
WRF Software:
Code and Parallel Computing

John Michalakes, Head WRF Software Architecture

Michael Duda

Dave Gill

Outline

•  Introduction

•  Computing Overview

•  WRF Software Overview

Introduction – WRF Software Characteristics

•  Developed from scratch beginning around 1998, primarily Fortran

and C

•  Requirements emphasize flexibility over a range of platforms,

applications, users, performance

•  WRF develops rapidly. First released Dec 2000; current release WRF

v3.5 (April 2013); next release WRF v3.5.1 (August 2013)

•  Supported by flexible efficient architecture and implementation called

the WRF Software Framework

Introduction - WRF Software Framework Overview

•  Implementation of WRF Architecture

–  Hierarchical organization
–  Multiple dynamical cores
–  Plug compatible physics
–  Abstract interfaces (APIs) to external packages
–  Performance-portable

•  Designed from beginning to be adaptable to today’s

computing environment for NWP

http://mmm.ucar.edu/wrf/WG2/bench/

ARW solver

Physics Interfaces

Plug-compatible physics
Plug-compatible physics

Plug-compatible physics
Plug-compatible physics

Plug-compatible physics

NMM solver

Top-level Control,
Memory Management, Nesting,

Parallelism, External APIs

m
ed

ia
tio

n
dr

iv
er

m

od
el

Hardware: The Computer

•  The ‘N’ in NWP

•  Components

–  Processor

•  A program counter

•  Arithmetic unit(s)

•  Some scratch space (registers)

•  Circuitry to store/retrieve from memory device
•  Cache

–  Memory

–  Secondary storage

–  Peripherals

•  The implementation has been continually refined, but the basic idea hasn’t

changed much

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Hardware has not changed much…

~50,000 flop/s
48hr 12km WRF CONUS in 600 years

~5,000,000,000 flop/s
48 12km WRF CONUS in 52 Hours

6-way superscalar

36-bit floating point precision

~144 Kbytes

A computer in 1960

IBM 7090

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Dual core, 4.7 GHz chip

64-bit floating point precision

1.9 MB L2, 36 MB L3

Upto 16 GB per processor
IBM P6

A computer in 2008

Hardware has not changed much…

~50,000 flop/s
48hr 12km WRF CONUS in 600 years

~5,000,000,000 flop/s
48 12km WRF CONUS in 26 Hours

6-way superscalar

36-bit floating point precision

~144 Kbytes

A computer in 1960

IBM 7090

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Dual core, 2.6 GHz chip

64-bit floating point precision

20 MB L3

A computer in 2013

…how we use it has

•  Fundamentally, processors haven’t changed much since 1960

•  Quantitatively, they haven’t improved nearly enough

–  100,000x increase in peak speed

–  100,000x increase in memory size

•  We make up the difference with parallelism

–  Ganging multiple processors together to achieve 1011-12 flop/second

–  Aggregate available memories of 1011-12 bytes

~1,000,000,000,000 flop/s ~250 procs
48-h,12-km WRF CONUS in under 15 minutes

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

January 2000 Benchmark

•  74x61 grid cells

•  1 hour forecast, 3 minute time step, 20 time step average

•  IO exlcuded

Decomposed domain sizes proc count: I-dim x J-dim

1: 74x61 2: 74x31 4: 37x31 8: 37x16

16: 19x16 32: 19x8 64: 10x8

January 2000 Benchmark

Processor Count SM – OpenMP
% Efficiency

DM – MPI
% Efficiency

1 74x61 100 100

2 74x31 72 98

4 37x31 65 91

8 37x16 31 83

16 19x16 16 70

32 19x8 8 56

64 10x8 3 40

January 2000 Benchmark

 Processor Count
1 2 4 8 16 32 64

•  If the machine consists of 4 nodes, each with 4 processors, how many different ways can
you run a job to use all 16 processors?

–  4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 wrf.exe

–  8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 wrf.exe

–  16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
mpirun –np 16 wrf.exe

Examples

4 threads

1 MPI

4 threads

1 MPI

4 threads

1 MPI

4 threads

1 MPI

•  If the machine consists of 4 nodes, each with 4 processors, how many different ways can
you run a job to use all 16 processors?

–  4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 wrf.exe

–  8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 wrf.exe

–  16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
mpirun –np 16 wrf.exe

Examples

2 threads
2 threads

2 MPI

2 threads
2 threads

2 MPI

2 threads
2 threads

2 MPI

2 threads
2 threads

2 MPI

•  If the machine consists of 4 nodes, each with 4 processors, how many different ways can
you run a job to use all 16 processors?

–  4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 wrf.exe

–  8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 wrf.exe

–  16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
mpirun –np 16 wrf.exe

Examples

4 MPI

4 MPI 4 MPI

4 MPI

Application: WRF

•  WRF can be run serially or as a parallel job

•  WRF uses domain decomposition to divide total amount of

work over parallel processes

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Model domains are decomposed for parallelism on two-levels

Patch: section of model domain allocated to a distributed memory
node, this is the scope of a mediation layer solver or physics driver.

Tile: section of a patch allocated to a shared-memory processor within a
node; this is also the scope of a model layer subroutine.

Distributed memory parallelism is over patches; shared memory
parallelism is over tiles within patches

•  Single version of code for efficient execution on:

–  Distributed-memory
–  Shared-memory (SMP)
–  Clusters of SMPs
–  Vector and microprocessors

Parallelism in WRF: Multi-level Decomposition

Logical
domain

1 Patch, divided
into multiple tiles

Inter-processor
communication

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Distributed Memory Communications

Communication is required between patches when a
horizontal index is incremented or decremented on the right-
hand-side of an assignment.

On a patch boundary, the index may refer to a value that is
on a different patch.

Following is an example code fragment that requires
communication between patches

Note the tell-tale +1 and –1 expressions in indices for rr, H1,
and H2 arrays on right-hand side of assignment.

These are horizontal data dependencies because the
indexed operands may lie in the patch of a neighboring
processor. That neighbor’s updates to that element of the
array won’t be seen on this processor.

When"
Needed?"
"
Why?"
"
"
"
"
Signs in"
code"

 (module_diffusion.F)

SUBROUTINE horizontal_diffusion_s (tendency, rr, var, . . .
. . .
 DO j = jts,jte
 DO k = kts,ktf
 DO i = its,ite
 mrdx=msft(i,j)*rdx
 mrdy=msft(i,j)*rdy
 tendency(i,k,j)=tendency(i,k,j)- &
 (mrdx*0.5*((rr(i+1,k,j)+rr(i,k,j))*H1(i+1,k,j)- &
 (rr(i-1,k,j)+rr(i,k,j))*H1(i ,k,j))+ &
 mrdy*0.5*((rr(i,k,j+1)+rr(i,k,j))*H2(i,k,j+1)- &
 (rr(i,k,j-1)+rr(i,k,j))*H2(i,k,j))- &
 msft(i,j)*(H1avg(i,k+1,j)-H1avg(i,k,j)+ &
 H2avg(i,k+1,j)-H2avg(i,k,j) &
)/dzetaw(k) &
)
 ENDDO
 ENDDO
 ENDDO
 . . .

Distributed Memory Communications

•  Halo updates

Distributed Memory MPI
Communications

memory on one processor memory on neighboring processor

*
+ *
*

* *

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

•  Halo updates
•  Periodic boundary updates
•  Parallel transposes
•  Nesting scatters/gathers

Distributed Memory (MPI)
Communications

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Distributed Memory (MPI)
Communications

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

•  Halo updates
•  Periodic boundary updates
•  Parallel transposes
•  Nesting scatters/gathers

•  Halo updates
•  Periodic boundary updates
•  Parallel transposes
•  Nesting scatters/gathers

Distributed Memory (MPI)
Communications

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

all y on
patch

all z on
patch

all x on
patch

•  Halo updates
•  Periodic boundary updates
•  Parallel transposes
•  Nesting scatters/gathers

Distributed Memory (MPI)
Communications

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

NEST:2.22 km INTERMEDIATE: 6.66 km

COARSE
Ross Island
6.66 km

Review – Computing Overview

APPLICATION
(WRF)

HARDWARE
(Processors, Memories, Wires)

SYSTEM
(UNIX, MPI, OpenMP)

Domain contains Patches contain Tiles

Job contains Processes contain Threads

Cluster contains Nodes contain Processors

Distributed
Memory
Parallel

Shared
Memory
Parallel

•  Introduction

•  Computing Overview

•  WRF Software Overview

Outline

WRF Software Architecture

•  Hierarchical software architecture

–  Insulate scientists' code from parallelism and other architecture/
implementation-specific details

–  Well-defined interfaces between layers, and external packages for
communications, I/O, and model coupling facilitates code reuse and
exploiting of community infrastructure, e.g. ESMF.

Registry

WRF Software Architecture

•  Driver Layer
–  Domains: Allocates, stores, decomposes, represents abstractly as single

data objects
–  Time loop: top level, algorithms for integration over nest hierarchy

Registry

WRF Software Architecture

•  Mediation Layer
–  Solve routine, takes a domain object and advances it one time step
–  Nest forcing, interpolation, and feedback routines

Registry

WRF Software Architecture

•  Mediation Layer
–  The sequence of calls for doing a time-step for one domain is known

in Solve routine
–  Dereferences fields in calls to physics drivers and dynamics code
–  Calls to message-passing are contained here as part of Solve routine

Registry

WRF Software Architecture

•  Model Layer
–  Physics and Dynamics: contains the actual WRF model routines are

written to perform some computation over an arbitrarily sized/
shaped, 3d, rectangular subdomain

Registry

Call Structure Superimposed on Architecture

wrf (main/wrf.F)

integrate (frame)

KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
G3 (phys/module_cu_g3.F

solve_interface -> solve_em (dyn_em)

module_cumulus_driver (phys)

module_first_rk_step_part1 (dyn_em)

•  Architecture

•  Directory structure

•  Model Layer Interface

•  Data Structures

•  I/O

WRF Software Overview

WRF Model
Top-Level
Directory
Structure

WRF Design
and
Implementation
Doc, p 5

DRIVER
MEDIATION
MODEL

Makefile
README
README_test_cases
clean
compile
configure
Registry/
arch/
dyn_em/
dyn_nnm/
external/
frame/
inc/
main/
phys/
share/
tools/
run/
test/

build
scripts

source
code
directories

execution
directories

machine build rules
CASE input files

Where are WRF source code files located?

$(RM) $@!

!

$(CPP) -I$(WRF_SRC_ROOT_DIR)/inc \!

!$(CPPFLAGS) $(OMPCPP) $*.F > $*.f90!

!

$(FC) -o $@ -c $(FCFLAGS) $(MODULE_DIRS) \!

!$(PROMOTION) $(FCSUFFIX) $*.f90!
!

Where are WRF source code files located?

cpp –C –P file.F > file.f90!

gfortran –c file.f90!

Where are WRF source code files located?

•  The most important command is the “find” command. If there is an error in the

model output, you can find that location in the source code with the find

command.

cd WRFV3

find . –name *.F –exec grep -i “Flerchinger” {} \; -print

Where are WRF source code files located?

•  All of the differences between the .F and .f90 files are due to the included pieces

that are manufactured by the Registry.

•  These additional pieces are all located in the WRFV3/inc directory.

•  For a serial build, almost 450 files are manufactured.

•  Usually, most developers spend their time working with physics schemes.

Where are WRF source code files located?

•  The “main” routine that handles the calls to all of the physics and dynamics:

–  WRFV3/dyn_em/solve_em.F

•  This “solver” is where the tendencies are initialized to zero, some pre-physics

terms are computed, and the time stepping occurs

•  The calls to the physics schemes are made from a further call down the call tree

–  dyn_em/module_first_rk_step_part1.F

Where are WRF source code files located?

•  Inside of solve_em and first_rk_step_part1, all of the data is located in the “grid”

structure: grid%ht.

•  The dimensions in solve_em and first_rk_step_part1 are “d” (domain), and

“m” (memory):

 ids, ide, jds, jde, kds, kde

 ims, ime, jms, jme, kms, kme

•  The “t” (tile) dimensions are computed in first_rk_step_part1 and passed to all

drivers.

•  WRF uses global indexing

Where are WRF source code files located?

•  If you are interested in looking at physics, the WRF system has organized the files in

the WRFV3/phys directory.

•  In WRFV3/phys, each type of physics has a driver:

 module_cumulus_driver.F cu

 module_microphysics_driver.F mp

 module_pbl_driver.F bl
 module_radiation_driver.F ra

 module_surface_driver.F sf

Where are WRF source code files located?

•  The subgrid-scale precipitation (*_cu_*.F)

 module_cu_bmj.F module_cu_camzm.F

 module_cu_g3.F module_cu_gd.F

 module_cu_kf.F module_cu_kfeta.F
 module_cu_nsas.F module_cu_osas.F

 module_cu_sas.F module_cu_tiedtke.F

Where are WRF source code files located?

•  Advection

 WRFV3/dyn_em/module_advect_em.F

•  Lateral boundary conditions

 WRFV3/dyn_em/module_bc_em.F

Where are WRF source code files located?

•  Compute various RHS terms, pressure gradient, buoyancy, w damping, horizontal

and vertical diffusion, Coriolis, curvature, Rayleigh damping

 WRFV3/dyn_em/module_big_step_utilities_em.F

•  All of the sound step utilities to advance u, v, mu, t, w within the small time-step loop
 WRFV3/dyn_em/module_small_step_em.F

•  Architecture

•  Directory structure

•  Model Layer Interface

•  Data Structures

•  I/O

WRF Software Overview

WRF Model Layer Interface – The Contract with Users

OMP Config
Inquiry I/O API
Config
Module WRF Tile - callable

Subroutines

Solve DM comm

Th
re

ad
s

Data formats,
Parallel I/O

M
es

sa
ge

Pa
ss

in
g

Driver

All state arrays passed through argument list
as simple (not derived) data types

Domain, memory, and run dimensions passed
unambiguously in three dimensions

Model layer routines are called from mediation
layer (physics drivers) in loops over tiles,
which are multi-threaded

WRF Model Layer Interface – The Contract with Users

OMP Config
Inquiry I/O API
Config
Module WRF Tile - callable

Subroutines

Solve DM comm

Th
re

ad
s

Data formats,
Parallel I/O

M
es

sa
ge

Pa
ss

in
g

Driver

Restrictions on Model Layer subroutines:

No I/O, communication

No stops or aborts
Use wrf_error_fatal

No common/module storage of
decomposed data

Spatial scope of a Model Layer call is
one “tile”

SUBROUTINE driver_for_some_physics_suite (
 . . .
!$OMP DO PARALLEL
 DO ij = 1, numtiles
 its = i_start(ij) ; ite = i_end(ij)
 jts = j_start(ij) ; jte = j_end(ij)
 CALL model_subroutine(arg1, arg2, . . .
 ids , ide , jds , jde , kds , kde ,
 ims , ime , jms , jme , kms , kme ,
 its , ite , jts , jte , kts , kte)
 END DO
 . . .

 END SUBROUTINE

WRF Model Layer Interface

 template for model layer subroutine

 SUBROUTINE model_subroutine (&
 arg1, arg2, arg3, … , argn, &
 ids, ide, jds, jde, kds, kde, & ! Domain dims
 ims, ime, jms, jme, kms, kme, & ! Memory dims
 its, ite, jts, jte, kts, kte) ! Tile dims

 IMPLICIT NONE

 ! Define Arguments (State and I1) data
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
 REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
 . . .
 ! Define Local Data (I2)
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
 . . .

WRF Model Layer Interface

 template for model layer subroutine

. . .
 ! Executable code; loops run over tile
 ! dimensions
 DO j = jts, MIN(jte,jde-1)
 DO k = kts, kte
 DO i = its, MIN(ite,ide-1)
 loc1(i,k,j) = arg1(i,k,j) + …
 END DO
 END DO
 END DO

WRF Model Layer Interface

 template for model layer subroutine

 SUBROUTINE model (&
 arg1, arg2, arg3, … , argn, &
 ids, ide, jds, jde, kds, kde, & ! Domain dims
 ims, ime, jms, jme, kms, kme, & ! Memory dims
 its, ite, jts, jte, kts, kte) ! Tile dims

 IMPLICIT NONE

 ! Define Arguments (S and I1) data
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
 REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
 . . .
 ! Define Local Data (I2)
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
 . . .
 ! Executable code; loops run over tile
 ! dimensions
 DO j = MAX(jts,jds), MIN(jte,jde-1)
 DO k = kts, kte
 DO i = MAX(its,ids), MIN(ite,ide-1)
 loc1(i,k,j) = arg1(i,k,j) + …
 END DO
 END DO
 END DO

•  Domain dimensions
•  Size of logical domain
•  Used for bdy tests, etc.

 template for model layer subroutine

 SUBROUTINE model (&
 arg1, arg2, arg3, … , argn, &
 ids, ide, jds, jde, kds, kde, & ! Domain dims
 ims, ime, jms, jme, kms, kme, & ! Memory dims
 its, ite, jts, jte, kts, kte) ! Tile dims

 IMPLICIT NONE

 ! Define Arguments (S and I1) data
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
 REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
 . . .
 ! Define Local Data (I2)
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
 . . .
 ! Executable code; loops run over tile
 ! dimensions
 DO j = MAX(jts,jds), MIN(jte,jde-1)
 DO k = kts, kte
 DO i = MAX(its,ids), MIN(ite,ide-1)
 loc1(i,k,j) = arg1(i,k,j) + …
 END DO
 END DO
 END DO

•  Domain dimensions
•  Size of logical domain
•  Used for bdy tests, etc.

•  Memory dimensions
•  Used to dimension dummy

arguments
•  Do not use for local arrays

 template for model layer subroutine

 SUBROUTINE model (&
 arg1, arg2, arg3, … , argn, &
 ids, ide, jds, jde, kds, kde, & ! Domain dims
 ims, ime, jms, jme, kms, kme, & ! Memory dims
 its, ite, jts, jte, kts, kte) ! Tile dims

 IMPLICIT NONE

 ! Define Arguments (S and I1) data
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
 REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
 . . .
 ! Define Local Data (I2)
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
 . . .
 ! Executable code; loops run over tile
 ! dimensions
 DO j = MAX(jts,jds), MIN(jte,jde-1)
 DO k = kts, kte
 DO i = MAX(its,ids), MIN(ite,ide-1)
 loc1(i,k,j) = arg1(i,k,j) + …
 END DO
 END DO
 END DO

•  Domain dimensions
•  Size of logical domain
•  Used for bdy tests, etc.

•  Memory dimensions
•  Used to dimension dummy

arguments
•  Do not use for local arrays

•  Tile dimensions
•  Local loop ranges
•  Local array dimensions

 template for model layer subroutine

 SUBROUTINE model (&
 arg1, arg2, arg3, … , argn, &
 ids, ide, jds, jde, kds, kde, & ! Domain dims
 ims, ime, jms, jme, kms, kme, & ! Memory dims
 its, ite, jts, jte, kts, kte) ! Tile dims

 IMPLICIT NONE

 ! Define Arguments (S and I1) data
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
 REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
 . . .
 ! Define Local Data (I2)
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
 . . .
 ! Executable code; loops run over tile
 ! dimensions
 DO j = MAX(jt,jds), MIN(jte,jde-1)
 DO k = kts, kte
 DO i = MAX(its,ids), MIN(ite,ide-1)
 loc1(i,k,j) = arg1(i,k,j) + …
 END DO
 END DO
 END DO

•  Domain dimensions
•  Size of logical domain
•  Used for bdy tests, etc.

•  Memory dimensions
•  Used to dimension dummy

arguments
•  Do not use for local arrays

•  Tile dimensions
•  Local loop ranges
•  Local array dimensions

•  Patch dimensions
•  Start and end indices of local

distributed memory subdomain
•  Available from mediation layer

(solve) and driver layer; not usually
needed or used at model layer

•  Architecture

•  Directory structure

•  Model Layer Interface

•  Data Structures

•  I/O

WRF Software Overview

Driver Layer Data Structures: Domain Objects

•  Driver layer
–  All data for a domain is an object, a domain derived data type (DDT)
–  The domain DDTs are dynamically allocated/deallocated
–  Linked together in a tree to represent nest hierarchy; root pointer is

head_grid, defined in frame/module_domain.F
–  Supports recursive depth-first traversal algorithm (frame/

module_integrate.F)

head_grid 1

4

3 2

•  Every Registry defined state, I1, and

namelist variable is contained inside the

DDT (locally known as a grid of type

domain), where each node in the tree

represents a separate and complete 3D

model domain/nest.

Model Layer Data Structures: F77

•  Model layer

–  All data objects are scalars and arrays of simple types only
–  Virtually all passed in through subroutine argument lists

–  Non-decomposed arrays and “local to a module” storage
are permitted with an initialization at the model start

Mediation Layer Data Structures: Objects + F77

•  Mediation layer

–  One task of mediation layer is to dereference fields from DDTs
–  Therefore, sees domain data in both forms, as DDT and as

individual fields which are components of the DDTs

•  The name of a data type and how it is referenced differs depending

on the level of the architecture

Data Structures

•  WRF Data Taxonomy
–  State data
–  Intermediate data type 1 (I1)
–  Intermediate data type 2 (I2)
–  Heap storage (COMMON or Module data)

Data Structures

•  WRF Data Taxonomy
–  State data
–  Intermediate data type 1 (I1)
–  Intermediate data type 2 (I2)
–  Heap storage (COMMON or Module)

Defined in the
Registry

Data Structures

•  WRF Data Taxonomy
–  State data
–  Intermediate data type 1 (I1)
–  Intermediate data type 2 (I2)
–  Heap storage (COMMON or Module)

Defined in
the physics
subroutines
on the
stack

Data Structures

•  WRF Data Taxonomy
–  State data
–  Intermediate data type 1 (I1)
–  Intermediate data type 2 (I2)
–  Heap storage (COMMON or Module)

Defined in the
module top,
typically
look-up tables
and routine
constants,
NO HORIZ
DECOMPOSED
DATA!
Common
blocks must
not leave the
Module.

Mediation/Model Layer Data Structures:
State Data

•  Duration: Persist between start and stop of a domain

•  Represented as fields in domain data structure

–  Memory for state arrays are dynamically allocated, only big
enough to hold the local subdomain’s (ie. patch’s) set of array
elements

–  Always memory dimensioned

–  Declared in Registry using state keyword

•  Only state arrays can be subject to I/O and Interprocessor

communication

Mediation/Model Layer Data Structures:
I1 Data

•  Persist for the duration of a single time step in solve

•  Represented as fields in domain data structure

–  Memory for I1 arrays are dynamically allocated, only big enough
to hold the local subdomain’s (ie. patch’s) set of array
elements

–  Always memory dimensioned

–  Declared in Registry using I1 keyword

–  Typically tendency fields computed, used, and discarded at the
end of every time step

–  Are not used to impact I1 variables on a child domain

Model Layer Data Structures:
I2 Data

•  Persist for the duration of a call of the physics routine

•  NOT contained within the DDT structure (no declarations in the

Registry)

–  Memory for I2 arrays are dynamically allocated on subroutine
entry, and automatically deallocated on exit

–  Local, intermediate dummy variables required for physics
computations

–  If I2 arrays, then they are always tile dimensioned

–  Not declared in the Registry, not communicated, no IO, not
passed back to the solver, do not exist (retain their previous
value) between successive physics calls

Grid Representation in Arrays

•  Increasing indices in WRF arrays run

–  West to East (X, or I-dimension)
–  South to North (Y, or J-dimension)

–  Bottom to Top (Z, or K-dimension)

•  Storage order in WRF is IKJ (ARW) and IJK (NMM) but these are a

WRF Model convention, not a restriction of the WRF Software

Framework (provides cache coherency, but long vectors possible)

•  Output data has grid ordering independent of the ordering inside the

WRF model

Grid Representation in Arrays

•  The extent of the logical or domain dimensions is always the

"staggered" grid dimension. That is, from the point of view of a non-

staggered dimension (also referred to as the ARW “mass points”),

there is always an extra cell on the end of the domain dimension

WRF Software Overview

•  Architecture

•  Directory structure

•  Model Layer Interface

•  Data Structures

•  I/O

WRF I/O

•  Streams: pathways into and out of model

•  Can be thought of as files, though that is a restriction
–  History + auxiliary output streams (10 and 11 are reserved for

nudging)
–  Input + auxiliary input streams (10 and 11 are reserved for

nudging)
–  Restart, boundary, and a special DA in-out stream
–  Currently, 24 total streams
–  Use the large values and work down to stay away from “used”

WRF I/O

•  Attributes of streams
–  Variable set

• The set of WRF state variables that comprise one read or
write on a stream

• Defined for a stream at compile time in Registry
–  Format

• The format of the data outside the program (e.g. NetCDF),
split

• Specified for a stream at run time in the namelist

WRF I/O

•  Attributes of streams
–  Additional namelist-controlled attributes of streams

• Dataset name
• Time interval between I/O operations on stream
• Starting, ending times for I/O (specified as intervals from

start of run)

WRF I/O

•  Attributes of streams
–  Mandatory for stream to be used:

• Time interval between I/O operations on stream
• Format: io_form

Outline - Review

•  Introduction
–  WRF started 1998, clean slate, Fortran + C
–  Targeted for research and operations

•  WRF Software Overview
–  Hierarchical software layers
–  Patches (MPI) and Tiles (OpenMP)
–  Strict interfaces between layers
–  Contract with developers
–  I/O

