Introduction to Hurricane WRF

Ligia Bernardet

NOAA - Earth System Research Laboratory CIRES - University of Colorado Developmental Testbed Center (DTC) Boulder

January 2014

Outline for Introduction to HWRF

- What is the Hurricane WRF ٠
- HWRF domains •
- HWRF as a configuration ٠
- Overview of components •
- Dynamic core •
- Moving nest •
- Initialization and data assimilation ٠
- Physics
- Ocean and coupler
- Post-processor and tracker
- User support •
- New in 2014 and future development •
 - HWRF for additional basins
 - Idealized capability

Developmental Testbed Center

What is the Hurricane WRF?

- A <u>US NWS operational model</u> used to provide numerical forecast guidance of track, intensity, and structure to the National Hurricane Center (NHC) for the North Atlantic and Eastern North Pacific basins
- A model that can be run for all Northern Hemisphere basins (coupled only in AL and EP) and that contains an idealized tropical cyclone capability
- A community supported code
- A model that is <u>always evolving</u> and improving: new operational implementations of HWRF occur every year in the beginning of the hurricane season
- This talk focuses on <u>2013 HWRF</u> (some info on plans for future provided)

Operational forecasts http://www.emc.ncep.noaa.gov/gc_wmb/vxt/

HWRF 2013 grid configuration

Initialized at 2011090300 — 12 (h) fcst valid at 2011090312 HWRF Domain Katia 12L

Atmospheric configuration
Horizontal grid spacing: 27, 9, 3 km
Inner nests move to follow storm
Domain location vary from run to run depending on storm location
42 vertical levels; top at 50 hPa

Oceanic configuration

- Horizontal grid spacing: 18 kmSize, location of grid depends of
- location of storm
- •Pacific
 - •1-D (column) model
 - •16 vertical levels
- •Atlantic
 - •3-D model
 - •23 vertical levels

Developmental Testbed Center

HWRF as a configuration

- The atmospheric component of HWRF uses the WRF model
- You have learned that WRF can be configured in many different ways
- HWRF uses a specific <u>configuration</u> of WRF
 - 3-domains with fixed sizes, method for placement, and grid spacing
 - Specific physics options
 - Specific timestep
 - Specific way of being initialized and postprocessed
 - Choices made to make best forecast under various constraints, mainly the operational time window
- There are other, non-operational, configurations of WRF that can be used for hurricane forecasting (not covered in this presentation)

Atmospheric Pre-Processing WPS and prep_hybrid

Data Assimilation Gridpoint Stat Interp (GSI)

Vortex Improvement HWRF Utilities

Developmental Testbed Center

HWRF dynamical core

- WRF has two dynamic cores: ARW and NMM (Non-Hydrostatic Mesoscale Model)
- The dynamic core encompasses the grid projection, grid staggering, system of equations for solving the equations of motion and thermodynamics, the numerical methods, and the nesting mechanisms
- This Tutorial only covered the ARW core. For NMM core, refer to
 - WRF-NMM website: <u>http://www.dtcenter.org/wrf-nmm/users/</u>
 - Presentation about WRF-NMM in 2012 WRF tutorial <u>http://www.mmm.ucar.edu/wrf/users/tutorial/201201/</u> <u>NMM_Dynamics_jan2012_tut_cnvsym.pptx.pdf</u>
 - Scientific Documentation for the NMM Solver <u>http://nldr.library.ucar.edu/collections/technotes/asset-000-000-845.pdf</u>

HWRF Moving Nests

Developmental Testbed Center

DTC

Inner nest follows the vortex

- Why nests: need high-resolution to resolve convection in hurricane but cannot afford it everywhere in domain
- 27-km parent domain does not move in a run
- 9-km domain moves following the 3-km domain, which follows storm center
- A vortex tracking algorithm is used to track the center of the storm and automatically move the nest
- The storm center is determined based on surface p, winds and 850/700 hPa geopotential/winds
- Straight forward for well-defined vortices
- Challenge: following disorganized TS and mesovortices, so tracking algorithm is sophisticated
- When nest moves, fields on leading edge must be interpolated down from parent and high-res terrain interpolated from high-res static file

Chantal, 7/8/2013

HWRF 2013 Initialization

Challenges

- Initializing a 3-km grid from a lower-resolution global model
 - Storm has wrong place, size and/or structure
 - Weak storm may dissipate in hurricane model

Solutions

• Use a vortex relocation and correction algorithm

HWRF Initialization

- Use global model (GDAS) for first guess
- Perform data assimilation on d01 (27-km) with GSI
- Remove vortex
- Insert a corrected vortex
 - Usually 6-h forecast from HWRF previous cycle
 - Vortex location, intensity, and structure corrected using observations

HWRF Data Assimilation (GSI 3DVar)

- 27-km: data assimilated in environment, not near storm
 - Radiosondes
 - Aircraft reports (AIREP/PIREP, RECCO, MDCRS-ACARS, TAMDAR, AMDAR)
 - Surface ship and buoy observations
 - Surface observations over land
 - Pibal winds
 - Wind profilers
 - VAD wind
 - Dropsondes

More information on Gridpoint Statistical Interpolator

• <u>http://www.dtcenter.org/com-GSI/users/</u>

Developmental Testbed Center-

HWRF Data Assimilation (GSI 3DVar)

• 3-km: perform DA to assimilate tail Doppler radar in storm core (if available)

30

25

20

15

10

5

0

-5

-10

-15

-20

-25

-30

HWRF 2013 operational physics

Physics	Parameterization	Option
Cumulus (only d01 & d02)	SAS deep and shallow convection	84
Microphysics	Ferrier for the tropics	85
Planetary Boundary Layer	GFS (modified Hong & Pan 1996)	3
Surface Layer	GFDL (modified)	88
Land Surface Model	GFDL slab model	88
Radiation	GFDL	98

Cumulus parameterization: only on d01 (27 km) and d02 (9 km). In d03 (3 km), microphysical parameterization explicitly resolves clouds.

HWRF Ocean Component

- Princeton Ocean Model for Tropical Cyclones (POM-TC)
- POM creates an accurate sea-surface-temperature (SST) field that <u>evolves</u> during the model run
- Moisture/heat fluxes from the ocean provide energy for hurricanes

HWRF Ocean Component

- When a storm is over cold ocean, it tends to weaken
- A storm can cause the SST to change due to turbulent mixing with deeper, cold water and due to upwelling
- Models that do not include SST evolution may have SSTs too warm and make storms too strong

Colder ocean leads to weaker storms

POM-TC idealized simulation of storm moving to left at 2.4 ms⁻¹: SST cools 6°C.

Ocean temperature Courtesy R. Yablonsky (URI)

Developmental Testbed Center

POM-TC Initialization

- Aims at creating an accurate meso-scale representation of SST distribution
- Employs
 - Salinity and SST climatology
 - SST from global model (GFS)
 - Altimetry information to locate warm and cold core rings and loop current
 - TC location and intensity

Gustav (2008): 75-m deep temperature from climatology (top) and after initialization procedure

NCEP coupler handles communication between WRF and POM-TC

HWRF Post-Processing

- Uses the Unified post-processor (UPP)
 - Computes derived variables
 - Interpolates the forecast
 - Horizontally from the WRF native grid to a lat-lon grid
 - Vertically from WRF native levels to isobaric levels
 - Generates output in GRIB format
- Domains processed separately, then combined
- Output is used for
 - Graphics
 - Running the external vortex tracker

Surface or isobaric fields

Vertical cross sections

12-h forecast TS Dalila (2013)

Simulated 37 GHz (TS Dalila)

Developmental Testbed Center

Simulated 89 GHz (TS Dalila)

12-h forecast TS Dalila (2013)

Developmental Testbed Center

DTC

Simulated IR

Developmental Testbed Center-

DTC

Simulated Water Vapor

GFDL External Vortex Tracker

- Extracts storm properties from the 3D forecast fields
 - Location, intensity, structure
- Outputs text file which can be used for plotting
- Can be used for HWRF or any other model, as long as proper files are provided in GRIB1 format

www.dtcenter.org/HurrWRF/users

Community support

ome	WRF For Hurricanes	Events
erms of Use	Welcome to the users page on WRF for Hurricanes. The Weather Research	No Upcoming Events
verview	and Forecasting (WRF) Model is designed to serve both operational forecasting and atmospheric research needs. It features two dynamic cores, multiple	
ser Support	physical parameterizations, a variational data assimilation system, ability to	Announcements
ownloads	couple with an ocean model, and a software architecture allowing for	• 18 January 2013
cumentation	computational parallelism and system extensibility. WRF is suitable for a broad spectrum of applications, including tropical storms.	HD12 Reference Configuraton: 2012 operational capability in community code
utorial Information		 4 January 2013
	Two robust configurations of WRF for tropical storms are the NOAA operational	HWRF 2012 FLUX testing and evaluation
sting and aluation	model <u>Hurricane WRF (HWRF)</u> and the National Center for Atmospheric Research (NCAR) <u>Advanced Research Hurricane WRF (AHW)</u> . In this website	
ditional Links	users can obtain codes, datasets, and information for running both HWRF and	11 December 2012
Joluonal Links	AHW.	HWRF V3.4a Online Tutorial Release
		• 29 August 2012
	The Developmental Testbed Center and the Mesoscale and Microscale	Release V3.4a of the HWRF system
	Meteorology (MMM) Division of NCAR support the use of all components of AHW and HWRF to the community, including the WRF atmospheric model	20 August 2012
	with its Preprocessing System (WPS), various vortex initialization procedures,	• 29 August 2012
	the Princeton Ocean Model for Tropical Cyclones (POM-TC), the Gridpoint	GFDL vortex tracker V3.4a community code Release
	Statistical Interpolation (GSI) three-dimensional variational data assimilation	
	system, the NOAA National Centers for Environmental Prediction (NCEP)	 6 April 2012
	coupler, the <u>NOAA Geophysical Fluid Dynamics Laboratory (GFDL)</u> Vortex Tracker, and various postprocessing packages and graphical utilities.	WRF V3.4 release
	nacker, and various postprocessing packages and grapmen activities.	24 Feburary 2012
	The effort to develop AHW has been a collaborative partnership, principally	HWRF V3.3a Online Tutorial Release
	among NCAR, the <u>Rosenstiel School at the University of Miami</u> , and the <u>Air</u>	
	Force Weather Agency (AFWA).	 29 December 2011
		HWRF 2011 Reference Configuration
	The effort to develop HWRF has been a collaborative partnership, principally	
	between NOAA (NCEP, AOML, and GFDL) and the University of Rhode Island.	Organizations contributing to this websit
		Developmental Testbed Center (DTC)
		NCAR's Mesoscale & Microscale Meteorology
		Division (MMM)
		Sponsors of WRF for Hurricanes
		NORR NORR
		NCAR

Code downloads, datasets, documentation, online tutorial, helpdesk

500 registered users

Yearly releases corresponding to operational model of the year

Stable, tested code

Current release: HWRF v3.5a (2013 operational)

Developmental Testbed Center

DTC

Idealized HWRF

Vertical x-section

Specifications

- Quiescent environment
- Prescribed T, Td sounding
- Specified vortex
 - intensity
 - size
- No ocean coupling

Useful research tool for testing physics and concepts

Developmental Testbed Center

DTC

Challenges and ongoing work for 2014 and beyond

- **Configuration:** larger grids with multiple moving nests, more vertical levels
- Ocean
 - Transition to MPIPOM-TC, later to HYCOM
- Data Assimilation and initialization
 - Use of all available datasets, including storm-scale observations and satellite
- **Ensemble**: for uncertainty estimation
- **Physics:** radiation, PBL, LSM, MP, convection, sea spray
- **Coupling**: wave model, storm surge, inundation

HWRF: A collaborative effort

- HWRF is developed under the coordination of NOAA/NWS/NCEP/EMC
- Besides EMC, many groups participate in HWRF development
- Many receive funding from NOAA Hurricane Forecast Improvement Project

Institution	Role
NOAA NWS Natl Hurricane Center	Main customer, evaluation, diagnostics
NOAA NWS/NCEP/EMC	Coordination and overall development
NOAA Research AOML/ESRL/GFDL	Nesting, physics, initialization, vortex tracking, diagnostics
NCAR	WRF model infrastructure
University of Rhode Island	Ocean component (POM-TC)
Developmental Testbed Center	Code management, community support, testing
Your institution!	You could be the next HWRF user and developer

Developmental Testbed Center

DTC (NOAA, Air Force, NSF, & NCAR)

The purpose of the DTC is to facilitate the interaction & transition of NWP technology between research & operations. DTC facilitates:

- R2O transition by performing testing & evaluation of new NWP innovations over an extended period
- O2R transition by making the operational NWP systems available to the research community & providing user support (WRF, HWRF etc.)
- Interaction between research & operations through the organization of community workshops on NWP & hosting <u>DTC Visitor Program</u>

Thank you!

- Questions?
 - http://www.dtcenter.org/HurrWRF/users
 - ligia.bernardet@noaa.gov
 - wrfhelp@ucar.edu

Dennis, 7/10/2005