results that are stored back onto the memory
device

* Node: One memory device connected to one or more processors.

— Multiple processors in a node are said to share-memory and this
is “shared memory parallelism”

— They can work together because they can see each other’s
memory

— The latency and bandwidth to memory affect performance

APPLICATION

Parallel Computing Terms -- Hardware

SYSTEM

HARDWARE [J
000000 O0CO

* Cluster: Multiple nodes connected by a network

— The processors attached to the memory in one node can not see
the memory for processors on another node

— For processors on different nodes to work together they must
send messages between the nodes. This is “distributed memory
parallelism”

* Network:
— Devices and wires for sending messages between nodes

— Bandwidth — a measure of the number of bytes that can be
moved in a second

— Latency — the amount of time it takes before the first byte of a
message arrives at its destination

APPLICATION

.eesssssss Parallel Computing Terms — System Software

SYSTEM

HARDWARE

“The only thing one does directly with hardware is pay for it.”

John's Zeroth Law of Computing

* Process:
— A set of instructions to be executed on a processor

— Enough state information to allow process execution to stop on a
processor and be picked up again later, possibly by another
processor

* Processes may be lightweight or heavyweight

— Lightweight processes, e.g. shared-memory threads, store very
little state; just enough to stop and then start the process

— Heavyweight processes, e.g. UNIX processes, store a lot more
(basically the memory image of the job)

APPLICATION

t...tm™ ..o Parallel Computing Terms — System Software

HARDWARE

Every job has at least one heavy-weight process.
— Ajob with more than one heavy-weight process is a distributed-memory parallel job
— Even on the same node, heavyweight processes do not share memory

* Within a heavyweight process you may have some number of lightweight processes,
called threads.

— Threads are shared-memory parallel; only threads in the same memory space can
work together.

— Athread never exists by itself; it is always inside a heavy-weight process.
* Heavy-weight processes are the vehicles for distributed memory parallelism

 Threads (light-weight processes) are the vehicles for shared-memory parallelism

APPLICATION

®
o
o
@
[
[

HARDWARE

Jobs, Processes, and Hardware

Message Passing Interface — MPI, referred to as the communication layer

MPI is used to start up and pass messages between multiple heavyweight
processes

— The mpirun command controls the number of processes and how they are
mapped onto nodes of the parallel machine

— (alls to MPI routines send and receive messages and control other
interactions between processes

— http://www.mcs.anl.gov/mpi

APPLICATION

SYSTEM

®
o
o
@
[
[

HARDWARE

Jobs, Processes, and Hardware

OpenMP is used to start up and control threads within each process
— Directives specify which parts of the program are multi-threaded

— OpenMP environment variables determine the number of threads in each
process

— http://www.openmp.org

OpenMP is usually activated via a compiler option
MPI is usually activated via the compiler name

The number of processes (number of MPI processes times the number of threads

in each process) usually corresponds to the number of processors

Examples

* If the machine consists of 4 nodes, each with 4 processors, how many different ways can
you run a job to use all 16 processors?

1 MPI 1 MPI

— 4 MPI processes, each with 4 threads

setenv OMP_ NUM THREADS 4
mpirun —-np 4 wrf.exe

— 8 MPI processes, each with 2 threads

1 MPI 1 MPI

setenv OMP_NUM THREADS 2
mpirun -np 8 wrf.exe

— 16 MPI processes, each with 1 thread

setenv OMP_ NUM THREADS 1
mpirun -np 16 wrf.exe

Examples

* If the machine consists of 4 nodes, each with 4 processors, how many different ways can
you run a job to use all 16 processors?

2 MPI 2 MPI

— 4 MPI processes, each with 4 threads

setenv OMP NUM THREADS 4
mpirun —-np 4 wrf.exe

— 8 MPI processes, each with 2 threads

2 MPI 2 MPI

setenv OMP NUM THREADS 2
mpirun -np 8 wrf.exe

— 16 MPI processes, each with 1 thread

setenv OMP NUM THREADS 1
mpirun -np 16 wrf.exe

Examples

* If the machine consists of 4 nodes, each with 4 processors, how many different ways can
you run a job to use all 16 processors?

4 MPI 4 MPI

— 4 MPI processes, each with 4 threads

setenv OMP_ NUM THREADS 4
mpirun —-np 4 wrf.exe

— 8 MPI processes, each with 2 threads

4 MPI 4 MPI

setenv OMP_NUM THREADS 2
mpirun -np 8 wrf.exe

— 16 MPI processes, each with 1 thread

setenv OMP NUM THREADS 1
mpirun -np 16 wrf.exe

Examples (cont.)

* Note, since there are 4 nodes, we can never have fewer than 4 MPI processes

because nodes do not share memory

* What happens on this same machine for the following?

setenv OMP NUM THREADS 8

mpirun -np 32

L] APPLICATION 1
o 000000O0O0

Application: WRF

HARDWARE

* WRF can be run serially or as a parallel job

* WRF uses domain aecomposition to divide total amount of

work over parallel processes

® APPLICATION o
o 000000 O0O0

Application: WRF

HARDWARE

* Since the process model has two levels (heavy-weight and light-weight = MPI and
OpenMP), the decomposition of the application over processes has two levels:

— The domain is first broken up into rectangular pieces that are assigned to
heavy-weight processes. These pieces are called patches

— The patches may be further subdivided into smaller rectangular pieces that are
called tiles, and these are assigned to threads within the process.

OQ.OC..OQ:‘
L] APPLICATION
o 00000000

Application: WRF

HARDWARE

* The decomposition of the application over processes has two levels:

— The domain is first broken up into rectangular pieces that are
assigned to MPI (distributed memory) processes. These pieces
are called patches

— The patches may be further subdivided into smaller rectangular
pieces that are called files, and these are assigned to shared-
memory threads within the process.

00000000 . . . g
o “amemox o Parallelism in WRF: Multi-level Decomposition

SYSTEM

Logical 1 Patch, divided
T domain into multiple tiles
\ 1 £

+ Single version of code for efficient execution on:

— Distributed-memory

— Shared-memory (SMP) <
— Clusters of SMPs

— Vector and microprocessors

Model domains are decomposed for parallelism on two-levels

Patch: section of model domain allocated to a distributed memory Inter-processor
node, this is the scope of a mediation layer solver or physics driver. communication

Tile: section of a patch allocated to a shared-memory processor within a
node; this is also the scope of a model layer subroutine.

Distributed memory parallelism is over patches; shared memory
parallelism is over tiles within patches

When
Needed?

Why?

Signs in
code

Distributed Memory Communications

Communication is required between patches when a
horizontal index is incremented or decremented on the right-
hand-side of an assignment.

On a patch boundary, the index may refer to a value that is
on a different patch.

Following is an example code fragment that requires
communication between patches

Note the tell-tale +1 and —1 expressions in indices for rr, H1,
and H2 arrays on right-hand side of assignment.

These are horizontal data dependencies because the
indexed operands may lie in the patch of a neighboring
processor. That neighbor’s updates to that element of the
array won't be seen on this processor.

Distributed Memory Communications

(module diffusion.F)
SUBROUTINE horizontal diffusion_s (tendency, rr, var,

DO j = jts,jte
DO k = kts, ktf
DO 1 = its,ite
mrdx=msft (i, j) *rdx
mrdy=msft (i,]j) *rdy
tendency (i, k, j)=tendency(i,k,]j) -
(mrdx*0.5* ((rr(i+1l,k,j)+rr(i,k,j))*H1 (i+1,k,J) -
(rr(i-1,k,j)+rr(i,k,j))*H1(i ,k,Jj))+
mrdy*0.5* ((rr(i,k,j+1)+rr(i,k,]j))*H2(1i,k,j+1) -
(rr(i,k,j-1)+rr(i,k,j))*H2(i,k,J))-
msft(i,j)* (Hlavg(i,k+1l,]j)-Hlavg(i,k,]j)+
H2avg (i, k+1,3j)-H2avg(i,k,Jj)
) /dzetaw (k)

ENDDO
ENDDO
ENDDO

R R

Distributed Memory Communications

(module diffusion.F)
SUBROUTINE horizontal diffusion_s (tendency, rr, var,

DO j = jts,jte
DO k = kts, ktf
DO 1 = its,ite
mrdx=msft (i,]j) *rdx
mrdv=msft (i, j) *rdy

tendency (i,k, j) Ftendency (i, k,]J) -
(mrdx*0.5* ((rxr(,k,j)+rr(i,k,3j)) *H1 (yk,J) -
(rr(,k,j)+rr(i,k,3j))*H1(i ,k,]j))+
mrdy*0.5* ((rr (i, k, y+rr(i,k,]j)) *H2(1i,k,) -
(rr(i,k, y+rr(i,k,]j))*H2(1i,k,j]))-
msft(i,]j)* (Hlavg(i,k+1l,j)-Hlavg(i,k,j)+
H2avg (i,k+1,]j)-H2avg(i,k,])
) /dzetaw (k)

2 2 2 2 2 2 2

ENDDO
ENDDO
ENDDO

Distributed Memory Communications

(module diffusion.F)
SUBROUTINE horizontal diffusion_s (tendency, rr, var,

DO j = jts,jte
DO k = kts, ktf
DO 1 = its,ite
mrdx=msft (i,]j) *rdx
mrdv=msft (i, k) *rdy

tendency (i,k,j) Ftendengf (1i,k,Jj) - &
(mrdx*0.5* ((rr(,k,j)+rr(i,k,3j)) *H1 (yk,3) 5 &
(rr(,k,j)+rr(i,k,3j))*H1(1i ,k,] &
mrdy*0.5* ((rr(1i,k,)+rr(i,k,]j))*H2(1,k,) - &
(rr (i, k,)+rr(i,k,j))*H2(i,k,j5))- &
msft(i,]j)* (Hlavg(i,k+1l,j)-Hlavg(i,k,j)+ &
H2avg(i,k+1,j)-H2avg(i,k,]) &
) /dzetaw (k) &
)
ENDDO
ENDDO

ENDDO

@ e S Distributed Memory MPI

SYSTEM

Communications

HARDWARE

 Halo updates

memory on one processor memory on neighboring processor

o e "o Distributed Memory (MPI)

SYSTEM

Communications

HARDWARE

 Halo updates

* Periodic boundary updates

« Parallel transposes

* Nesting scatters/gathers| st 7 a7

APPLICATION

tnids’ 't Distributed Memory (MPI)

SYSTEM

Communications

HARDWARE

‘HEE
Halo updates

Periodic boundary updates ;. . .;

Parallel transposes

Nesting scatters/gathers (. . W

Average Daily Total rainfall (mm) - March 1997

36km Domain _ . , _ __36km Simulation

o e "o Distributed Memory (MPI)

SYSTEM

Communications

HARDWARE

Halo updates

Periodic boundary updates

Parallel transposes

Nesting scatters/gathers

all y on all z on all x on
patch patch patch

o e "o Distributed Memory (MPI)

SYSTEM

Communications

HARDWARE

* Halo updates

* Periodic boundary updates

« Parallel transposes

* Nesting scatters/gathers

COARSE
Ross Island
6.66 km

Review — Computing Overview

APPLICATION
(WRF)

SYSTEM
(UNIX, MPI, OpenMP)

HARDWARE

(Processors, Memories, Wires)

Distributed Shared
Memory Memory
Parallel Parallel
Domain contains Patches contain Tiles
Job contains Processes conftain Threads

Cluster contains Nodes contain Processors

Outline

Introduction

Computing Overview

WRF Software Overview

Outline

Introduction

WRF Software Overview

WRF Software Overview

Architecture
Directory structure
Model Layer Interface

Data Structures

/0

WRF Software Architecture

Driver Reglstry

Config DM comm

- Solve /O API
Inquuy OMP
el R T o] € 1% o Data formas|

3 Femednabie O % 2 parallel IO |-
Module Subroutines P«E & @

= A
1

* Hierarchical software architecture

— Insulate scientists' code from parallelism and other architecture/
implementation-specific details

— Well-defined interfaces between layers, and external packages for

communications, 1/0, and model coupling facilitates code reuse and
exploiting of community infrastructure, e.g. ESMF.

WRF Software Architecture

N Driver Registry
Config DM comm
: Solve — /O API
Inquiry OMP
. 2 |8 o Data formats,| -
Config WRF Tile-callable 3 g - E——
Module Subroutmes 2 |8 2
=
]

* Driver Layer

— Domains: Allocates, stores, decomposes, represents abstractly as single
data objects

— Time loop: top level, algorithms for integration over nest hierarchy

WRF Software Architecture

N Driver Registry
Config DM comm
: Solve — /O API
Inquiry OMP
. 2 |8 o Data formats,| -
Config WRF Tile-callable S g H parallel U0 |-
Module Subroutmes 2 |8 2
=
]

* Driver Layer

— Non package-specific access: communications and 1/0

— Utilities: for example module_wrf_error, which is used for diagnostic prints and error
stops, accessibility to run-time options

WRF Software Architecture

Driver Registry
Config DM comm
=)) Solve — /O API
Inquiry OMP

: T |8 o Data formats, | -

Config WRF Tile-callable S 18.5 p .

; % w| Parallel /O |
Module Subroutmes —E o Z
=g

]

* Mediation Layer

— Solve routine, takes a domain object and advances it one time step
— Nest forcing, interpolation, and feedback routines

WRF Software Architecture

Driver Registry
Config DM comm
=)) Solve — /O API
Inquiry OMP
: é S o Data formats, | -
Config WRF Tile-callable S g - E——
Module Subroutmes 2 |8 2
HZ A
]

* Mediation Layer

— The sequence of calls for doing a time-step for one domain is known
in Solve routine

— Dereferences fields in calls to physics drivers and dynamics code
— (alls to message-passing are contained here as part of Solve routine

WRF Software Architecture

Driver Reglstry
Config DM comm
- Solve /O API
Inquiry OMP
=) Confi WREF Tile-callable F§ go %0 Data formats,| -
3 : O |2 @| Parallel/O |
Module Subroutines P«E & @
= A
1

* Model Layer

— Physics and Dynamics: contains the actual WRF model routines are
written to perform some computation over an arbitrarily sized/
shaped, 3d, rectangular subdomain

WRF Software Architecture

Driver Registry
Config DM comm
. Solve — /O API
Inquiry OMP

: T |8 o Data formats, | -

=) Config WREF Tile-callable S (8.5 p .

. o w arallel /O | .
Module Subroutines —HE o 2z
> A

1

* Model Layer

— F77-esque: all state data objects are simple types, passed in through
argument list from physics drivers

— No I/O, comms, control: Model Layer routines don't know anything

about communication or 1/0, executed on one thread — they never
contain a PRINT, WRITE, or STOP statement

WRF Software Architecture

Driver Registry
Config DM comm
. Solve — /O API
Inquiry OMP
: T |8 o Data formats, | -
=) Config WREF Tile-callable S g H parallel U0 |-
Module Subroutines F«E o 2z '
> A
1

* Model Layer

— Model Layer Subroutine Interface: “tile-callable”, no external
COMMON, no decomposed heap data

WRF Software Architecture

Driver Registry
Config DM comm
. Solve — /O API
Inquiry OMP T

: T |8 o Data formats, | -

Config WRF Tile-callable SRERE p .

. o w arallel /O | .
Module Subroutmes 2 |8 2
HZ A

]

* Registry: an “Active” data dictionary
— Tabular listing of model state and attributes
— Large sections of interface code generated automatically

— Scientists manipulate model state simply by modifying
Registry, without further knowledge of code mechanics

— Special “cases” exist: chemistry, SST coupling

Call Structure Superimposed on Architecture

wrf (main/wrf.F)

~

Driver

Config
Inquiry

integrate (frame)

N

DM comm

solve interface -> solve em (dyn_em) I/O API

module first rk step partl (dyn_em) w

Config
Module

module microphysics drive (phys)

1

:

Data formats,| -

T

Parallel I/O

WSM5 (phys/module mp wsm5.F

Threads
Message
Passing

WRF Software Overview

Architecture

Directory structure

Model Layer Interface

Data Structures

/0

WRF Model
Top-Level
Directory
Structure

WRF Design

and

Implementation

Doc, p 5

DRIVER
MEDIATION
MODEL

o
O

eCe o 00

Makefile
README

README_test cases

clean
compile
configure

Registry/
arch/

dyn em/ \
dyn nnm/
external/
frame/
inc/ >
main/

phys/
share/
tools/ /

run/ }>
test/

build
scripts

CASE input files
machine build rules

source
code
directories

execution
directories

Where are WRF source code files located?

$ (RM) s@
$ (CPP) -I$(WRF_SRC_ROOT DIR)/inc $(CPPFLAGS) $(OMPCPP) $*.F > $*.bb
$(SED_FTN) $*.bb | $(CPP) > $+*.£90
$(RM) $*.b $*.bb
@ if echo $(ARCHFLAGS) | $(FGREP) 'DVAR4D'; then \
echo COMPILING $*.F for 4DVAR ; \
$ (WRF_SRC_ROOT DIR)/var/build/da_name_space.pl $*.£f90 > $*.£f90.tmp ; \
mv $*.£f90.tmp $*.£90 ; \
fi

if [-n "$(OMP)"] ; then echo COMPILING $*.F WITHOUT OMP ; fi ; \
$(FC) -o $@ -c $(FCFLAGS) $(MODULE DIRS) $(PROMOTION) $(FCSUFFIX) $*.£90 ; \

Where are WRF source code files located?

cpp C —P file.F > file.f90
gfortran —c file.£90

Where are WRF source code files located?

* The most important command is the “find” command. If there is an error in the
model output, you can find that location in the source code with the £ind

command.

find . -name *.F —-exec grep -i “Flerchinger” {} \; -print

Where are WRF source code files located?

All of the differences between the .F and .f90 files are due to the included pieces

that are manufactured by the Registry.
These additional pieces are all located in the WRFV3/inc directory.
For a serial build, almost 450 files are manufactured.

Usually, most developers spend their time working with physics schemes.

Where are WRF source code files located?

 The "main” routine that handles the calls to all of the physics and dynamics is
WRFV3/dyn_em/solve_em.F

* This “solver” is where the tendencies are initialized to zero, some pre-physics terms

are computed, the Runge-Kutta and sound time steps are looped

* The calls to the non-microphysics schemes are made from a further call down the

call tree — dyn_em/module_first_rk_step_part1.F

Where are WRF source code files located?

Inside of solve_em and first_rk_step_part1, all of the data is located in the “grid”

structure: grid%ht.

The dimensions in solve_em and first_rk_step_part1 are “d” (domain), and

6 1

m” (memory):
ids, ide, jds, jde, kds, kde
ims, ime, jms, jme, kms, kme

The “t” (tile) dimensions are computed in first_rk_step_part1 and passed to all

drivers.

WRF uses global indexing

Where are WRF source code files located?

* If you are interested in looking at physics, the WRF system has organized the files in
the WRFV3/phys directory.

* In WRFV3/phys, each type of physics has a driver:

module_cumulus_driver.F cu
module_microphysics_driver.F mp
module_pbl_driver.F bl
module_radiation_driver.F ra
module_surface_driver.F sf

Where are WRF source code files located?

* The subgrid-scale precipitation (*_cu_*.F)

module_cu_bmj.F
module_cu_g3.F
module_cu_kf.F
module_cu_nsas.F
module _cu_sas.F

module_cu_camzm.F
module_cu_gd.F
module_cu_ kfeta.F

module cu_osas.F
module_cu_tiedtke.F

Where are WRF source code files located?

* Advection
WRFV3/dyn_em/module_advect_em.F

* Lateral boundary conditions
WRFV3/dyn_em/module_bc_em.F

Where are WRF source code files located?

 Compute various RHS terms, pressure gradient, buoyancy, w damping, horizontal
and vertical diffusion, Coriolis, curvature, Rayleigh damping
WRFV3/dyn_em/module_big_step_ utilities_em.F

* All of the sound step utilities to advance u, v, mu, t, w within the small time-step loop
WRFV3/dyn_em/module_small_step_em.F

WRF Software Overview

Architecture

Directory structure

Model Layer Interface

Data Structures

/0

WRF Model Layer Interface — The Contract with Users

All state arrays passed through argument list
as simple (not derived) data types

Domain, memory, and run dimensions passed
unambiguously in three dimensions

Model layer routines are called from mediation
layer (physics drivers) in loops over tiles,
which are multi-threaded

\ Driver

Config
Inquiry

\ Solve

DM comm
OMP

I/O API

Config
Module

WREF Tile-callable
Subroutines

Data formats
Parallel I/0

Threads
Message

1

WRF Model Layer Interface — The Contract with Users

Restrictions on Model Layer subroutires:

No 1/O, communication

No stops or aborts
Use wrf_error_fatal

No common/module storage of
decomposed data

Spatial scope of a Model Layer call is
one “tile”

N\

Driver

Config
Inquiry

\ Solve

DM comm
OMP

I/O API

Config
Module

WREF Tile-callable
Subroutines

Data formats
Parallel I/0

Threads
Message

1

WRF Model Layer Interface

SUBROUTINE driver for some physics suite (

1SOMP DO PARALLEL

DO ij
its
jts

CALL model subroutine(argl,

END DO

1, numtiles
i start(ij)
j_start(ij)

ids ,
ims ,
its ,

ide ,
ime ,
ite ,

END SUBROUTINE

.
14

jds
Jjms
jts

ite
jte

4
4

4

jde

Jjme
Jjte

i end(ij)
j_end (ij)
arg2,
, kds ,
, kms ,
, kts ,

kde ,
kme ,
kte)

WRF Model Layer Interface

template for model layver subroutine

SUBROUTINE model subroutine (&

argl, arg2, arg3, .. , argn, &

ids, ide, jds, jde, kds, kde, & ! Domain dims
ims, ime, jms, jme, kms, kme, & ! Memory dims
its, ite, jts, jte, kts, kte) ! Tile dims

IMPLICIT NONE

! Define Arguments (State and Il1l) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: argl,
REAL, DIMENSION (ims:ime, jms: jme) :: arg’,

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: locl,

WRF Model Layer Interface

template for model layver subroutine

! Executable code; loops run over tile
! dimensions
DO j = jts, MIN(jte, jde-1)
DO k = kts, kte
DO i = its, MIN(ite,ide-1)
locl(i,k,j) = argl(i,k,j) + ..
END DO
END DO
END DO

template for model laver subroutine

SUBROUTINE model (&

oooooooooooooooooooo

its, ite, jts, jte, kts, kte
IMPLICIT NONE
! Define Arguments (S and Il) data
REAL, DIMENSION (ims:ime,kms:kme, jms:
REAL, DIMENSION (ims:ime, jms:jme)

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:

! Executable code; loops run over tile

! dimensions
DO j = MAX(jts,jds), MIN(jte, jde-1)

DO.J{“E..ktSﬁ,'"kte
‘DO i = MAX(its,ids), MIN(ite, ide-1).
loci{i;K;49) "= drgl (i;%,5) ¥ .
END DO
END DO
END DO

Domain dims
Memory dims
Tile dims

jme) :: argl,
arg7,

jte) :: locl,

Domain dimensions

» Size of logical domain
« Used for bdy tests, etc.

ids

P 7 -
I \ D ’?.
. \ b
L \ i/
A% fn T\
B l'i \ '
. ;I_ .{,.“ A 1 ; (/
[6.4 g*iiféﬁaé *dftii
] B A7
) AT
: \/ i l fﬂ\gi
X N\, 7 “’f\ /
|i 1 N ' v —f?l
< s A i - Wl O
i — !
} Ly Arins
! { | \ y
3 |3}
N - \ { | — .{L —y
; - V) 3
- /‘,b‘&’ ’ ‘\' X i
A by %3 3
{ = :“:_\\5 }; N x -
s
logical domain ide

template for model layer subroutine
SUBROUTINE model (&
argl, arg2, arg3, .. , argn, &
..ids,..ide; - jds; -jde; kds:;-kde...& ! Domain dims
:l_}ms, ime, jms, jme, kms, kme,_§:;3 Memory dims
its) Tte; yes;gte; kts; kte) ! Tile dims

IMPLICIT NONE

! Define Arguments-(S‘and Il) data’

Domain dimensions
Size of logical domain
Used for bdy tests, etc.
Memory dimensions

Used to dimension dummy
arguments

Do not use for local arrays

REAL, DIMENSIQﬁ (ims:ime,kms:kme, jms: jme) arqgl,
REAL, DIMENSION (ims:ime,jms:jme) . arg7,
! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,]jts:jte) locl,
! Executable code; loops run over tile e i) = ﬁ\ﬂk
! dimensions \ ¥ A8 N gi’_*‘
DO j = MAX(jts,jds), MIN(jte,jde-1) VT o . Jme
DO k = kts, kte DA | P
DO i = MAX(its,ids), MIN(ite,ide-1) X (gt
. . . . |y A W~
locl(i,k,j) = argl(i,k,]j) + .. -l
END DO {] / %,?TLI Nt
END DO v]
END DO AN i £
Y 'f logical patch
)‘-—__’»’:{ \'] v .
b S : { ——— Jjms
* \ :'L ims | 1ocal array ::: \ ime
,\.ﬂ'{_?.\“\ N \ {) v * 4‘5‘.)) ;
N ; AT A s
ide

ids

logical domain

template for model laver subroutine

SUBROUTINE model (&
argl, arg2, arg3, .. , argn, &
ids, ide, jds, Jjde, kds, kde, &
&
)

Domain dims
Memory dims
Tile dims

ims, ime, jms, jme, kms, kme,
its, ite, jts, jte, kts, kte

IMPLICIT NONE

! Define Arguments (S and Il) data

Domain dimensions

» Size of logical domain
« Used for bdy tests, etc.
Memory dimensions

* Used to dimension dummy
arguments

* Do not use for local arrays
Tile dimensions

* Local loop ranges

REAL, DIMENSION (ims:ime, kms:kme,jms:jme) :: argl,
REAL, DIMENSION (ims:ime,jms:jme) :: arg7, * Local array dimensions
! Define Local Data, .(L2)..ccceeecceccccccanaii
REAL, DIMENSION; (its:ite, kts:kte,jts:jte) 7% locl,
! Executable code; loops run over tile 3 § o\ ;’fé 7bjdb
! dimensigpg..oesetttttII e AN /A oy
DO j =-MAX(jts,jds), MIN(jte,jde-1) .. | Jme
DO k = kts, kte J P
DO i..= MAX(its,ids), MIN(ite,ide-1) jte
locl (i,¥;9) =-argl(i;k;3) +
END DO Jts
END DO jts ite
END DO
logical patch
e e e e o Jms
! local array ::: ime
~ } &“. ’,‘" Al 5 g, ;\ *_A}
A LA 0] T
PR L Wjds

ids

logical domain ide

template for model laver subroutine Domain dimensions

» Size of logical domain

R e B « Used for bdy tests, etc.
argl, arg2, arg3, .. , argn, &))
ids, ide, jds, jde, kds, kde, & ! Domain dims Memory dimensions
ims, ime, jms, jme, kms, kme, & ! Memory dims * Used to dimension dummy
its, ite, jts, jte, kts, kte) ! Tile dims

arguments
IMPLICIT NONE * Do not use for local arrays
Tile dimensions

! Define Arguments (S and Il) data Local loop ranges

REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arqgl,

REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . . * Local array dimensions
! Define Local Data, (L2)..cccccccceeccccnain,,

REAL, DIMENSION' (its:ite,kts:kte,jts:jte) %

! dimensig,ns.
DO j =-MAX(jt,jds), MIN(jte,jde-1) -
DO k = kts, kte :
DO 'i..= MAX (its,ids), MIN(ite,ide-1)

END DO
END DO
END DO

Patch dimensions

« Start and end indices of local
distributed memory subdomain

* Available from mediation layer
(solve) and driver layer; not usually
needed or used at model layer

logical domain

WRF Software Overview

Architecture
Directory structure

Model Layer Interface

Data Structures

/0

Driver Layer Data Structures: Domain Objects

e Driver layer
— All data for a domain is an object, a domain derived data type (DDT)
— The domain DDTs are dynamically allocated/deallocated

— Linked together in a tree to represent nest hierarchy; root pointer is
head_grid, defined in frame/module_domain.F

— Supports recursive depth-first traversal algorithm (frame/
module_integrate.F)

head_grid

 Every Registry defined state, |1, and
namelist variable is contained inside the
DDT (locally known as a grid of type
domain), where each node in the tree
represents a separate and complete 3D

model domain/nest.

Model Layer Data Structures: F77

* Model layer
— All data objects are scalars and arrays of simple types only

— Virtually all passed in through subroutine argument lists

— Non-decomposed arrays and “local to a module” storage
are permitted with an initialization at the model start

Mediation Layer Data Structures: Objects + F77

* Mediation layer
— One task of mediation layer is to dereference fields from DDTs

— Therefore, sees domain data in both forms, as DDT and as
individual fields which are components of the DDTs

* The name of a data type and how it is referenced differs depending
on the level of the architecture

Data Structures

 WRF Data Taxonomy
— State data
— Intermediate data type 1 (1)
— Intermediate data type 2 (12)
— Heap storage (COMMON or Module data)

Data Structures

« WRF Data Taxonomy

— State data Defined in the
— Intermediate data type 1 (11) | Registry

— Intermediate data type 2 (12)

— Heap storage (COMMON or Module)

Data Structures

 WRF Data Taxonomy
— State data

Defined in — Intermediate data type 1 (1)
the physics| — Intermediate data type 2 (12)

SUbfﬁ)UtineS — Heap storage (COMMON or Module)
on the

stack

Data Structures

 WRF Data Taxonomy
— State data

— Intermediate data type 1 (1)
— Intermediate data type 2 (12)

— Heap storage (COMMON or Module)

Defined 1n the
module top,
typically
look-up tables
and routine
constants,

NO HORIZ
DECOMPOSED
DATA!
Common
blocks must

not leave the
Module.

Mediation/Model Layer Data Structures:
State Data

* Duration: Persist between start and stop of a domain

* Represented as fields in domain data structure

— Memory for state arrays are dynamically allocated, only big
enough to hold the local subdomain’s (ie. patch’s) set of array

elements
— Always memory dimensioned
— Declared in Registry using state keyword

* Only state arrays can be subject to I/0 and Interprocessor

communication

Mediation/Model Layer Data Structures:
|1 Data

* Persist for the duration of a single time step in solve

* Represented as fields in domain data structure

— Memory for [1 arrays are dynamically allocated, only big enough
to hold the local subdomain’s (ie. patch’s) set of array elements

— Always memory dimensioned
— Declared in Registry using 11 keyword

— Typically tendency fields computed, used, and discarded at the
end of every time step

— Are not used to impact |1 variables on a child domain

Model Layer Data Structures:
|2 Data

* Persist for the duration of a call of the physics routine

* NOT contained within the DDT structure (no declarations in the
Registry)
— Memory for 12 arrays are dynamically allocated on subroutine
entry, and automatically deallocated on exit

— Local, intermediate dummy variables required for physics
computations

— If [2 arrays, then they are always tile dimensioned

— Not declared in the Registry, not communicated, no |0, not
passed back to the solver, do not exist (retain their previous
value) between successive physics calls

Grid Representation in Arrays

* Increasing indices in WRF arrays run
— West to East (X, or |-dimension)
— South to North (Y, or J-dimension)
— Bottom to Top (Z, or K-dimension)

* Storage order in WRF is IK] (ARW) and lJK (NMM) but these are a
WRF Model convention, not a restriction of the WRF Software

Framework (provides cache coherency, but long vectors possible)

* Qutput data has grid ordering independent of the ordering inside the
WRF model

Grid Representation in Arrays

* The extent of the logical or domain dimensions is always the
"staggered” grid dimension. That is, from the point of view of a non-
staggered dimension (also referred to as the ARW “mass points”),

there is always an extra cell on the end of the domain dimension

WRF Software Overview

Architecture
Directory structure
Model Layer Interface

Data Structures

/0

WRF /O

* Streams: pathways into and out of model

* (an be thought of as files, though that is a restriction

— History + auxiliary output streams (10 and 11 are reserved for
nudging)

— Input + auxiliary input streams (10 and 11 are reserved for
nudging)

— Restart, boundary, and a special DA in-out stream
— Currently, 24 total streams
— Use the large values and work down to stay away from “used”

WRF /O

o Attributes of streams
— Variable set

* The set of WRF state variables that comprise one read or
write on a stream

* Defined for a stream at compile time in Registry
— Format

* The format of the data outside the program (e.g. NetCDF),
split
* Specified for a stream at run time in the namelist

WRF /O

e Attributes of streams
— Additional namelist-controlled attributes of streams

* Dataset name
* Time interval between 1/O operations on stream

» Starting, ending times for 1/0 (specified as intervals from
start of run)

WRF /O

* Attributes of streams
— Mandatory for stream to be used:

* Time interval between 1/O operations on stream
e Format: io_form

Outline - Review

* Introduction
— WRF started 1998, clean slate, Fortran + C
— Targeted for research and operations

* WRF Software Overview
— Hierarchical software layers
— Patches (MPI) and Tiles (OpenMP)
— Strict interfaces between layers

— Contract with developers
—1/0

