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ARW Dynamical Solver

— Terrain representation
— Vertical coordinate

— Equations / variables
— Time integration scheme
— Grid staggering

— Advection scheme

— Time step parameters
— Filters

— Boundary conditions
— Nesting

— Map projections
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Vertical Coordinate and Prognostic Variables

Hydrostatic pressure of dry air: 7T I I —
//_\\__/'\\_

Columnmass: U, =TT —7T, 1 S N

(per unit area) :/Z§v2\:
T—T 1+ I T

Vertical coordinate: 1= u t :@\%\“\\\\\N\&;

d
Layer mass: U, ,AN=Ar =—gp, Az

(per unit area)

Conserved state (prognostic) variables:

e, U=pyu, V=py, W=pw, 0=4,0, Q=pmn

Non-conserved state variable: ¢ = g7
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2D Flux-Form Moist Equations in ARW

: : oU dp o dp 9P oUu  9dQu
. —+ + = — =
Moist Equations: 5, Tok = o 9 o » o
aw _a dp _ dUw  dQw
dt “ o, on dx on
ou, JdU  9Q _ 0
ot ox on
00  9UO  09Q6 _ 0
or | ox og M
dp _
a "
Q
a(udqv,l) + a(qu,l) + a( qv,l) :‘LLQVJ
dt x on
. . . o v
Diagnostic relations: — =1+g¢, +q,, 9 _ —o, i, p= kO
o an poludav
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Time Integration in ARW

31 Order Runge-Kutta time integration

t+At

advance V' =V

) . At t
y _—W+?R(1//)
ok 1 A *
14 =1//+7tR(1//)

l//t+At :l//I-l- AZ‘R(I//**)

(kAr)
24

Amplification factor y =iky; y""'=Ay";

Al=1-
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Phase and amplitude errors for LF, RK3

-t
o

Oscillation
equation
analysis

Amplitude, Rel. Phase
—t

(t-filter = 0.2) RK3 amplitude
[ = = =« RK3 rel. phase ]
LF amplitude .
=== LF rel. phase
(t-filter = 0.1)
_5 ...................
0 1 2
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Time-Split Runge-Kutta Integration Scheme
Ut — Lfast(U) ™ leow(U)

3rd order Runge-Kutta, 3 steps

L (UY U”
e+
t t+Dt/3 t+Dt
I/Y\Al | |
| | |
t t+Dt/2 t+Dt
LS(U**) Ut+Dt
R e e B
t t+Dt
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* RK3 1s 3rd order accurate for
linear eqns, 2nd order
accurate for nonlinear eqns.

« Stable for centered and
upwind advection schemes.

» Stable for Courant number
cDt/Dx <1.73

* Three L, (U) evaluations per
timestep.



Small Time Step Integration of Acoustic/Gravity Wave Terms

(Without expanding variables into perturbation form)

N oU op o OpOd\’
UTtAa = = Ry
ot " (,uda Ox i ag O 8:1:) Hy
T+AT AT 8,ud oU THAT o5 THAT
17 Q7F =Ly = — =
; ot "oz an 0
TH+AT t t\ THAT
Q7+ §52+_ oué +_8Q€ _ R,
ot Ox on
OW adp\ .,
W’r—l—AT Bt + g (,ud o an) — RW

0o 8¢t 0¢
T4+AT t 2 T+AT Y'Y T+ATYY _ pt
& gy +UTT A gy + TS — W = R

® Forward-backward differencing on U, {¥], and {¥] equations

® Vertically implicit differencing on W and {¥) equations
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Flux-Form Perturbation Equations

Introduce the 0=0(z)+¢, u=H@)+U";
perturbation variables:  p=p(Z)+p,a=a(z)+c’

Note — ¢ = 5(;) — 5(% Vs 77),
likewise ]_9()6, Y 77), OT(xa Vs 77)

Reduces horizontal pressure-gradient errors.

For small time steps, recast variables as perturbations from time t
U'=u"+u0", V'=sv'"'+r", w'=w'"+w",
O=0"+0", W=t §'=¢'+4";
p'=p''+p", o'=a""+a"

Allows vertical pressure gradient to be expressed in terms of {¥j”.
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WRF ARW Model Integration Procedure

Begin time step

y+— Runge-Kutta loop (steps 1, 2, and 3)
(i) advection, p-grad, buoyancy using (<P R0 ¢**)
(1) physics if step 1, save for steps 2 and 3
(111) mixing, other non-RK dynamics, save...
(iv) assemble dynamics tendencies
7 Acoustic step loop
(i) advance U, V, then m, Q, then w, f
(1) time-average U, V, W
~—End acoustic loop <
Advance scalars using time-averaged U, V, W
<— End Runge-Kutta loop -«

Adjustment physics (currently microphysics)
End time step
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Instead of solving vertically implicit equations for # and (¥

Integrate the hydrostatic equation to obtain p ({¥)):

Recover

W 1s no longer required during the integration.
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ARW model, grid staggering

C-grid staggering

y
A
4V
|
U ILL’H’qV ’ql U
—— ) —p
A
horizontal
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Mass Conservation in the ARW Model

J
control volume An< | plz,n)
(2D example)
- N 5 y > T
Ax

Mass 1n a control volume 1s proportional to

(AzAn)(p)*

since  p(z)An = Am = —gpAz
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Mass Conservation in the ARW Model

Mass in a control volume (2D example): (AzAn)(p)t

Mass conservation equation:

Change in mass over a time step = mass fluxes through control volume faces

At~ (AzAn) - [(1) T2 = (W] =

January 2013

+

—
| M

(,UJ'U,AT])Q;—A:E/ZJ) B (IU’IU’AT,)J:‘*‘A:E/Z”])

[(/ffg‘&fﬁ)fxf"‘A”/ 2 — (HWAT)y 1 ng)2)]

Horizontal fluxes through the
vertical control-volume faces



Mass Conservation in the ARW Model

Mass in a control volume (2D example): (AzAn)(p)t

Mass conservation equation:

Change in mass over a time step = mass fluxes through control volume faces

At~ AzAn) - [(11) 2 = (0)")] = [(1uldn)e—awj2m — (PUAD) 2y Az j2.)]+

[(MWAx)?,n—An/2 _ (”WAx)x,n+An/2)]

r T
Vertical fluxes through the An < "“'-.‘,\:.#AnAx
horizontal control-volume faces
§ T .
N J
Y
Ax

January 2013



Mass Conservation in the ARW Model

The same mass fluxes are used for neighboring
grid cells - hence mass 1s conserved locally and globally.

.................

................................

g(puAn)x_ e pAnAz—-(puldn), . Az
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Scalar Mass Conservation in the ARW Model

Mass in a control volume: (AzAn)(u)*

Scalar mass:

Mass conservation equation:

At~ (AzAn) - [(n)TA = (1)")]

T

change 1n mass over a time step

[(,UUAH):B—A:B/ZU - (MUAU):C+A:::/2,7;)] +
[(IUWA:E)I,?)—AU/Q - (IUWAa:):c,'rH-An/Q)]

mass fluxes through control volume faces

Scalar mass conservation equation:

At~ (AzAn) - [(pg) T2 = (ug)")]

!

change in tracer mass
over a time step

January 2013

:(ﬂuqﬁAn)x—Aw/Q,n — (/*LUQSAT))CL‘-}-AI/Q,’U)] +
_(/‘qube)a:,n—An/2 — (/‘quSAx)a:,n-i-An/Q)]

tracer mass fluxes through
control volume faces



Advection in the ARW Model

2nd 3rd " 4th - 5th and 6™ order centered and upwind-biased schemes
are available in the ARW model.

Example: 5™ order scheme

AUy) 1 -
= AX[FH;(UV/) Fl;(Uw)]
where
37 2 1
F  (Uy)=U {_ VY ) =WtV ) T\, TV, }
i—%( ) i—% 60( 1) 15( 1 2) 60( 2 3)
1

—sign( l,U) % { (l//i+2 _l//i—3)_5(l//i+1 _Wi—2)+10(1//i _l//i—l)}
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Advection in the ARW Model

For constant U, the 5% order flux divergence tendency becomes

o(U o(U
Ay 8(Uy)
Ax 5th Ax 6th
UAt| 1
| Ax |60 (_Wi—3 +oy, ,— 15y, +20y, - 15y, + oy, , — I//i+3)
—

28—1/6/+H.()T
60 ox

The odd-ordered flux divergence schemes are equivalent to
the next higher ordered (even) flux-divergence scheme plus
a dissipation term of the higher even order with a
coefficient proportional to the Courant number.
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Maximum Courant Number for Advection

C. =UAt/Ax

Time Advection Scheme
Integration

Scheme ond  3rd - gth §th 6t
Leapfrog (a=0.1) 1 091 U 066 U  0.57
RK2 U 090 U 039 U

RK3 1.73  1.63 1.26 143 1.09

U = unstable

(Wicker & Skamarock, 2002)
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Moisture Transport in ARW: High Precipitation Bias

Initialized 00 UTC 04 June 2005 2005 ARW 4 km Forecasts:

Accum. ETS and Bias for 2005 ARW Forecasts
ETS Bias
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Moisture Transport in ARW
1D advection
q q

time t “ time t + At

overshoot

undershoot

> X

ARW scheme was conservative,

but not positive definite nor monotonic.
Removal of negative gl

results in spurious source of gl .



Positive-Definite/Monotonic Flux Renormalization

Scalar update, last RK3 step

() T2 = (ug) — At Y 6:,1fi] ()
1=1

(1) Decompose flux: f; = fupwind + fc

(2) Renormalize high-order correction fluxes f° such that
solution is positive definite or monotonic: ¢ = R(f°)

(3) Update scalar eqn. (1) using f; = f#rwind + R(f¢)

Skamarock, MWR 2006, 2241-2250
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PD/Monotonic Limiters in ARW - 1D Example

1D Top-hat transport Cr = 0.5, 1 revolution, 200 steps

Top-Hat Advection

No limiter

Positivé-deﬂnite limiter

Monotonic limiter

- 6th order RK3

f 5th order RK3

; 5th order RK3

5th order RK3
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Moisture Transport in ARW: 24 h ETS and BIAS

Initialized 00 UTC 04 June 2005
Standard advection Positive-definite advection

ETS
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ARW Model: Dynamics Parameters

37 order Runge-Kutta time step

A
Courant number limited, 1D: C, =% <1.42

Generally stable using a timestep approximately
twice as large as used in a leapfrog model.

Acoustic time step CA |
T

N

2D horizontal Courant number limited: C, = <
Ax A2

AT = At,, /(number of acousticsteps )

sound

Guidelines for time step

W]t in seconds should be about 6 *{¥}x (grid size in
kilometers). Larger ¥t can be used in smaller-scale
dry situations, but time_step sound (default = 4)

should increase proportionately if larger [¥]r is used.
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January 2013

ARW Filters: Divergence Damping

Purpose: filter acoustic modes (3-D divergence, D =V -pV )

{ 0pV

— A~/ D
5 +Vp+... =V }

D
v-{ } — %t +V?p+...=74V?D

. 2
From the pressure equation: Pt =~ ¢“D

¥],= 0.1 recommended (default)

(Illustrated in height coordinates for simplicity)



ARW Filters: Vertically Implicit Off-Centered
Acoustic Step

Purpose: damp vertically-propagating acoustic modes

ot IV T oy an
06 g 357
ot

Slightly forward centering the vertical pressure gradient damps
3-D divergence as demonstrated for the divergence damper

(¥/¥]= 0.1 recommended (default)
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ARW Filters: External Mode Filter

Purpose: filter the external mode

(primarily for real-data applications)

0
Orllg = m2/ 0, U" + 3yV"]T+ATd77 = m?D,
1

Additional terms:
6, U" = ... — e (AZ?/AT) 80 (0r—nr i)
0 V" = o — Y (AY?JAT) 6y (6r—ariiy)

¥].= 0.01 recommended (default)
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ARW Filters: Vertical Velocity Damping

Purpose: damp anomalously-large vertical velocities

(usually associated with anomalous physics tendencies)

Additional term:
OW = ... — pg sign(W)y,(Cr — Crg)
Qdt
Cr = |—
ey
¥ 0 e typical value (default)

January 2013

¥ ‘ .3 m/s? recommended (default)



ARW Filters: 2nd-Order Horizontal Mixing,
Horizontal-Deformation-Based K,

Purpose: mixing on horizontal coordinate surfaces
(real-data applications)

1
2

K, = C212|0.25(D1; — Dyy)? + D2,

where | = (Aasz)l/z
Dy = 2m? [(%(m_lu) — zxaz(m_lu)}

Doy = 2m?|9y(m™'v) — 2,0.(m™'v)]

D1y = m*[0y(m™"u) — 2,0.(

+ 0 (m ') — 2,0.(

u

)
11))}

m-
m-

C,= 0.25 (Smagorinsky coefficient, default value)
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ARW Filters: Upper Level Gravity-Wave Absorber
(Implicit Rayleigh w Damping Layer)

Modification to small time step:

* Step horizontal momentum, continuity, [JTTAT ;[JFAT
and potential temperature equations to QTHAT  QTHAT
new time level:

e Step vertical momentum and geopotential

. . o . W*T—}—AT ¢*7‘+AT
equations (implicit in the vertical):

* Apply implicit Rayleigh damping

TH+AT __ *xT+AT T+AT
on W as an adjustment step: w =W ATRy (n)W

* Update final value of geopotential ¢T+AT
at new time level:

o2 |m (1 #op—2 — >\ R ({¥]) - damping rate (t!)
Y Sin [ (1 )] for 2 > (2 24 w(l¥ :
Ry (n)= { ' 2 o (z1o0 ) z, - depth of the damping layer

0 otherwise,
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WRF Forecast over Colorado Front Range
Model Initialized 04 Dec 2007 00 UTC

100 mb top, 5 km implicit Rayleigh damping layer
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ARW Model: Coordinate Options

1. Cartesian geometry:
idealized cases
2. Lambert Conformal:
mid-latitude applications
3. Polar Stereographic:
high-latitude applications
4. Mercator:
low-latitude applications
5. Latitude-Longitude
global
regional

Projections 1-4 are isotropic (m, = m)
Latitude-Longitude projection 1s anistropic (m, # m,)
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Global ARW - Latitude-Longitude Grid

+  Map factors - m, and m,
e Computational grid poles need not be geographic poles.
e Limited area and nesting capable.

- Polar boundary conditions

- Polar filtering

Zero meriodional flux at the
poles (cell-face area 1s zero).

T
reAlq) v (poles) only needed for
meridional derivative of v
reAd near the poles (we
* interpolate).
reAd ..
! All other meriodional
derivatives are well-defined
near/at poles.
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ARW Filters: Polar Filter

Converging gridlines severely limit timestep.
The polar filter removes this limitation.

Filter procedure - Along a grid latitude circle:
1. Fourier transform variable.

2. Filter Fourier coefficients.

3. Transform back to physical space.

Filter Coefficient a(k), y, = 45°

qg(k)filtered — a(k) Qg(k), for all k

90

3
9,

cos Y 2 1
k) = min |1. :
a(k) = min | 1., max | 0, (cos wo) sin?(7k /n)

latitude ()

(o)
=

k = dimensionless wavenumber
#(k) = Fourier coefficients from forward transform
. a(k) = filter coefficients
0 /2 n ¥ = latitude ¥, = polar filter latitude, filter when || > 9,

wavenumber (Ttk/n)

45
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WRF ARW Model Integration Procedure

Begin time step

£~ Runge-Kutta loop (steps 1, 2, and 3) —
(1) advection, p-grad, buoyancy, physics
i— Acoustic step loop —
(1) advance U,V
(i1) advance m, Q{w] ] ] [«
(iii) advance w, f{¥]
«— End acoustic loop +——
Advance scalars
+— End Runge-Kutta loop <
Adjustment physics (currently microphysics)

End time step
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WRF ARW Global Model Integration Procedure

Begin time step

£ Runge-Kutta loop (steps 1, 2, and 3) >
(1) advection, p-grad, buoyancy, physics

i— Acoustic step loop

(1) advance U,V (Fourier Filter U, V)

(i1) advance m, QW) (W)W} W) (Fourier Filter m]Q)

(iii) advance w, X)) (Fourier Filter w, 1)

<+<— End acoustic loop <

Advance scalars (Fourier Filter Sc){¥j{¥

+— End Runge-Kutta loop <

Adjustment physics (currently microphysics) (Fourier Filter Sc)

A 4

End time step

Timestep limited by minimum {¥}x outside of polar-filter region.
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ARW Model: Boundary Condition Options

Lateral boundary conditions

1.

A N

Specified (Coarse grid, real-data applications).

Open lateral boundaries (gravity-wave radiative).
Symmetric lateral boundary condition (free-slip wall).
Periodic lateral boundary conditions.

Nested boundary conditions (specified).

Top boundary conditions

1.

Constant pressure.

Bottom boundary conditions

.
2.

January 2013

Free slip.
Various B.L. implementations of surface drag, fluxes.



WRF ARW code

WRFV3
| |
L l | |
test  main dyn _em phys share lots of
(physics) ‘ othg
l l l l (b.c routines) e

real idealized cases (model constants)

Initialization code
+

dynamics solver code

WRF ARW Tech Note
A Description of the Advanced Research WRF Version 3 (June 2008; updated 1/10/2012)
http://www.mmm.ucar.edu/wrf/users/pub-doc.html
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