WRF Registry and Examples

lohn Michalakes, NREL
Michael Duda, NCAR
Dave Gill, NCAR
WRF Software Architecture Working Group

Outline

* Registry Mechanics

* Examples

Introduction — Intended Audience

* Intended audience for this tutorial session: scientific users and others who wish to:
— Understand overall design concepts and motivations
— Work with the code
— Extend/modify the code to enable their work/research
— Address problems as they arise
— Adapt the code to take advantage of local computing resources

WRF Software Architecture

Driver Registry

Config DM comm

- Solve /O API
Inquiry OMP)
Confi WREF Tile-callable Fé go %D Data formats, |

3 : O |2 Z| Paralel/O |
Module Subroutmnes 2|8 @

HS A
]

* Hierarchical software architecture

— Insulate scientists' code from parallelism and other architecture/implementation-specific
details

— Well-defined interfaces between layers, and external packages for communications, 1/0, and
model coupling facilitates code reuse and exploiting of community infrastructure, e.g. ESMF.

WRF Registry

* "Active data-dictionary” for managing WRF data structures

— Database describing attributes of model state, intermediate, and
configuration data

* Dimensionality, number of time levels, staggering
* Association with physics

* 1/0 classification (history, initial, restart, boundary)
* Communication points and patterns

* Configuration lists (e.g. namelists)

* Nesting up- and down-scale interpolation

WRF Registry

* "Active data-dictionary” for managing WRF data structures

— Program for auto-generating sections of WRF from database:

* 2000 - 3000 Registry entries [¥] 300-thousand lines of
automatically generated WRF code

o Allocation statements for state data and |1 data

* Interprocessor communications: Halo and periodic boundary
updates, transposes

* Code for defining and managing run-time configuration information
* Code for forcing, feedback, shifting, and interpolation of nest data

WRF Registry

* Why?
— Automates time consuming, repetitive, error-prone programming

— Insulates programmers and code from package dependencies
— Allow rapid development
— Documents the data

* A Registry file is available for each of the dynamical cores, plus special
purpose packages

* Reference: Description of WRF Registry,
http://www.mmm.ucar.edu/wrf/WG2/software_v2

Registry Data Base

* Currently implemented as a text file: Registry/Registry.EM_COMMON

* Types of entry:

— Dimspec — Describes dimensions that are used to define arrays in the
model

— State — Describes state variables and arrays in the domain structure
— /71— Describes local variables and arrays in solve

— Typedef— Describes derived types that are subtypes of the domain
structure

Registry Data Base

* Types of entry:
— Rconfig— Describes a configuration (e.g. namelist) variable or array
— Package — Describes attributes of a package (e.g. physics)
— Halo — Describes halo update interprocessor communications
— Period— Describes communications for periodic boundary updates
— Xpose — Describes communications for parallel matrix transposes
— Include — Similar to a CPP #include file

Registry State Entry

Type Sym Dims Use Tlev Stag I0 Dname Descrip
state real u ikjb dyn em 2 X i0lrhusdf "g" "X WIND COMPONENT"“
* Elements

— Entry. The keyword “state”

— Type: The type of the state variable or array (real, double,
integer, logical, character, or derived)

— Sym: The symbolic name of the variable or array

— Dims: A string denoting the dimensionality of the array or a
hyphen (-)

— Use: A string denoting association with a solver or 4D scalar
array, or a hyphen

— NumTLev. An integer indicating the number of time levels (for
arrays) or hypen (for variables)

Registry State Entry

Type Sym Dims Use Tlev Stag I0 Dname Descrip
state real u ikjb dyn em 2 X 101lrhusdf "g" "X WIND COMPONENT"“
* Elements

— Stagger. String indicating staggered dimensions of variable (X, Y,
Z, or hyphen)

— /0. String indicating whether and how the variable is subject to I/
0 and Nesting

— DName; Metadata name for the variable
— Units: Metadata units of the variable
— Descrip: Metadata description of the variable

Registry State Entry

Type Sym Dims Use Tlev Stag I0 Dname Descrip

state real u ikjb dyn em 2 X i0lrhusdf "g" "X WIND COMPONENT"“

* This single entry results in over 100 lines of code automatically added to
more than 40 different locations in the WRF model, the real and ideal
initialization programs, and in the WRF-Var package

* Nesting code to interpolate, force, feedback, and smooth u

* Addition of u to the input, restart, history, and LBC 1/0 streams

Registry State Entry

Type Sym Dims Use Tlev Stag I0 Dname Descrip

state real u ikjb dyn em 2 X i0lrhusdf "g" "X WIND COMPONENT"

Declaration and dynamic allocation of arrays in TYPE(domain)

Two 3D state arrays corresponding to the 2 time levels of U
u_1 (ims:ime , kms:kme , jms:jme)
u_2 (ims:ime , kms:kme , jms:jme)

Registry State Entry

Type Sym Dims Use Tlev Stag I0 Dname Descrip

state real u ikjb dyn em 2 X i0lrhusdf "g" "X WIND COMPONENT"

Declaration and dynamic allocation of arrays in TYPE(domain)

Eight LBC arrays for boundary and boundary tendencies (dimension
example for x BC)

u_b[xy][se] (jms:jme, kms:kme, spec_bdy_width, 4)
u_bt[xy][se] (jms:jme, kms:kme, spec_bdy_width, 4)

Registry State Entry

Type Sym Dims Use

state real - ikjftb moist
state real gv 1ikjftb moist
state real gqc 1ikjftb moist

Tlev Stag I0 Dname Descrip
- i0lrhusdf “QVAPOR" "VAPOR MR"
- iO0lrhusdf “QCLOUD" ”CLOUD MR“

Collections of 3D arrays, such as QVAPOR and QCLOUD, may be placed
in a 4D array (such as moist)

The “£” (FOUR dimensional) character states that this is part of an
amalgamated array structure

DO im = PARAM FIRST SCALAR, num moist
IF (grid%adv_moist cond .or. im==p qv) THEN
CALL rk scalar tend (4im, &

moist (ims,kms, jms,im), &

Registry State Entry

Type Sym Dims Use Tlev Stag I0 Dname Descrip
state real - ikjftb moist 1 - - - =

state real gv 1ikjftb moist 1 - i0lrhusdf “QVAPOR" "VAPOR MR™
state real qgqc ikjftb moist 1 - i0lrhusdf “QCLOUD" ”CLOUD MR"“

Several “4D” arrays already exist
moist — microphysics species
scalar — primarily used as number concentration
tracer — massless field to advect, such as for trajectories
chem — all of the chemical constituents

First essentially “blank line” for each 4D array is mandatory

Registry State Entry

Type Sym Dims

state real - ikjftb
state real gv 1ikjftb
state real gc ikjftb

package
package
package
package
package

Use

moist 1 -
moist 1 -
moist 1 -

Tlev Stag

IO Dname Descrip
i0lrhusdf “QVAPOR" "VAPOR MR™“
iO0lrhusdf “QCLOUD" ”CLOUD MR“

No space for 4D arrays is allocated unless explicitly requested in a
package declaration in the Registry file

passiveqv
kesslerscheme
linscheme
wsm3scheme
wsm5scheme

mp physics==
mp_ physics==
mp_ physics==
mp_physics==
mp_ physics==

moist
moist
moist
moist
moist

- qv

‘gqv,qc,qr
:qv,qc,qr,qi,qgs,qg
:gqv,qc,qr
:qv,qc,qr,qi,gs

Registry State Entry

Type Sym Dims Use

state real - ikjftb moist
state real gv ikjftb moist
state real gqc ikjftb moist

Tlev Stag I0 Dname Descrip
- i0lrhusdf “QVAPOR" "VAPOR MR"
- iO0lrhusdf “QCLOUD" ”CLOUD MR“

The “£” (TENDENCY) character indicates that automatic generation of
a full 3d tendency array is required as an |1 type array

real ,DIMENSION (grid%sm31l:grid%em31l, &

grid%sm32:gridsem32, &
gridssm33:grid%em33, &

num moist) moist tend

State Entry: Defining a variable-set for an 1/O stream

* Fields are added to a variable-set on an |/0 stream in the Registry

Type Sym Dims Use Tlev Stag I0 Dname Descrip

state real u ikjb dyn em 2 X "U" "X WIND COMPONENT"“

10 1s a string that specifies if the variable 1s to be subject
to 1nitial, restart, history, or boundary I/0. The string
may consist of 'h' (subject to history I/O), 'i' (initial
dataset), 'r' (restart dataset), or 'b' (lateral boundary
dataset). The 'h', 't', and '1' specifiers may appear in any
order or combination.

State Entry: Defining a variable-set for an 1/O stream

* Fields are added to a variable-set on an |/0 stream in the Registry

Type Sym Dims Use Tlev Stag I0 Dname Descrip

state real u ikjb dyn em 2 X "U" "X WIND COMPONENT"“

The ‘h’ and ‘1’ specifiers may be followed by an optional
integer string consisting of ‘0°, ‘1°, ..., ‘9’ Zero denotes
that the variable 1s part of the principal input or history I/
O stream. The characters ‘1’ through ‘9’ denote one of
the auxiliary input or history I/O streams.

usdf refers to nesting options: u = UP, d = DOWN, s =
SMOOTH, f=FORCE

State Entry: Defining Variable-set for an 1/O stream

irh -- The state variable will be included 1n the WRF model
input, restart, and history I/O streams

irh13 -- The state variable has been added to the first and
third auxiliary history output streams; it has been removed
from the principal history output stream, because zero 1s not
among the integers 1n the integer string that follows the
character 'h’

State Entry: Defining Variable-set for an 1/O stream

rh01 -- The state variable has been added to the first
auxiliary history output stream; it 1s also retained 1n the

principal history output

i205hr -- Now the state variable 1s included in the principal
iput stream as well as auxiliary inputs 2 and 5. Note that the
order of the integers 1s unimportant. The variable 1s also in the

principal history output stream

State Entry: Defining Variable-set for an 1/O stream

irl2h -- No effect; there is only 1 restart data stream
i01 -- Data goes into real and into WRF

il -- Data goes into real only

Rconfig Entry

Type Sym How set Nentries Default
rconfig integer spec bdy width namelist,bdy control 1 1

* This defines namelist entries

* Elements
— Entry. the keyword “rconfig”

— Type: the type of the namelist variable (integer, real, logical,
string)

— Sym: the name of the namelist variable or array

— How set. indicates how the variable is set: e.g. namelist or
derived, and if namelist, which block of the namelist it is set in

Rconfig Entry

Type Sym How set Nentries Default
rconfig integer spec bdy width namelist,bdy control 1 1

* This defines namelist entries

* Elements

— Nentries. specifies the dimensionality of the namelist variable or
array. If 1 (one) it is a variable and applies to all domains;
otherwise specify max_domains (which is an integer parameter
defined in module_driver_constants.F).

— Default: the default value of the variable to be used if none is
specified in the namelist; hyphen (-) for no default

Rconfig Entry

Type Sym How set Nentries Default
rconfig integer spec bdy width namelist,bdy control 1 1

* Result of this Registry Entry:
— Define an namelist variable

“spec_bdy_width” in the bdy_control
section of namelist.input

— Type integer (others: real, logical, " pee by width
character) spec_zone

relax zone
— If this is first entry in that section, define
“bdy_control” as a new section in the

-—-—- File: namelist.input ---

o n
= o
~ ~

/

namelist.input file

— Specifies that bdy_control applies to all
domains in the run

Rconfig Entry

Type Sym How set

rconfig integer spec bdy width namelist,bdy control 1 1

Nentries Default

* Result of this Registry Entry:

— if Nentries is “max_domains” then the
entry in the namelist.input file is a
comma-separate list, each element of
which applies to a separate domain

— The single entry in the Registry file
applies to each of the separate domains

-—-—- File: namelist.input ---

&bdy control
spec_bdy width = 5,
spec_zone =
relax zone =

/

Rconfig Entry

Type Sym How set Nentries Default
rconfig integer spec bdy width namelist,bdy control 1 1

* Result of this Registry Entry:

— Specify a default value of “1” if nothing

is specified in the namelist.input file ——- File: namelist.input ---
— In the case of a multi-process run, sbdy control

generate code to read in the SPee oy e Y

bdy_control section of the namelist.input | relax_zore = 4

file on one process and broadcast the /

value to all other processes

Package Entry

* Elements
— Entry. the keyword “package”,
— Package name: the name of the package: e.g. “kesslerscheme”

— Associated rconfig choice: the name of a rconfig variable and the value of that variable
that choses this package

specification of microphysics options

package passiveqv mp_ physics== — moist:qv

package kesslerscheme mp physics== = moist:qv,qc,gr

package linscheme mp physics== = moist:qv,qc,qr,qi,gs,qg
package ncepcloud3 mp_ physics== — moist:qv,qc,qr

package ncepcloud5 mp physics== = moist:qv,qc,qr,qi,gs

namelist entry that controls microphysics option
rconfig integer mp physics namelist,physics max_ domains 0

Package Entry

e Elements

specification of microphysics options

package
package
package
package
package

— Package state vars: unused at present; specify hyphen (-)

— Associated variables: the names of 4D scalar arrays (moist, chem, scalar) and the
fields within those arrays this package uses, and the state variables (state:u_gc, ...)

passiveqv
kesslerscheme
linscheme
ncepcloud3
ncepcloud5

mp physics==
mp physics==
mp_ physics==
mp physics==
mp physics==

moist
moist
moist
moist
moist

namelist entry that controls microphysics option

rconfig

integer mp_physics

namelist,physics

- qv

:qv,qc,qr
:qv,qc,qr,qi,gs,qg
:qv,qc,qr
:qv,qc,qr,qi,gs

max domains 0

Package Entry

Packages define
automatically
enumerated
types to avoid
the usual tests
(i.e. option #17
for microphysics)

Halo Entry

e Elements

— Entry. the keyword “halo”,
— Communication name: given to the particular communication, must be identical in the
source code (case matters!)

— Associated dynamical core: dyn_em XOR dyn_nmm are acceptable
— Stencil size: 4, or (2n+1)"2-1 (i.e. 8, 24, 48; semi-colon separated)
— Which variables. names of the variables

Halo Entry

e Elements

— Entry. the keyword “halo”,
— Communication name: given to the particular communication, must be identical in the
source code (case matters!)

— Associated dynamical core: dyn_em XOR dyn_nmm are acceptable
— Stencil size: 4, or (2n+1)"2-1 (i.e. 8, 24, 48; semi-colon separated)
— Which variables. names of the variable

Halo update communications
halo HALO EM TKE C dyn em 4:ph 2,phb

HALO Entry

Place communication in dyn_em/solve_em.F

#ifdef DM_PARALLEL
include "HALO EM TKE C.inc"
#endif

Halo update communications
halo HALO EM TKE C dyn em 4:ph 2,phb

PERIOD and XPOSE Entry

e Elements

— Entry. the keyword “period” or “xpose” (transpose)

— Communication name: given to the particular communication, must be identical in the
source code (case matters!)

— Associated dynamical core: dyn_em XOR dyn_nmm are acceptable

— Stencil size for period: # rows and columns to share for periodic lateral BCs

— Which variables for period: names of the variables (comma separated)

— Which variables for xpose: original variable (3d), x-transposed and y-transposed fields

Period update communications
period PERIOD EM COUPLE A dyn em 2:mub,mu 1,mu 2

Transpose update communications
xpose XPOSE POLAR FILTER TOPO dyn em t init,t xxx,dum yyy

Registry 10: registry.io_boilerplate

* include — method to populate Registry without duplicating information which is prone to
administrative mismanagement

— Entry. the keyword “include”
— Name: file name to include in the Registry file

Entry Name
include registry.io boilerplate

Registry 10: registry.io_boilerplate

* rconfig - namelist entries
— Entry. the keyword “rconfig”,
— Iype: integer, logical, real
— Symbol: name of variable in namelist
— How set: name of the resident record (usually)
— Number of entries: either “1” or “max_domains”
— Default value: what to define if not in namelist.input file
— NOT REQUIRED name and description. for self documentation purposes

Entry Type Sym How set
rconfig character auxinput5 inname namelist,time control

Num Entries Default
1 "auxinput5_ d<domain> <date>”

<domain> expanded to 2-digit domain identifier
<date> expanded to the usual WRF “years down to seconds” date string

Registry 10: registry.io_boilerplate

Entry

rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig

Type

Sym

character auxinput5 outname
character auxinput5 inname

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

auxinputd interval mo
auxinput5 interval d
auxinput5:interval:h
auxinput5 interval m
auxinputd interval s
auxinput5 interval
auxinput5 begin y
auxinput5:begin:ﬁo
auxinput5 begin d
auxinput5 begin h
auxinput5 begin m
auxinput5 begin s
auxinput5:§nd;y_
auxinput5 end mo
auxinput5 end d
auxinput5 end h
auxinputS:énd:ﬁ
auxinputb5 _end s
io_form auxinput5

How set

namelist,time_ control
namelist, time control
namelist,time control
namelist, time control
namelist,time:control
namelist, time_ control
namelist,time control
namelist,time control
namelist, time control
namelist,time:control
namelist, time_ control
namelist,time control
namelist,time control
namelist, time control
namelist,time:control
namelist, time_ control
namelist,time control
namelist, time control
namelist,time:control
namelist,time_ control
namelist, time_ control

Registry 10: registry.io_boilerplate

Entry

rconfig
rconfig
rconfig
rconfig

rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig

rconfig

rconfig
rconfig

Type

integer
integer
integer
integer

integer
integer
integer
integer
integer
integer
integer
integer
integer

integer

integer
integer

Sym

io_form input

io form history
io form restart
io form boundary

io_form auxinputl
io form auxinput2
io form auxinput3
io form auxinput4
io:form:auxinputS
io_form auxinputé6
io form auxinput?
io form auxinput8
io form auxinput9

io_form auxinput24

io_form gfdda
io _form auxinputll

How set

namelist, time_ control
namelist,time control
namelist, time control
namelist,time control

namelist, time_ control
namelist, time control
namelist, time control
namelist, time control
namelist,time:control
namelist, time_ control
namelist, time control
namelist, time control
namelist,time control

namelist, time_ control

namelist, fdda
namelist,time_ control

For any
given WRF
model fcst,
users have
access to
these input
streams

Registry 10: registry.io_boilerplate

Entry

rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig
rconfig

rconfig

Type

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

integer

Sym

io_form auxhistl
io form auxhist2
io form auxhist3
io form auxhist4
io:form:auxhistS
io_form auxhisté6
io form auxhist7
io form auxhist8
io form auxhist9
io:form:auxhistlo
io_form auxhistll

io_form_auxhist24

How set

namelist,time_ control
namelist,time control
namelist,time control
namelist, time control
namelist,timeZﬁontrol
namelist,time_ control
namelist,time control
namelist,time control
namelist, time control
namelist,timeZﬁontrol
namelist,time_ control

namelist,time control

... and
access to
these
output
streams

Registry Data Base - Review

* Currently implemented as a text file: Registry/Registry.EM_COMMON

* Types of entry:

— Dimspec — Describes dimensions that are used to define arrays in the
model

— State — Describes state variables and arrays in the domain structure
— /71— Describes local variables and arrays in solve

— Typedef— Describes derived types that are subtypes of the domain
structure

Registry Data Base - Review

* Types of entry:
— Rconfig— Describes a configuration (e.g. namelist) variable or array
— Package — Describes attributes of a package (e.g. physics)
— Halo — Describes halo update interprocessor communications
— Period— Describes communications for periodic boundary updates
— Xpose — Describes communications for parallel matrix transposes
— Iinclude — Similar to a CPP #include file

Outline

* Registry Mechanics

* Examples

— 0) Add output without recompiling
— 1) Add a variable to the namelist
— 2) Add an array

— 3) Compute a diagnostic

— 4) Add a physics package

Example 0: Add output without recompiling

* Edit the namelist.input file, the time_control namelist record

iofields filename = "myoutfields.txt” (MAXDOM)
io form auxhist24 = 2 (choose an available stream)
auxhist24 interval = 10 (MAXDOM, every 10 minutes)

* Place the fields that you want in the named text fle myoutfields. txt
+:h:24:RAINC,RAINNC

* Where “+” means ADD this variable to the output stream, “h” is the history
stream, and “24” is the stream number

Example 0: Zap output without recompiling

* Place the fields that you want in the named text fle myoutfields. txt
-:h:0:W,PB,P

* Where “~" means REMOVE this variable from the output stream, “h” is the history
stream, and “0" is the stream number (standard WRF history file)

Example 1: Add a variable to the namelist

* Use the examples for the rconfig section of the Registry

* Find a namelist variable similar to what you want
— Integer vs real vs logical vs character
— Single value vs value per domain
— Select appropriate namelist record

* |nsert your mods in all appropriate Registry files

Example 1: Add a variable to the namelist

* Remember that ALL Registry changes require that the WRF code be
cleaned and rebuilt
./clean -a
./configure

./compile em real

Example 1: Add a variable to the namelist

* Adding a variable to the namelist requires the inclusion of a new line
in the Registry file:

rconfig integer my_option_1 namelist,time_control 10 - "my_option_1" "test namelist option’
rconfig integer my_option_2 namelist,time_control max_domains O

* Accessing the variable is through an automatically generated function:

USE module_configure
INTEGER :: my_option_1 , my_option_2

CALL nl_get_my_option_1(1, my_option_1)
CALL nl_set_my_option_2(grid%id, my_option_2)

Example 1: Add a variable to the namelist

* You also have access to the namelist variables from the grid structure ...

SUBROUTINE foo (grid , ...)

USE module_domain
TYPE(domain) :: grid

print *,grid%my_option_1

Example 1: Add a variable to the namelist

* ... and you also have access to the namelist variables from config_flags

SUBROUTINE foo2 (config_flags , ...)

USE module_configure
TYPE(grid_config_rec_type) :: config_flags

print *,config_flags%my_option_2

Example 1: Add a variable to the namelist

* What your variable looks like in the namelist.input file

&time_control

run_days =0,

run_hours =0,

run_minutes = 40,

run_seconds = 0,

start year = 2006, 2006, 2006,
my option 1 = 17

my option 2 =1, 2, 3

Examples

1) Add a variable to the namelist

2) Add an array to solver, and 10 stream

)

)
3) Compute a diagnostic
4) Add a physics package

Example 2: Add an Array

* Adding a state array to the solver, requires adding a single line in the
Registry

* Use the previous Registry instructions for a state or |1 variable

Example 2: Add an Array

* Select a variable similar to one that you would like to add
— 1d, 2d, or 3d
— Staggered (X, Y, Z, or not “-", do not leave blank)
— Associated with a package
— Part of a 4d array
— Input (012), output, restart
— Nesting, lateral forcing, feedback

Example 2: Add an Array

* Copy the “similar” field’s line and make a few edits

 Remember, no Registry change takes effect until a “clean -a" and
rebuild

state

state

state

state

state

real h diabatic ikj misc 1 - r

"h_diabatic" "PREVIOUS TIMESTEP CONDENSATIONAL HEATING"
real msft ij misc 1 - i012rhdu=(copy_ fcnm)
"MAPFAC M" "Map scale factor on mass grid"

real ht ij misc 1 - i012rhdus

"HGT" "Terrain Height"

real ht_input ij misc 1 - -

"HGT _INPUT" "Terrain Height from FG Input File"

real TSK_SAVE ij misc 1 - -

"TSK_SAVE" "SURFACE SKIN TEMPERATURE" "K"

Example 2: Add an Array

* Aways modify Registry.core_name_COMMON or Registry.core _name,
where core_name might be EM

state real h_diabatic ikj misc 1 - r
"h_diabatic" "PREVIOUS TIMESTEP CONDENSATIONAL HEATING"
state real msft ij misc 1 - i012rhdu=(copy_ fcnm)
"MAPFAC M" "Map scale factor on mass grid"
state real ht ij misc 1 - i012rhdus
"HGT" "Terrain Height"
state real ht _input ij misc 1 - -
"HGT _INPUT" "Terrain Height from FG Input File"
state real TSK_SAVE ij misc 1 - -

"TSK_SAVE" "SURFACE SKIN TEMPERATURE" "K"

Example 2: Add an Array

* Add a new 3D array that is sum of all moisture species, called
all_moist, in the Registry.EM_COMMON

— Type: real
— Dimensions: 3D and ikj ordering, not staggered
— Supposed to be output only: h

— Name in netCDF file: ALL_MOIST

state real all moist ikj
dyn _em 1 - h

"ALL MOIST"

"sum of all of moisture species"”
"kg kg-1"

~ 7 7

Example 2: Add an Array

Registry state variables become part of the derived data structure
usually called grid inside of the WRF model.

WRF model top => integrate > solve_interface > solve
Each step, the grid construct is carried along for the ride

No source changes for new output variables required until below the
solver routine

Example 2: Add an Array
* Top of solve_em.F
* grid is passed in
* No need to declare any new variables, such as all_moist

!WRF :MEDIATION LAYER:SOLVER
SUBROUTINE solve em (grid , &

config flags , &

Example 2: Add an Array
* The solve routine calls first_rk_step_part1
* grid is passed in
* No need to pass any variables, such as all_moist

!WRF :MEDIATION LAYER:SOLVER
CALL first rk step partl(grid , &

config flags , &

Example 2: Add an Array
* Top of first_rk_step_part1.F
* grid is passed in
* No need to declare any new variables, such as all_moist

!WRF :MEDIATION LAYER:SOLVER
MODULE module first rk step partl
CONTAINS
SUBROUTINE first rk step partl (grid , &

config flags , &

Example 2: Add an Array

* Infirst_rk_step_part1, add the new array to the call for the
microphysics driver

» Syntax for variable=local_variable is an association convenience
* All state arrays are contained within grid, and must be de-referenced

CALL microphysics driver (&
OV_CURR=moist (ims,kms,jms,P QV),
OC CURR=moist (ims,kms,jms,P QC),
OR CURR=moist (ims,kms,jms,P OR),
OI CURR=moist (ims,kms,jms,P OI),
OS CURR=moist (ims,kms,jms,P QS),
OG _CURR=moist (ims,kms,jms,P QG),
OH CURR=moist (ims,kms,jms,P QH),
all moist=grid%all moist -

"I "I - B B "~)

Example 2: Add an Array

* After the array is re-referenced from grid and we are inside the
microphysics_driver routine, we need to

— Pass the variable through the argument list
— Declare our passed in 3D array

,all moist &

REAL, DIMENSION(ims:ime ,kms:kme ,jms:jme), &
INTENT(OUT) :: all moist

Example 2: Add an Array

* After the array is re-referenced from grid and we are inside the
microphysics_driver routine, we need to

— Lero out the array at each time step

! Zero out moisture sum.

DO j jts,MIN(jde-1,jte)

DO k = kts,bkte

DO 1 = its,MIN(ide-1,ite)
all moist(i,k,j) = 0.0

END DO

END DO

END DO

Example 2: Add an Array

* After the array is re-referenced from grid and we are inside the
microphysics_driver routine, we need to

— At the end of the routine, for each of the moist species that
exists, add that component to all_moist

DO j = jts,MIN(jde-1,jte)
DO k = kts,kte
IF (£ OV) THEN
DO i = its,MIN(ide-1,ite)

all moist(i,k,j) = all moist(i,k,j) + &
qv_curr(i,k,j)
END DO
END IF

Examples

1) Add a variable to the namelist

2) Add an array

)

)
3) Compute a diagnostic
4) Add a physics package

Example 3: Compute a Diagnostic

* Problem: Output global average and global maximum and lat/lon
location of maximum for 10 meter wind speed in WRF

* Steps:
— Modify solve to compute wind-speed and then compute the local
sum and maxima at the end of each time step

— Use reduction operations built-in to WRF software to compute the
global qualities

— QOutput these on one process (process zero, the “monitor”
process)

Example 3: Compute a Diagnostic

* Compute local sum and local max and the local indices of the local maximum

--- File: dyn em/solve em.F (near the end) ---

! Compute local maximum and sum of 10m wind-speed

sum ws = 0.

max ws = 0.

DO j = Jjps, Jpe

DO i1 = ips, ipe
wind vel = sqrt(grid%ulO(i,j)**2+ grid3vl0(i,j)**2)
IF (wind vel .GT. max ws) THEN
max ws = wind vel

idex = 1
jdex = j
ENDIF
sum ws = sum ws + wind vel
ENDDO

ENDDO

Example 3: Compute a Diagnostic

* Compute global sum, global max, and indices of the global max (WRF
intrinsics)
! Compute global sum
sum ws = wrf dm sum real (sum ws)

! Compute global maximum and associated i,j point
CALL wrf dm maxval real (max ws, idex, jdex)

Example 3: Compute a Diagnostic

* On the process that contains the maximum value, obtain the latitude and
longitude of that point; on other processes set to an artificially low value.

* The use parallel reduction to store that result on every process

IF (ips
JpPs

glat =
glon =

ELSE

glat =

glon
ENDIF

.LE. idex .AND. idex .LE. ipe .AND. &
.LE. jdex .AND. jdex .LE. jpe) THEN

grid%xlat (idex, jdex)
grid%$xlong (idex, jdex)

-999909.
-99999.

! Compute global maximum to find glat and glon
glat = wrf dm max real (glat)
glon = wrf dm max real (glon)

Example 3: Compute a Diagnostic

* Qutput the value on process zero, the “monitor”

! Print out the result on the monitor process
IF (wrf dm on monitor()) THEN

WRITE (outstring,*) 'Avg. ', sum ws/((ide-ids+1l) * (jde-jds+l))
CALL wrf message (TRIM(outstring))
WRITE (outstring, *) 'Max. ', max ws,' Lat. ',6glat,é&

' Lon. ',glon

CALL wrf message (TRIM(outstring))
ENDIF

Example 3: Compute a Diagnostic
* Qutput from process zero of a multi-process run

-—— Output file: rsl.out.0000 ---

Avg. 5.159380
Max. 15.09370 Lat. 37.25022 Lon. -67.44571

Timing for main: time 2000-01-24 12:03:00 on domain 1: 8.96500 elapsed secs.
Avg. 5.166167
Max. 14.97418 Lat. 37.25022 Lon. -67.44571

Timing for main: time 2000-01-24 12:06:00 on domain 1: 4.89460 elapsed secs.
Avg. 5.205693
Max. 14.92687 Lat. 37.25022 Lon. -67.44571

Timing for main: time 2000-01-24 12:09:00 on domain 1: 4.83500 elapsed secs.

Examples

1) Add a variable to the namelist

2) Add an array

)

)
3) Compute a diagnostic
4) Add a physics package

Example 4: Input periodic SSTs

Add a new physics package with time varying input source to the
model

This is how we could supply a time varying value to the model for a
field that is traditionally fixed

Example is sea surface temperature

Example 4: Input periodic SSTs

Problem: adapt WRF to input a time-varying lower boundary
condition, e.g. SSTs, from an input file for a new surface scheme

Given: Input file in WRF |/O format containing 12-hourly SST’s

Modify WRF model to read these into a new state array and make
available to WRF surface physics

Example 4: Input periodic SSTs

* Steps

— Add a new state variable and definition of a new surface layer
package (that will use the variable) to the Registry

— Add to variable stream for an unused Auxiliary Input stream
— Adapt physics interface to pass new state variable to physics
— Setup namelist to input the file at desired interval

Example 4: Input periodic SSTs

* Add a new state variable to Registry/Registry.EM_COMMON and put it
in the variable set for input on Auxiliary Input Stream #4

type symbol dims use tl stag io

dname description units
state real nsst ij misc 1

- idh "NEW_SST" "Time Varying SST" "K“

* Also added to History and Restart

* Result;

— 2-D variable named grid%nsst defined and available in
solve_em

— Dimensions: ims:ime, jms:jme

— Input and output on the Auxinput #4 stream will include the
variable under the name NEW_SST

Example 4: Input periodic SSTs

Pass new state variable to surface physics

--- File: dyn _em/module first rk step partl.F ---

CALL surface driver (

! Optional

,QV_CURR=moist (ims,kms,jms,P QV), F QV=F QV
,QCZCURR=moist(ims,kms,jms,P_QC), F QOC=F QC
QR CURR=moist (ims,kms,jms,P QR), F QR=F QR
,QI CURR=moist (ims,kms,jms,P QI), F QI=F QI
,QS CURR=moist (ims,kms,jms,P QS), F QS=F QS
,OG_CURR=moist (jms,kms,jms,P_QG), F_QG=F QG

,NS§T=grid%nsst

2 R R 2R R R R R R

,CAPG=grid%capg, EMISS=grid%emiss, HOL=hol, MOL=grid3¥mol
,RAINBL=grid%rainbl, SR=grid%em sr
,RAINNCV=grid%rainncv, REGIME=regime, T2=grid%t2, THC=grid%thc

&
&
&
&
&
&
&
&
&
&

new

Example 4: Input periodic SSTs

* Add new variable nsst to Physics Driver in Mediation Layer

--- File: phys/module surface driver.F ---
SUBROUTINE surface driver (&

! Other optionals (more or less em specific)

& ,hsst &

& ,capg,emiss, hol,mol &

& ,rainncv,rainbl,regime, t2, thc &

& ,dsg,qvg,qcg,soiltl, tsnav &

& ,smfr3d, keepfr3dflag &
))
REAL, DIMENSION(ims:ime, jms:jme) ,|OPTIONAL,| INTENT (INOUT) :: nsst

* By making this an “Optional” argument, we preserve the driver’s
compatibility with other cores and with versions of WRF where this
variable hasn’t been added.

Example 4: Input periodic SSTs

* Add call to Model-Layer subroutine for new physics package to Surface Driver

--- File: phys/module_surface driver ---

!SOMP PARALLEL DO &
1$OMP PRIVATE (ij, i, j, k)
DO ij = 1 , num _tiles
sfclay select: SELECT CASE (sf sfclay physics)

CASE (SFCLAYSCHEME)

CASE (NEWSFCSCHEME) ! <- This is defined by the Registry “package” entry
IF (PRESENT (nsst)) THEN
CALL NEWSFCCHEME (&

nsst, &
ids,ide, jds,jde, kds,6kde, &
ims,ime, jms,jme, kms,6 kme, &
i start(ij),i_end(i]j), j_start(ij),j_end(ij), kts, kte)

ELSE

CALL wrf error fatal('Missing argument for NEWSCHEME in surface driver')
ENDIF

END SELECT sfclay select
ENDDO
!SOMP END PARALLEL DO

* Note the PRESENT test to make sure new optional variable nsst is available

Example 4: Input periodic SSTs

* Add definition for new physics package NEWSCHEME as setting 4 for
namelist variable sf_sfclay_physics

rconfig integer sf sfclay physics namelist,physics max_domains 0

package sfclayscheme sf sfclay physics==1
package myjsfcscheme sf sfclay physics==2
package gfssfcscheme sf sfclay physics==3
package newsfcscheme sf sfclay physics==4

* This creates a defined constant NEWSFCSCHEME and represents
selection of the new scheme when the namelist variable

sf_sfclay_physics is set to ‘4’ in the namelist.input file

 clean -a and recompile so code and Registry changes take effect

Example 4: Input periodic SSTs

* Setup namelist to input SSTs from the file at desired interval

-—-— File: namelist.input ---
&time control

auxinput4 inname
auxinput4 interval h

"sst_ input"
12

/. ..

&physics
sf sfclay physics = 4, 4, 4

/

* Run code with sst_input file in run-directory

Examples

1) Add a variable to the namelist

2) Add an array

4) Add a physics package

)
)
3) Compute a diagnostic
)
)

5) Simple Tracer example

Tracer Example

Modify Registry for new fields.

— Use the “tracer” array with a new 3D component.

— Use existing NML option, with a new value.

Initialize data in real.
— Identify (i,j) location
— Spread influence vertically

Set values in solver.

— “Release” each time step

JAPAN RUSSIA
T RYUSHU HOKKAIDO
1 eDaisetsuzan
\rﬁﬂ' Tokara- Sapporog National
" Son shoto Park
Amami- : _
shotd Sea of Japan .ADmOﬂ
(East Sea)
W“M.O.ijnawa
City
Miyako-shotd Niislh OSendai
Yacyama-shotd Noto-Hanto
Peninsula 1 C PACIFIC
SOUTH ' JAPAN TR
KOREA Matsue Mthq &goxvo -
Hirosh - o ‘okohama
roshima JYO00 NSeoya A
— a B~
KYOUSHO 88 SmiKoKU
Kirishima e @ 0 —300 km
National >eagaia Oemmm—————— 240 miles|
See Inset Park

Tracer Example

* Modify Registry for new fields.
* Registry/Registry.EM add our new field “PLUME” as part of “TRACER” array.

New tracer for example
state real plume ikjftb tracer \
1 - irhusdf=(bdy interp:dt) \
"PLUME" '"Fukushima Tracer" " "
4D arrays need an associated package
package tracer test3 tracer opt== -\

tracer:plume

Tracer Example

Modify the real and WRF programs to initialize and continuously re-supply the “PLUME” array
dyn_em/module_initialize_real.F (real)

dyn_em/solve_em.F (WRF)

Add in the Fukushima initial venting.

IF ((its .LE. 50) .AND. (ite .GE. 50) .AND. &
(jts .LE. 50) .AND. (jte .GE. 50)) THEN
tracer(50,1:5,50,P plume) = 1.
END IF

Tracer Example

* Modify the test/em_real/namelist.input file

* Include the new settings for the tracer option required from the Registry file

&dynamics

tracer opt = 3, 3, 3,

Fukushima 11-14 Mar 2011, 30-km, 100x100 (-}

130°E 135°E 140°E 145°E 150°E
Fuleushima 11-14 Mar 2011, 30-km, 100x100 {-)

