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Introduction – WRF Software Characteristics 

•  Developed from scratch beginning around 1998, primarily Fortran 

and C 

•  Requirements emphasize flexibility over a range of platforms, 

applications, users, performance 

•  WRF develops rapidly. First released Dec 2000; current release WRF 

v3.5 (April 2013); next release WRF v3.5.1 (August 2013) 

•  Supported by flexible efficient architecture and implementation called 

the WRF Software Framework 



Introduction - WRF Software Framework Overview 

•  Implementation of  WRF Architecture 

–  Hierarchical organization 
–  Multiple dynamical cores 
–  Plug compatible physics 
–  Abstract interfaces (APIs) to external packages 
–  Performance-portable 

•  Designed from beginning to be adaptable to today’s 

computing environment for NWP 

http://mmm.ucar.edu/wrf/WG2/bench/ 

ARW solver 

Physics Interfaces 

Plug-compatible physics 
Plug-compatible physics 

Plug-compatible physics 
Plug-compatible physics 

Plug-compatible physics 

NMM solver 

Top-level Control, 
Memory Management, Nesting,  

Parallelism, External APIs  
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Hardware: The Computer 

•  The ‘N’ in NWP 

•  Components 

–  Processor 

•  A program counter 

•  Arithmetic unit(s) 

•  Some scratch space (registers) 

•  Circuitry to store/retrieve from memory device 
•  Cache 

–  Memory 

–  Secondary storage 

–  Peripherals 

•  The implementation has been continually refined, but the basic idea hasn’t 

changed much 
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Hardware has not changed much… 

~50,000 flop/s 
48hr 12km WRF CONUS in 600 years 

~5,000,000,000 flop/s 
48 12km WRF CONUS in 52 Hours 

6-way superscalar 

36-bit floating point precision 

~144 Kbytes 

A computer in 1960 

IBM 7090 
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Dual core, 4.7 GHz chip 

64-bit floating point precision 

1.9 MB L2, 36 MB L3 

Upto 16 GB per processor 
IBM P6 

A computer in 2008 



Hardware has not changed much… 

~50,000 flop/s 
48hr 12km WRF CONUS in 600 years 

~5,000,000,000 flop/s 
48 12km WRF CONUS in 26 Hours 

6-way superscalar 

36-bit floating point precision 

~144 Kbytes 

A computer in 1960 

IBM 7090 
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Dual core, 2.6 GHz chip 

64-bit floating point precision 

20 MB L3 

A computer in 2013 



…how we use it has 

•  Fundamentally, processors haven’t changed much since 1960 

•  Quantitatively, they haven’t improved nearly enough 

–  100,000x increase in peak speed 

–  100,000x increase in memory size 

•  We make up the difference with parallelism 

–  Ganging multiple processors together to achieve 1011-12 flop/second 

–  Aggregate available memories of 1011-12 bytes 

~1,000,000,000,000 flop/s ~250 procs 
48-h,12-km WRF CONUS in under 15 minutes 
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January 2000 Benchmark 

•  74x61 grid cells 

•  1 hour forecast, 3 minute time step, 20 time step average  

•  IO exlcuded 

 

Decomposed domain sizes     proc count: I-dim x J-dim 

1: 74x61  2: 74x31  4: 37x31  8: 37x16 

16: 19x16  32: 19x8  64: 10x8 
 

 



January 2000 Benchmark 

Processor Count SM – OpenMP 
% Efficiency 

DM – MPI 
% Efficiency 

1    74x61 100 100 

2    74x31  72  98 

4    37x31  65  91 

8    37x16  31  83 

16  19x16  16  70 

32  19x8    8  56 

64  10x8    3  40 



January 2000 Benchmark 

                     Processor Count 
1 2  4 8    16                  32                             64  



•  If the machine consists of 4 nodes, each with 4 processors, how many different ways can 
you run a job to use all 16 processors? 

–  4 MPI processes, each with 4 threads 

setenv OMP_NUM_THREADS 4 
mpirun –np 4 wrf.exe 
 

–  8 MPI processes, each with 2 threads 

setenv OMP_NUM_THREADS 2 
mpirun –np 8 wrf.exe 
 

–  16 MPI processes, each with 1 thread 

setenv OMP_NUM_THREADS 1 
mpirun –np 16 wrf.exe 
 

Examples 

4 threads 

1 MPI 

4 threads 

1 MPI 

4 threads 

1 MPI 

4 threads 

1 MPI 



•  If the machine consists of 4 nodes, each with 4 processors, how many different ways can 
you run a job to use all 16 processors? 

–  4 MPI processes, each with 4 threads 

setenv OMP_NUM_THREADS 4 
mpirun –np 4 wrf.exe 
 

–  8 MPI processes, each with 2 threads 

setenv OMP_NUM_THREADS 2 
mpirun –np 8 wrf.exe 
 

–  16 MPI processes, each with 1 thread 

setenv OMP_NUM_THREADS 1 
mpirun –np 16 wrf.exe 
 

Examples 

2 threads 
2 threads 

2 MPI 

2 threads 
2 threads 

2 MPI 

2 threads 
2 threads 

2 MPI 

2 threads 
2 threads 

2 MPI 



•  If the machine consists of 4 nodes, each with 4 processors, how many different ways can 
you run a job to use all 16 processors? 

–  4 MPI processes, each with 4 threads 

setenv OMP_NUM_THREADS 4 
mpirun –np 4 wrf.exe 
 

–  8 MPI processes, each with 2 threads 

setenv OMP_NUM_THREADS 2 
mpirun –np 8 wrf.exe 
 

–  16 MPI processes, each with 1 thread 

setenv OMP_NUM_THREADS 1 
mpirun –np 16 wrf.exe 
 

Examples 

4 MPI 

4 MPI 4 MPI 

4 MPI 



Application:  WRF 

•  WRF can be run serially or as a parallel job 

•  WRF uses domain decomposition to divide total amount of 

work over parallel processes  
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Model domains are decomposed for parallelism on two-levels 

Patch: section of model domain  allocated to a distributed memory  
node, this is the scope of a mediation layer solver or physics driver. 
 
Tile: section of a patch allocated to a shared-memory processor within a 
node; this is also the scope of a model layer subroutine. 
 
Distributed memory parallelism is over patches; shared memory 
parallelism is over tiles within patches 

•  Single version of code for efficient execution on: 

–  Distributed-memory 
–  Shared-memory (SMP) 
–  Clusters of SMPs 
–  Vector and microprocessors 

Parallelism in WRF: Multi-level Decomposition 

Logical 
domain 

1 Patch, divided 
into multiple tiles 

Inter-processor 
communication 
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Distributed Memory Communications 

Communication is required between patches when a 
horizontal index is incremented or decremented on the right-
hand-side of an assignment.   
 
On a patch boundary, the index may refer to a value that is 
on a different patch. 
 
Following is an example code fragment that requires 
communication between patches 
 
Note the tell-tale +1 and –1 expressions in indices for rr, H1, 
and H2  arrays on right-hand side of assignment.  
 
These are horizontal data dependencies because the 
indexed operands may lie in the patch of a neighboring 
processor. That neighbor’s updates to that element of the 
array won’t be seen on this processor. 

When"
Needed?"
"
Why?"
"
"
"
"
Signs in"
code"



                      (module_diffusion.F ) 
 
SUBROUTINE horizontal_diffusion_s (tendency, rr, var, . . . 
. . . 
   DO j = jts,jte 
   DO k = kts,ktf 
   DO i = its,ite 
      mrdx=msft(i,j)*rdx 
      mrdy=msft(i,j)*rdy 
      tendency(i,k,j)=tendency(i,k,j)-                          & 
           (mrdx*0.5*((rr(i+1,k,j)+rr(i,k,j))*H1(i+1,k,j)-      & 
                      (rr(i-1,k,j)+rr(i,k,j))*H1(i  ,k,j))+     & 
            mrdy*0.5*((rr(i,k,j+1)+rr(i,k,j))*H2(i,k,j+1)-      & 
                      (rr(i,k,j-1)+rr(i,k,j))*H2(i,k,j  ))-     & 
            msft(i,j)*(H1avg(i,k+1,j)-H1avg(i,k,j)+             & 
                       H2avg(i,k+1,j)-H2avg(i,k,j)              & 
                                )/dzetaw(k)                     & 
           ) 
   ENDDO 
   ENDDO 
   ENDDO 
 . . . 

Distributed Memory Communications 



•  Halo updates 

Distributed Memory MPI 
Communications 

memory on one processor memory on neighboring processor 

* 
+ * 
* 

* * 
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•  Halo updates 
•  Periodic boundary updates 
•  Parallel transposes 
•  Nesting scatters/gathers 

Distributed Memory (MPI) 
Communications 
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Distributed Memory (MPI) 
Communications 
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•  Halo updates 
•  Periodic boundary updates 
•  Parallel transposes 
•  Nesting scatters/gathers 



•  Halo updates 
•  Periodic boundary updates 
•  Parallel transposes 
•  Nesting scatters/gathers 

Distributed Memory (MPI) 
Communications 
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all y on 
patch 

all z on 
patch 

all x on 
patch 



•  Halo updates 
•  Periodic boundary updates 
•  Parallel transposes 
•  Nesting scatters/gathers 

Distributed Memory (MPI) 
Communications 
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NEST:2.22 km INTERMEDIATE: 6.66 km 

COARSE 
Ross Island 
6.66 km 



Review – Computing Overview 

APPLICATION 
(WRF) 

HARDWARE 
(Processors, Memories, Wires) 

SYSTEM 
(UNIX, MPI, OpenMP) 

Domain contains Patches contain Tiles 

Job contains Processes contain Threads 

Cluster contains Nodes contain Processors 

Distributed  
Memory 
Parallel 

Shared 
Memory 
Parallel 



•  Introduction 

•  Computing Overview 

•  WRF Software Overview 

Outline 



WRF Software Architecture 

 

•  Hierarchical software architecture 

–  Insulate scientists' code from parallelism and other architecture/
implementation-specific details 

–  Well-defined interfaces between layers, and external packages for 
communications, I/O, and model coupling facilitates code reuse and 
exploiting of community infrastructure, e.g. ESMF. 

Registry 



WRF Software Architecture 

 

•  Driver Layer 
–  Domains: Allocates, stores, decomposes, represents abstractly as single 

data objects 
–  Time loop: top level, algorithms for integration over nest hierarchy 

Registry 



WRF Software Architecture 

 

•  Mediation Layer 
–  Solve routine, takes a domain object and advances it one time step 
–  Nest forcing, interpolation, and feedback routines 

Registry 



WRF Software Architecture 

 

•  Mediation Layer 
–  The sequence of calls for doing a time-step for one domain is known 

in Solve routine 
–  Dereferences fields in calls to physics drivers and dynamics code 
–  Calls to message-passing are contained here as part of Solve routine 

Registry 



WRF Software Architecture 

 

•  Model Layer 
–  Physics and Dynamics: contains the actual WRF model routines are 

written to perform some computation over an arbitrarily sized/
shaped, 3d, rectangular subdomain 

Registry 



Call Structure Superimposed on Architecture 

wrf  (main/wrf.F) 

integrate (frame) 

KFCPS  (phys/module_ra_kf.F 
KFCPS  (phys/module_ra_kf.F 
KFCPS  (phys/module_ra_kf.F 
KFCPS  (phys/module_ra_kf.F 
KFCPS  (phys/module_ra_kf.F 
KFCPS  (phys/module_ra_kf.F 
G3  (phys/module_cu_g3.F 

solve_interface -> solve_em (dyn_em) 

module_cumulus_driver (phys) 

module_first_rk_step_part1 (dyn_em) 



•  Architecture 

•  Directory structure 

•  Model Layer Interface 

•  Data Structures 

•  I/O 

WRF Software Overview 



WRF Model 
Top-Level 
Directory 
Structure 
 
 
WRF Design 
and 
Implementation 
Doc, p 5 
 
DRIVER 
MEDIATION 
MODEL 
 

Makefile 
README 
README_test_cases 
clean 
compile 
configure 
Registry/ 
arch/ 
dyn_em/ 
dyn_nnm/ 
external/ 
frame/ 
inc/ 
main/ 
phys/ 
share/ 
tools/ 
run/ 
test/ 

build 
scripts 

source 
code 
directories 

execution 
directories 

machine build rules 
CASE input files 



Where are WRF source code files located? 

$(RM) $@!

!

$(CPP) -I$(WRF_SRC_ROOT_DIR)/inc \!

!$(CPPFLAGS) $(OMPCPP) $*.F  > $*.f90!

!

$(FC) -o $@ -c $(FCFLAGS) $(MODULE_DIRS) \!

!$(PROMOTION) $(FCSUFFIX) $*.f90!
!



Where are WRF source code files located? 

cpp –C –P file.F  > file.f90!

gfortran –c file.f90!



Where are WRF source code files located? 

•  The most important command is the “find” command.  If there is an error in the 

model output, you can find that location in the source code with the find 

command. 

cd WRFV3 

find . –name \*.F –exec grep -i “Flerchinger” {} \; -print 



Where are WRF source code files located? 

•  All of the differences between the .F and .f90 files are due to the included pieces 

that are manufactured by the Registry.   

•  These additional pieces are all located in the WRFV3/inc directory.   

•  For a serial build, almost 450 files are manufactured. 

•  Usually, most developers spend their time working with physics schemes. 



Where are WRF source code files located? 

•  The “main” routine that handles the calls to all of the physics and dynamics: 

–  WRFV3/dyn_em/solve_em.F 

•  This “solver” is where the tendencies are initialized to zero, some pre-physics 

terms are computed, and the time stepping occurs 

•  The calls to the physics schemes are made from a further call down the call tree 

–  dyn_em/module_first_rk_step_part1.F 

 



Where are WRF source code files located? 

•  Inside of solve_em and first_rk_step_part1, all of the data is located in the “grid” 

structure: grid%ht. 

•  The dimensions in solve_em and first_rk_step_part1 are “d” (domain), and 

“m” (memory): 

  ids, ide, jds, jde, kds, kde 

  ims, ime, jms, jme, kms, kme 

•  The “t” (tile) dimensions are computed in first_rk_step_part1 and passed to all 

drivers. 

•  WRF uses global indexing 

 



Where are WRF source code files located? 

•  If you are interested in looking at physics, the WRF system has organized the files in 

the WRFV3/phys directory.   

•  In WRFV3/phys, each type of physics has a driver: 

  module_cumulus_driver.F  cu 

  module_microphysics_driver.F  mp 

  module_pbl_driver.F   bl 
  module_radiation_driver.F  ra 

  module_surface_driver.F   sf 



Where are WRF source code files located? 

•  The subgrid-scale precipitation (*_cu_*.F) 

  module_cu_bmj.F  module_cu_camzm.F 

  module_cu_g3.F   module_cu_gd.F 

  module_cu_kf.F   module_cu_kfeta.F 
  module_cu_nsas.F  module_cu_osas.F 

  module_cu_sas.F  module_cu_tiedtke.F 



Where are WRF source code files located? 

•  Advection 

  WRFV3/dyn_em/module_advect_em.F 
 

•  Lateral boundary conditions 

  WRFV3/dyn_em/module_bc_em.F 



Where are WRF source code files located? 

•  Compute various RHS terms, pressure gradient, buoyancy, w damping, horizontal 

and vertical diffusion, Coriolis, curvature, Rayleigh damping 

  WRFV3/dyn_em/module_big_step_utilities_em.F 
 

•  All of the sound step utilities to advance u, v, mu, t, w within the small time-step loop 
  WRFV3/dyn_em/module_small_step_em.F 



•  Architecture 

•  Directory structure 

•  Model Layer Interface 

•  Data Structures 

•  I/O 

WRF Software Overview 



WRF Model Layer Interface – The Contract with Users 

OMP Config 
Inquiry I/O API 
Config 
Module WRF Tile - callable 

Subroutines 

Solve DM comm 

Th
re

ad
s 

Data formats, 
Parallel I/O 

M
es

sa
ge
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ss
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Driver 

 
All state arrays passed through argument list 
as simple (not derived) data types 
 
Domain, memory, and run dimensions passed 
unambiguously in three dimensions 
 
Model layer routines are called from mediation 
layer (physics drivers) in loops over tiles, 
which are multi-threaded 
 



WRF Model Layer Interface – The Contract with Users 

OMP Config 
Inquiry I/O API 
Config 
Module WRF Tile - callable 

Subroutines 

Solve DM comm 

Th
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Data formats, 
Parallel I/O 
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Restrictions on Model Layer subroutines: 
 

No I/O, communication 
 
No stops or aborts 
Use wrf_error_fatal 

No common/module storage of  
decomposed data 
 
Spatial scope of  a Model Layer call is 
one “tile” 
 



 

SUBROUTINE driver_for_some_physics_suite (  
    . . . 
!$OMP DO PARALLEL 
   DO ij = 1, numtiles 
      its = i_start(ij) ; ite = i_end(ij) 
      jts = j_start(ij) ; jte = j_end(ij) 
      CALL model_subroutine( arg1, arg2, . . . 
           ids , ide , jds , jde , kds , kde , 
           ims , ime , jms , jme , kms , kme , 
           its , ite , jts , jte , kts , kte ) 
   END DO 
    . . . 
 
 END SUBROUTINE 

WRF Model Layer Interface 



 

           template for model layer subroutine        
 
 SUBROUTINE model_subroutine ( &  
   arg1, arg2, arg3, … , argn,   & 
   ids, ide, jds, jde, kds, kde, &  ! Domain dims 
   ims, ime, jms, jme, kms, kme, &  ! Memory dims 
   its, ite, jts, jte, kts, kte  )  ! Tile dims 
 
 IMPLICIT NONE 
 
 ! Define Arguments (State and I1) data 
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . . 
 REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . . 
  . . . 
 ! Define Local Data (I2) 
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . . 
  . . . 
  

WRF Model Layer Interface 



 

           template for model layer subroutine        
 
. . . 
 ! Executable code; loops run over tile  
 ! dimensions 
 DO j = jts, MIN(jte,jde-1) 
   DO k = kts, kte 
     DO i = its, MIN(ite,ide-1) 
       loc1(i,k,j) = arg1(i,k,j) + … 
     END DO 
   END DO 
 END DO 
      

WRF Model Layer Interface 



 
           template for model layer subroutine        
 
 SUBROUTINE model ( &  
   arg1, arg2, arg3, … , argn,   & 
   ids, ide, jds, jde, kds, kde, &  ! Domain dims 
   ims, ime, jms, jme, kms, kme, &  ! Memory dims 
   its, ite, jts, jte, kts, kte  )  ! Tile dims 
 
 IMPLICIT NONE 
 
 ! Define Arguments (S and I1) data 
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . . 
 REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . . 
  . . . 
 ! Define Local Data (I2) 
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . . 
  . . . 
 ! Executable code; loops run over tile  
 ! dimensions 
 DO j = MAX(jts,jds), MIN(jte,jde-1) 
   DO k = kts, kte 
     DO i = MAX(its,ids), MIN(ite,ide-1) 
       loc1(i,k,j) = arg1(i,k,j) + … 
     END DO 
   END DO 
 END DO 
      

•  Domain dimensions 
•  Size of logical domain 
•  Used for bdy tests, etc. 



 
           template for model layer subroutine        
 
 SUBROUTINE model ( &  
   arg1, arg2, arg3, … , argn,   & 
   ids, ide, jds, jde, kds, kde, &  ! Domain dims 
   ims, ime, jms, jme, kms, kme, &  ! Memory dims 
   its, ite, jts, jte, kts, kte  )  ! Tile dims 
 
 IMPLICIT NONE 
 
 ! Define Arguments (S and I1) data 
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . . 
 REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . . 
  . . . 
 ! Define Local Data (I2) 
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . . 
  . . . 
 ! Executable code; loops run over tile  
 ! dimensions 
 DO j = MAX(jts,jds), MIN(jte,jde-1) 
   DO k = kts, kte 
     DO i = MAX(its,ids), MIN(ite,ide-1) 
       loc1(i,k,j) = arg1(i,k,j) + … 
     END DO 
   END DO 
 END DO 
      

•  Domain dimensions 
•  Size of logical domain 
•  Used for bdy tests, etc. 

•  Memory dimensions 
•  Used to dimension dummy 

arguments 
•  Do not use for local arrays 



 
           template for model layer subroutine        
 
 SUBROUTINE model ( &  
   arg1, arg2, arg3, … , argn,   & 
   ids, ide, jds, jde, kds, kde, &  ! Domain dims 
   ims, ime, jms, jme, kms, kme, &  ! Memory dims 
   its, ite, jts, jte, kts, kte  )  ! Tile dims 
 
 IMPLICIT NONE 
 
 ! Define Arguments (S and I1) data 
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . . 
 REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . . 
  . . . 
 ! Define Local Data (I2) 
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . . 
  . . . 
 ! Executable code; loops run over tile  
 ! dimensions 
 DO j = MAX(jts,jds), MIN(jte,jde-1) 
   DO k = kts, kte 
     DO i = MAX(its,ids), MIN(ite,ide-1) 
       loc1(i,k,j) = arg1(i,k,j) + … 
     END DO 
   END DO 
 END DO 
      

•  Domain dimensions 
•  Size of logical domain 
•  Used for bdy tests, etc. 

•  Memory dimensions 
•  Used to dimension dummy 

arguments 
•  Do not use for local arrays 

•  Tile dimensions 
•  Local loop ranges 
•  Local array dimensions 



 
           template for model layer subroutine        
 
 SUBROUTINE model ( &  
   arg1, arg2, arg3, … , argn,   & 
   ids, ide, jds, jde, kds, kde, &  ! Domain dims 
   ims, ime, jms, jme, kms, kme, &  ! Memory dims 
   its, ite, jts, jte, kts, kte  )  ! Tile dims 
 
 IMPLICIT NONE 
 
 ! Define Arguments (S and I1) data 
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . . 
 REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . . 
  . . . 
 ! Define Local Data (I2) 
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . . 
  . . . 
 ! Executable code; loops run over tile  
 ! dimensions 
 DO j = MAX(jt,jds), MIN(jte,jde-1) 
   DO k = kts, kte 
     DO i = MAX(its,ids), MIN(ite,ide-1) 
       loc1(i,k,j) = arg1(i,k,j) + … 
     END DO 
   END DO 
 END DO 
      

•  Domain dimensions 
•  Size of logical domain 
•  Used for bdy tests, etc. 

•  Memory dimensions 
•  Used to dimension dummy 

arguments 
•  Do not use for local arrays 

•  Tile dimensions 
•  Local loop ranges 
•  Local array dimensions 

•  Patch dimensions 
•  Start and end indices of local 

distributed memory subdomain 
•  Available from mediation layer 

(solve) and driver layer; not usually 
needed or used at model layer 



•  Architecture 

•  Directory structure 

•  Model Layer Interface 

•  Data Structures 

•  I/O 

WRF Software Overview 



Driver Layer Data Structures: Domain Objects 

•  Driver layer 
–  All data for a domain is an object, a domain derived data type (DDT) 
–  The domain DDTs are dynamically allocated/deallocated 
–  Linked together in a tree to represent nest hierarchy; root pointer is 

head_grid, defined in frame/module_domain.F 
–  Supports recursive depth-first traversal algorithm (frame/

module_integrate.F) 

head_grid 1 

4 

3 2 

•  Every Registry defined state, I1, and 

namelist variable is contained inside the 

DDT (locally known as a grid of  type 

domain), where each node in the tree 

represents a separate and complete 3D 

model domain/nest. 



Model Layer Data Structures: F77 

•  Model layer 

–  All data objects are scalars and arrays of simple types only 
–  Virtually all passed in through subroutine argument lists 

–  Non-decomposed arrays and “local to a module” storage 
are permitted with an initialization at the model start 



Mediation Layer Data Structures: Objects + F77 

•  Mediation layer 

–  One task of mediation layer is to dereference fields from DDTs 
–  Therefore, sees domain data in both forms, as DDT and as 

individual fields which are components of the DDTs 

•  The name of a data type and how it is referenced differs depending 

on the level of the architecture 



Data Structures 

•  WRF Data Taxonomy 
–  State data 
–  Intermediate data type 1 (I1) 
–  Intermediate data type 2 (I2) 
–  Heap storage (COMMON or Module data) 
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Defined in  
the physics 
subroutines 
on the 
stack 



Data Structures 

•  WRF Data Taxonomy 
–  State data 
–  Intermediate data type 1 (I1) 
–  Intermediate data type 2 (I2) 
–  Heap storage (COMMON or Module) 

Defined in the 
module top, 
typically 
look-up tables 
and routine 
constants, 
NO HORIZ 
DECOMPOSED 
DATA! 
Common 
blocks must 
not leave the 
Module. 



Mediation/Model Layer Data Structures:  
State Data 

•  Duration: Persist between start and stop of a domain 

•  Represented as fields in domain data structure 

–  Memory for state arrays are dynamically allocated, only big 
enough to hold the local subdomain’s (ie. patch’s) set of array 
elements  

–  Always memory dimensioned 

–  Declared in Registry using state keyword 

•  Only state arrays can be subject to I/O and Interprocessor 

communication 



Mediation/Model Layer Data Structures:  
I1 Data 

•  Persist for the duration of a single time step in solve 

•  Represented as fields in domain data structure 

–  Memory for I1 arrays are dynamically allocated, only big enough 
to hold the local subdomain’s (ie. patch’s) set of array 
elements  

–  Always memory dimensioned 

–  Declared in Registry using I1 keyword 

–  Typically tendency fields computed, used, and discarded at the 
end of every time step 

–  Are not used to impact I1 variables on a child domain 



Model Layer Data Structures:  
I2 Data 

•  Persist for the duration of a call of the physics routine 

•  NOT contained within the DDT structure (no declarations in the 

Registry) 

–  Memory for I2 arrays are dynamically allocated on subroutine 
entry, and automatically deallocated on exit  

–  Local, intermediate dummy variables required for physics 
computations 

–  If I2 arrays, then they are always tile dimensioned 

–  Not declared in the Registry, not communicated, no IO, not 
passed back to the solver, do not exist (retain their previous 
value) between successive physics calls 



Grid Representation in Arrays  

•  Increasing indices in WRF arrays run 

–  West to East   (X, or I-dimension) 
–  South to North (Y, or J-dimension) 

–  Bottom to Top (Z, or K-dimension) 

•  Storage order in WRF is IKJ (ARW) and IJK (NMM) but these are a 

WRF Model convention, not a restriction of the WRF Software 

Framework (provides cache coherency, but long vectors possible) 

•  Output data has grid ordering independent of the ordering inside the 

WRF model 



Grid Representation in Arrays 

•  The extent of the logical or domain dimensions is always the 

"staggered" grid dimension. That is, from the point of view of a non-

staggered dimension (also referred to as the ARW “mass points”), 

there is always an extra cell on the end of the domain dimension 

 



WRF Software Overview 

•  Architecture 

•  Directory structure 

•  Model Layer Interface 

•  Data Structures 

•  I/O 



WRF I/O 

•  Streams: pathways into and out of model 

•  Can be thought of as files, though that is a restriction 
–  History + auxiliary output streams (10 and 11 are reserved for 

nudging) 
–  Input + auxiliary input streams (10 and 11 are reserved for 

nudging) 
–  Restart, boundary, and a special DA in-out stream 
–  Currently, 24 total streams 
–  Use the large values and work down to stay away from “used” 



WRF I/O 

•  Attributes of streams 
–  Variable set 

• The set of WRF state variables that comprise one read or 
write on a stream 

• Defined for a stream at compile time in Registry 
–  Format 

• The format of the data outside the program (e.g. NetCDF), 
split 

• Specified for a stream at run time in the namelist 



WRF I/O 

•  Attributes of streams 
–  Additional namelist-controlled attributes of streams 

• Dataset name 
• Time interval between I/O operations on stream 
• Starting, ending times for I/O (specified as intervals from 

start of run) 



WRF I/O 

•  Attributes of streams 
–  Mandatory for stream to be used: 

• Time interval between I/O operations on stream 
• Format: io_form 



Outline - Review 

•  Introduction 
–  WRF started 1998, clean slate, Fortran + C 
–  Targeted for research and operations 

•  WRF Software Overview 
–  Hierarchical software layers 
–  Patches (MPI) and Tiles (OpenMP) 
–  Strict interfaces between layers 
–  Contract with developers 
–  I/O 
 


