Introduction to HWRF

Ligia Bernardet NOAA ESRL and CIRES – University of Colorado February 1, 2013

DTC (NOAA, Air Force, NSF, & NCAR)

The purpose of the DTC is to facilitate the interaction & transition of NWP technology between research & operations. DTC facilitates:

- R2O transition by performing testing & evaluation of new NWP innovations over an extended period
- O2R transition by making the operational NWP systems available to the research community & providing user support
- Interaction between research & operations through the organization of community workshops on NWP & hosting a <u>DTC Visitor Program</u>

Outline for Introduction to HWRF

- What is Hurricane WRF
- Grid configuration
- HWRF as a configuration
- Overview of components
- Dynamic core
- Moving nest
- Initialization and data assimilation
- Physics
- Ocean and coupler
- Post-processor and tracker
- User support
- Possible 2013 upgrades and future development

What is HWRF?

- A NOAA operational model used to provide numerical forecast guidance of track, intensity, and structure to the National Hurricane Center (NHC) for the North Atlantic and Eastern North Pacific basins
- A community supported code
- New implementations of HWRF occur every year in the beginning of the hurricane season the model is always evolving and improving
- This talk focuses on 2012 HWRF (some info on plans for 2013 provided)

Operational forecasts

http://www.emc.ncep.noaa.gov/gc_wmb/vxt/

HWRF: A collaborative effort

- HWRF is developed under the coordination of Dr. Vijay Tallapragada at NOAA/NWS/NCEP/EMC
- Besides EMC, many groups participate in HWRF development

Institution	Role	
NOAA NWS/NCEP/EMC	Coordination and overall development	
NOAA Research AOML/ESRL/ GFDL	Nesting, physics, initialization, vortex tracking	
NOAA National Hurricane Center	Main customer, evaluation, diagnostics	
NCAR	WRF model infrastructure	
University of Rhode Island	Ocean component (POM)	
Developmental Testbed Center	Code management, community support, testing	
Your institution!	You could be the next HWRF user and developer	

HWRF 2012 grid configuration

Initialized at 2011090300 – 12 (h) fcst valid at 2011090312 HWRF Domain Katia 12L

Atmospheric configuration
Horizontal grid spacing: 27, 9, 3 km
Inner nests move to follow storm
Domain location vary from run to run depending on storm location
42 vertical levels
Model top 50 hPa

Oceanic configuration

- Horizontal grid spacing: 18 kmSize, location of grid depends of
- location of storm
- •Pacific
 - •1-D (column) model
 - •16 vertical levels
- •Atlantic
 - •3-D model
 - •23 vertical levels

Developmental Testbed Center

HWRF as a configuration

- The atmospheric component of HWRF uses the WRF model
- In this tutorial, you have learned that WRF can be configured in many different ways
- HWRF uses a specific <u>configuration</u> of WRF
 - 3-domains with fixed sizes, method for placement, and grid spacing
 - Specific physics options
 - Specific timestep
 - Specific way of being initialized and postprocessed
 - Choices made to make best forecast under various constraints, mainly the operational time window
- There are other, non-operational, configurations of WRF that can be used for hurricane forecasting (not covered in this presentation)

HWRF has many components

HWRF Components

WRF model Pre-Processor (WPS) Vortex initialization Data assimilation (GSI) Coupler (NCEP) Ocean (POM-TC) Post-Processor (UPP) Vortex Tracker (GFDL)

HWRF dynamical core

- WRF has two dynamic cores: ARW and NMM (Non-Hydrostatic Mesoscale Model)
- The dynamic core encompasses the grid projection, grid staggering, system of equations for solving the equations of motion and thermodynamics, the numerical methods, and the nesting mechanisms
- HWRF uses the NMM dynamic core

Moving Nest

- 9-km domain follows the 3-km domain, which follows storm
- The storm center is determined based on the centroid of a function of the mass (MSLP)
- Algorithm reduces the chances of the nest getting caught on an island or the nest jumping to the wrong storm

Presence of mesovortices makes storm tracking a challenge

HWRF 2012 Initialization

It is challenging to initialize a high-resolution hurricane model from the analysis of a global model because the storm in the global model is weak

HWRF Data Assimilation

- GSI is a 3D-Variational data assimilation system
- Data is assimilated in the storm environment and not near the storm
- For HWRF, the following data are used
 - Radiosondes
 - Aircraft reports (AIREP/PIREP, RECCO, MDCRS-ACARS, TAMDAR, AMDAR)
 - Surface ship and buoy observations
 - Surface observations over land
 - Pibal winds
 - Wind profilers
 - VAD wind
 - Dropsondes
- More information on GSI: <u>http://www.dtcenter.org/com-GSI/users/</u>.

HWRF 2012 operational physics

Physics	Parameterization	Option
Cumulus (only d01 & d02)	SAS with deep and shallow convection	84
Microphysics	Ferrier for the tropics	85
Planetary Boundary Layer	GFS (Hong and Pan 1996, modified)	3
Surface Layer	GFDL (modified)	88
Land Surface Model	GFDL slab model	88
Radiation	GFDL	98

Note that the cumulus parameterization is only run on d01 (27 km) and d02 (9 km). In d03 (3 km), the microphysical parameterization explicitly resolves the clouds.

HWRF Ocean Component

- Princeton Ocean Model for Tropical Cyclones (POM-TC)
- POM creates an accurate sea-surface-temperature (SST) field that evolves during the model run
- Moisture fluxes from the ocean provide energy for hurricanes
- When a storm is over cold ocean, it tends to weaken
- A storm can cause the SST to change due to turbulent mixing with deeper, cold water and due to upwelling
- Models that do not include SST evolution may have SSTs too warm and make storms too strong

Katrina, 2005

Rita

75-m depth temperature Courtesy R. Yablonsky (URI)

lonaitud

When storms goes over warm ocean, they can intensify

POM-TC Initialization

- Start with GDEM (Atlantic) or Levitus (Pacific) monthly temperature and salinity climatology
- Horizontally-interpolate temperature and salinity onto POM grid
- Assimilate bathymetry and land/sea mask
- Use feature-based model to adjust Gulf Stream, Loop Current, and warm and cold core rings to near real-time positions (Atlantic only)
- Assimilate SST from GFS
- Integrate POM-TC to spin up ocean currents from background density field (Atlantic only)
- Integrate POM-TC with observed hurricane wind forcing to create cold wake

Gustav (2008): 75-m deep temperature from climatology (top) and after initialization procedure

HWRF Coupler

- Developed at NOAA NCEP
- Acts as an independent interface between atmospheric (WRF) and oceanic (POM) components
- Handles all grid interpolations and facilitates passing information between HWRF and POM.

HWRF Post-Processing

- Uses the Unified post-processor (UPP)
 - Computes derived variables
 - Interpolates the forecast
 - Horizontally from the WRF native grid to a lat-lon grid
 - Vertically from WRF native levels to isobaric levels
 - Generates output in GRIB format
- Domains are postprocessed separately and then combined
- Output is used for
 - Graphics
 - Running the external vortex tracker

Developmental Testbed Center

GFDL External Vortex Tracker

- Extracts storm properties from the 3D forecast fields
 - Location, intensity, structure
- Outputs text file which can be used for plotting
- Can be used for HWRF or any other model, as long as proper files are provided in GRIB format

www.dtcenter.org/HurrWRF/users

Developmental Testbed Center support

You are here: DTC •	Hurricane WRF Users Page		Code downloads	
Home	WRF For Hurricanes	Events	cout downloads,	
Terms of Use	Welcome to the users page on WRF for Hurricanes. The <u>Weather Research</u>	No Upcoming Events	datasets,	
Overview	and atmospheric research needs. It features two dynamic cores, multiple	Announcements		
User Support	physical parameterizations, a variational data assimilation system, ability to couple with an ocean model, and a software architecture allowing for	• 18 January 2013	documentation,	
Downloads 🔤	computational parallelism and system extensibility. WRF is suitable for a broad	HD12 Reference Configuraton: 2012	· · · · · · · · · · · · · · · · · · ·	
Documentation	spectrum of applications, including tropical storms.	operational capability in community code	online tutorial,	
Tutorial Information	Two robust configurations of WRF for tropical storms are the NOAA operational	• 4 January 2013	,	
Testing and	model <u>Hurricane WRF (HWRF)</u> and the National Center for Atmospheric	HWRF 2012 FLUX testing and evaluation	helpdesk	
Evaluation	Research (NCAR) <u>Advanced Research Hurricane WRF (AHW)</u> . In this website	11 December 2012	P =====	
Additional Links	AHW.	HWRF V3.4a Online Tutorial Release		
		• 29 August 2012		
	The <u>Developmental Testbed Center</u> and the <u>Mesoscale and Microscale</u>	Release V3.4a of the HWRF system	500 registered use	
	AHW and HWRF to the community, including the WRF atmospheric model	• 29 August 2012	8	
	with its Preprocessing System (WPS), various vortex initialization procedures,	GFDL vortex tracker V3.4a community code		
	Statistical Interpolation (GSI) three-dimensional variational data assimilation	Release		
	system, the NOAA National Centers for Environmental Prediction (NCEP)	• 6 April 2012	Yearly releases	
	coupler, the <u>NOAA Geophysical Fluid Dynamics Laboratory (GFDL)</u> Vortex Tracker, and various postprocessing packages and graphical utilities.	WRF V3.4 release	rearry releases	
		24 Feburary 2012	corresponding to	
	The effort to develop AHW has been a collaborative partnership, principally	HWRF V3.3a Online Tutorial Release	corresponding to	
	among NCAR, the <u>Rosenstiel School at the University of Miami</u> , and the <u>Air</u> Force Weather Agency (AFWA).	• 29 December 2011	operational mode	
		HWRF 2011 Reference Configuration	operational mode	
	The effort to develop HWRF has been a collaborative partnership, principally		the year	
	between NOAA (NCEP, AOML, and GFDL) and the University of Rhode Island.	Organizations contributing to this website	the year	
		Developmental Testbed Center (DTC)		
		Division (MMM)		
			Stable tested cod	
		Sponsors of WRF for Hurricanes	Stable, tested cou	
			Benchmarks avail	
		NCAR		
		Normal Contraction of the		
			•	
	Current release: H	WRF v3.4a (2012 op	erational)	
	Next release: HWR	F v3.5a (2013 operat	tional) – June 2013	
		\	/]	

ered users

leases nding to nal model of

sted code

rks available

Developmental Testbed Center

DTC

DTC Reference Configuration

- Robust statistical evaluation of the HWRF performance
- User can compare against his own results
- Sample of HWRF v3.4a Reference Configuration
- Track and intensity errors for all 2012 season
- Sample for Atlantic

Currently in test for possible implementation in 2013 HWRF

- More sophisticated data assimilation with use of tail-Doppler radar observations when available from aircraft reconnaissance
- New nest-parent interpolation routines: more efficient, faster, allow HWRF to run with alternate microphysical configurations
- Revised internal tracking more moving nest
- Updates in planetary boundary layer
- New convective parameterization scheme: meso-SAS
- RRTM-G radiation scheme
- Modification in momentum flux for atmosphere to ocean
- Non-operational
 - Extension to Central and West Pacific, Indian basins (non-oper)
 - Idealized capability

Planned new capabilities for HWRF v3.5a

- Pending testing...
 - Complete support for HWRF 2013 implementation
 - Idealized tropical cyclone with prescribed vortex
 - Ability to run with additional microphysics packages
 - Support for all basins (central and west Pacific, Indian etc)

Challenges and ongoing work

- Configuration: larger
 parent with multiple moving
 nests, vert levels
- Ocean: HYCOM, initialization with more sophisticated data assimilation

- Data Assimilation and Ensembles
 - Hybrid (EnKF) variational data assimilation
 - Use of all available datasets, including storm-scale observations
 - Ensemble systems for uncertainty estimation
- **Physics:** radiation, PBL, LSM, MP, convection, MP, sea spray

Coupling: wave model

Developmental Testbed Center

Thank you!

- Questions?
 - http://www.dtcenter.org/HurrWRF/users
 - <u>ligia.bernardet@noaa.gov</u>
 - wrfhelp@ucar.edu

