

WRF and WPS: Compile

Laurie Carson

National Center for Atmospheric Research (NCAR) The Developmental Testbed Center (DTC)

WRF Modeling System Flow Chart

Installation Steps

- Check System Requirements
- Download source codes
- Download static dataset
- Compile WRF first
- Compile WPS

System Requirements

- Required Compilers/languages:
 - FORTRAN 90/95 compiler
 - C compiler
 - Perl
- Required libraries:
 - netCDF
 - NCAR Graphics (optional, but recommended used by graphical utility programs)
- Optional libraries for GRIB2 support (in WPS):
 - JasPer (JPEG 2000 "lossy" compression library)
 - PNG ("lossless" compression library)
 - zlib (compression library used by PNG
- Optional (recommended) MPI library:
 - e.g. mpich, mpich2, openmpi

System Requirements

- Installation of these libraries is not part of the WRF and WPS installation scripts
- Make sure these libraries are installed with the same FORTRAN compiler that is available to you to compile the WRF and WPS source code

Download Source Code

• The WRF source code can be obtained from:

http://www.mmm.ucar.edu/wrf/users/download/get_source.html

- Click 'New Users', register and download, or
- Click 'Returning User', enter email and download
- Get the latest released code:

WRFV3.TAR.gz

WPSV3.TAR.gz

Both the ARW and NMM cores are included

Additional Downloads

- Test Datasets
 - Output from WPS & WRF: useful for testing
 - Sample GRIB data for WPS (GFS)
- Terrain and Land Use datasets for WPS
 - Full resolution (30", 2', 5', 10')
 - Low resolution (10' only)
- download from the same site as the code:

http://www.mmm.ucar.edu/wrf/users/download/get_source.html

Download Terrestrial Data

- The terrestrial fields interpolated by *geogrid* may be downloaded from same page as the code
- Data are static: only need to be downloaded once
- Data can be shared by users on the same machine by placing files in a common directory
- Data is not required for compilation, but is required at run-time
- The geog.tar.gz file contains the following data (~15GBuncompressed):

albedo_ncep	Monthly surface albedo
greenfrac	Monthly vegetation fraction
maxsnowalb	Maximum snow albedo
landuse USGS	24+1 categories
landuse MODIS	20+1 categories, NOAH LSM only
soiltemp	Annual mean deep soil temperature
soiltype_top	Top-layer soli type
soiltype_bot	Bottom-layer soil type
topo	Topography
orogwd	Subgrid orography informtion for gravity wave drag option
islope	Slope index (not used)
var_sso	Variance of subgrid-scale orography

Unzip and untar source code files

 Create a working directory and uncompress and untar both the WRF and WPS tarfiles

> gunzip WRF.TAR.gz tar –xf WRF.TAR.gz gunzip WPS.TAR.gz tar –xf WPS.TAR.gz

After unzip and untar, you should have two directories:

WPS/ WRFV3/

WPS/ directory

Makefile **README (multiple)** clean compile configure arch/ geogrid/ ungrib/ metgrid/ util/ link grib.csh namelist.wps namelist.wps_all-options

compile scripts

compile rules source code directories utilities

run time options

Set environment variables

 If the *netCDF* is not in the standard */usr/local* then set the NETCDF environment variable

Example: setenv NETCDF /usr/local/netcdf-pgi

- WRF needs both the *lib* and *include* directories
- As a general rule, make sure the *netCDF* and *MPI* libraries are installed using the same compiler that will be used to compile WRF

e.g. PGI, Intel, gfortran

Compile WRF first...

There are two steps:

1) Create a configuration file for your computer and compiler

./configure

2) Compile the code

./compile test_case

Create the configuration file

./configure

This script checks the system hardware and software, and then offers the user choices for configuring WRF:

- Type of compiler
- Serial, OpenMP (smpar), MPI (dmpar) or MPI+OpenMP (dm +sm)
- Type of nesting (basic, preset moves, vortex following)

Choices for 64-bit LINUX machines might look like:

Please select from among the following supported platforms.

- 1. Linux x86_64, PGI compiler with gcc (serial)
- 2. Linux x86_64, PGI compiler with gcc (smpar)
- 3. Linux x86_64, PGI compiler with gcc (dmpar)
- 4. Linux x86_64, PGI compiler with gcc (dm+sm)
- 5. Linux x86_64, PGI accelerator compiler with gcc (serial)
- 6. Linux x86_64, PGI accelerator compiler with gcc (smpar)
- 7. Linux x86_64, PGI accelerator compiler with gcc (dmpar)
- 8. Linux x86_64, PGI accelerator compiler with gcc (dm+sm)
- 9. Linux x86_64 i486 i586 i686, ifort compiler with icc (serial)
- 10. Linux x86_64 i486 i586 i686, ifort compiler with icc (smpar)
- 11. Linux x86_64 i486 i586 i686, ifort compiler with icc (dmpar)
- 12. Linux x86_64 i486 i586 i686, ifort compiler with icc (dm+sm)
- 13. Linux i486 i586 i686 x86_64, PathScale compiler with pathcc (serial)
- 14. Linux i486 i586 i686 x86_64, PathScale compiler with pathcc (dmpar)
- 15. x86_64 Linux, gfortran compiler with gcc (serial)
- 16. x86_64 Linux, gfortran compiler with gcc (smpar)
- 17. x86_64 Linux, gfortran compiler with gcc (dmpar)
- 18. x86_64 Linux, gfortran compiler with gcc (dm+sm)1dmpar)

Choices for Nesting are:

Compile for nesting? (0=no nesting, 1=basic, 2=preset moves, 3=vortex following) [default 0]:

- 0. no nesting (only available for serial and smpar)
- 1. basic
- 2. preset moves
- 3. vortex following
- default is option 0 for serial/smpar, 1 for dmpar
- in addition, if running NMM with nesting: setenv WRF_NMM_NEST 1

WRF configuration file

- The ./configure command will create a file called configure.wrf
 - This file contains compilation options, rules, etc. specific to your computer and can be edited to change compile options, if desired, to test or adjust settings.
 - This file is overwritten each time "configure" is run.
 - If you wish to change compiler settings for one-time only, edit *configure.wrf*
 - If you wish to change default compiler settings, edit arch/ configure_new.defaults

Sample configure.wrf

Settings for Linux x86_64, PGI compiler with gcc(dmpar)
DMPARALLEL = 1
$OMPCPP = # -D_OPENMP$
OMP = #-mp-Minfo=mp-Mrecursive
OMPCC = #-mp
SFC = pgf90
SCC = gcc
CCOMP = pgcc
DM_FC = mpif90
DM_CC = mpicc -cc=\$(SCC) -DMPI2_SUPPORT
$FC = (DM_FC)
$CC = $(DM_CC) - DFSEEKO64_OK$
LD = \$(FC)
RWORDSIZE = \$(NATIVE_RWORDSIZE)
PROMOTION = -r\$(RWORDSIZE) - i4
ARCH_LOCAL = -DNONSTANDARD_SYSTEM_SUBR
$CFLAGS_LOCAL = -w - O3$
LDFLAGS_LOCAL =
CPLUSPLUSLIB =
ESMF_LDFLAG = \$(CPLUSPLUSLIB)
FCOPTIM = -03 #-fastsse -Mvect=noaltcode -Msmartalloc -Mprefetch=distance:8 -Mfprelaxed
FCREDUCEDOPT = \$(FCOPTIM)
FCNOOPT = -00
FCDEBUG = # -g \$(FCNOOPT)

Compile WRF

 First set one core environment variable to 1: ARW: setenv WRF_EM_CORE 1 NMM: setenv WRF_NMM_CORE 1

 NMM: setenv WRF_NMM_CORE 1

Note: If neither of these environment variables are set, the default is to compile ARW.

In addition, if running NMM with nesting: setenv WRF_NMM_NEST 1

Compile WRF

Type the following command to compile: ./compile test_case >& compile_wrf.log

where *test_case* is one of the following:

compile em_b_wave compile em_quarter_ss compile em_heldsuarez compile em_les compile em_scm_xy compile em_grav2d_x compile em_hill2d_x compile em_squall2d_x compile em_squall2d_y compile em_seabreeze2d_x compile em_real compile nmm_real

compile -h

help message

More on Compile...

- Compiling WRF will take 20-30 minutes
- Since V3.2, parallel make is supported if "make" on your computer supports it
- Two processors are used by default. If you would like to change it, set the environment variable before compile:

setenv J "-j 1"

WRF executables

If compile is successful, you should find these executables in WRFV3/ main

- em_real:
 - wrf.exe model executable
 - real.exe ARW initialization
 - ndown.exe one-way nesting
 - tc.exe for TC bogusing (serial only)
- nmm_real:
 - wrf.exe model executable
 - real_nmm.exe NMM initialization
- Any idealized case:
 - wrf.exe model executable
 - ideal.exe ideal case initialization
 - Each ideal test case creates different executables

Clean compilation

 To remove all object files (except those in *external/*) and executables, type:

clean

• To remove all built files, including *configure.wrf*, type:

clean –a

- Recommended if
 - compilation failed
 - registry changed
 - want to compile different dynamic core
 - want to change configuration file (i.e. select a different compiler, options, etc)

Compiling both WRF cores

- Use two different WRFV3 directory trees
 - Set environment variables for each and configure and compile as usual
- Using the same WRFV3 directory tree
 - Core "A" configure and compile
 - Save main/wrf.exe to main/wrf_coreA.exe
 - Copy main/*exe to a temporary location outside of WRFV3/
 - clean –a
 - Core "B" configure and compile
 - Save wrf.exe to wrf_coreB.exe

Compile WPS...

There are two steps:

1) Create a configuration file for your computer and compiler

./configure

2) Compile the code ./compile

Create the configuration file

In the WPS/ directory:

- The ./configure command will create a file called configure.wps
- This script offers the user choices for configuring WPS:
 - Type of compiler
 - Serial or MPI (dmpar)
 - with or without GRIB2 support
- To use GRIB2 data, additional libraries are needed: *setenv JASPERINC /usr/local/jasper/include setenv JASPERLIB /usr/local/jasper/lib*

Choices for 64-bit LINUX machines might look like:

Please select from among the following supported platforms.

1. Linux x86 64, gfortran (serial) 2. Linux x86_64, gfortran (serial NO GRIB2) 3. Linux x86 64, gfortran (dmpar) 4. Linux x86 64, gfortran (dmpar NO GRIB2) 5. Linux x86 64, PGI compiler (serial) 6. Linux x86 64, PGI compiler (serial NO GRIB2) 7. Linux x86_64, PGI compiler (dmpar) 8. Linux x86 64, PGI compiler (dmpar NO GRIB2) 9. Linux x86_64, PGI compiler, SGI MPT (serial) 10. Linux x86 64, PGI compiler, SGI MPT (serial NO GRIB2) 11. Linux x86 64, PGI compiler, SGI MPT (dmpar) 12. Linux x86 64, PGI compiler, SGI MPT (dmpar NO GRIB2) 13. Linux x86 64, IA64 and Opteron (serial) 14. Linux x86 64, IA64 and Opteron (serial NO GRIB2) 15. Linux x86 64, IA64 and Opteron (dmpar) 16. Linux x86 64, IA64 and Opteron (dmpar NO GRIB2) 17. Linux x86 64, Intel compiler (serial) 18. Linux x86 64, Intel compiler (serial NO GRIB2) 19. Linux x86_64, Intel compiler (dmpar) 20. Linux x86 64, Intel compiler (dmpar NO GRIB2) 21. Linux x86 64 g95 compiler (serial) 22. Linux x86 64 g95 compiler (serial NO GRIB2) 23. Linux x86 64 g95 compiler (dmpar) 24. Linux x86_64 g95 compiler (dmpar NO GRIB2)

WRF Users' Tutorial, January 28 – February 1, 2013

Compile WPS

./compile >& compile_wps.log

• If the compilation is successful, it will create three executables:

✓ *geogrid.exe*: define size/location of domain(s)

- ✓ ungrib.exe: extract meteorological fields from GRIB files
- *metgrid.exe*: horizontally interpolate meteorological fields (from *ungrib*) to simulation grid(s) (defined by *geogrid*)

WPS utilities

- If compilation is successful, it will create the following executables in *util/*:
 - ✓ avg_tsfc.exe
 - ✓ g1print.exe
 - ✓ g2print.exe
 - ✓ mod_levs.exe
 - ✓ rd_intermediate.exe
 - ✓ calc_ecmwf_p.exe
- If NCAR Graphics libraries are available it will also create in *util/*:
 - ✓ plotgrids.exe
 - ✓ plotfmt.exe
 - Each of these utilities are described in more detail in the WPS Overview talk

Sharing a WPS installation

- A single build of WPS will work for both the ARW and NMM cores
- Multiple users may share a single installation of the WPS; not every user needs to install it
 - Make WPS installation directory read-only
 - Each user will run WPS programs in their own working directories
 - Output files created in user working directories

Additional Resources

- For more detailed information on installation of WRF and WPS, please see:
 - ARW and NMM Users Guides
 - Online Users Pages:
 - **ARW:** *http://www.mmm.ucar.edu/wrf/users/*
 - NMM: http://www.dtcenter.org/wrf-nmm/users/
- For further assistance regarding WRF and WPS:
 - WRF Users Forum: http://forum.wrfforum.com
 - WRF Email list: wrf_users@ucar.edu
 - WRF Help email: wrfhelp@ucar.edu