WRF Registry and Examples
Part 2

John Michalakes, NCEP
Michael Duda, NCAR
Dave Gill, NCAR
WRF Software Architecture Working Group

Outline

* Registry Mechanics — Part 1

* Examples — Part 2

WRF Software Architecture

Driver
Config DM comm
. Solve — /O API
Inquiry OMP
. "é &b on Data formats, | -
Config WRF Tile-callable S e .5 p
. o wm arallel I/O
Module Subroutines =2 |8 z
HS A
]

Registry

Registry Data Base - Review

* Currently implemented as a text file: Registry/Registry.EM_COMMON

* Types of entry:

— Dimspec — Describes dimensions that are used to define arrays in the
model

— State — Describes state variables and arrays in the domain structure
— /71— Describes local variables and arrays in solve

— Typedef— Describes derived types that are subtypes of the domain
structure

Registry Data Base - Review

* Types of entry:
— Rconfig— Describes a configuration (e.g. namelist) variable or array
— Package — Describes attributes of a package (e.g. physics)
— Halo — Describes halo update interprocessor communications
— Period— Describes communications for periodic boundary updates
— Xpose — Describes communications for parallel matrix transposes
— Iinclude — Similar to a CPP #include file

Outline

* Registry Mechanics

* Examples

— 0) Add output without recompiling
— 1) Add a variable to the namelist
— 2) Add an array

— 3) Compute a diagnostic

— 4) Add a physics package

Example 0: Add output without recompiling

* Edit the namelist.input file, the time_control namelist record

iofields filename = "myoutfields.txt” (MAXDOM)
io form auxhist24 = 2 (choose an available stream)
auxhist24 interval = 10 (MAXDOM, every 10 minutes)

* Place the fields that you want in the named text fle myoutfields. txt
+:h:24:RAINC,RAINNC

* Where “+” means ADD this variable to the output stream, “h” is the history
stream, and “24” is the stream number

Example 0: Zap output without recompiling

* Edit the namelist.input file, the time_control namelist record

iofields filename = "myoutfields.txt”

* Place the fields that you want in the named text fle myoutfields. txt
-:h:0:W,PB,P

* Where “~" means REMOVE this variable from the output stream, “h” is the history
stream, and “0" is the stream number (standard WRF history file)

Example 1: Add a variable to the namelist

* Use the examples for the rconfig section of the Registry

* Find a namelist variable similar to what you want
— Integer vs real vs logical vs character
— Single value vs value per domain
— Select appropriate namelist record

* |nsert your mods in all appropriate Registry files

Example 1: Add a variable to the namelist

* Remember that ALL Registry changes require that the WRF code be
cleaned and rebuilt
./clean -a
./configure

./compile em real

Example 1: Add a variable to the namelist

* Adding a variable to the namelist requires the inclusion of a new line
in the Registry file:

rconfig integer my_option_1 namelist,time_control 10 - "my_option_1" "test namelist option’
rconfig integer my_option_2 namelist,time_control max_domains O

* Accessing the variable is through an automatically generated function:

USE module_configure
INTEGER :: my_option_1 , my_option_2

CALL nl_get_my_option_1(1, my_option_1)
CALL nl_set_my_option_2(grid%id, my_option_2)

Example 1: Add a variable to the namelist

* You also have access to the namelist variables from the grid structure ...

SUBROUTINE foo (grid , ...)

USE module_domain
TYPE(domain) :: grid

print *,grid%my_option_1

Example 1: Add a variable to the namelist

* ... and you also have access to the namelist variables from config_flags

SUBROUTINE foo2 (config_flags , ...)

USE module_configure
TYPE(grid_config_rec_type) :: config_flags

print *,config_flags%my_option_2

Example 1: Add a variable to the namelist

* What your variable looks like in the namelist.input file

&time_control

run_days =0,

run_hours =0,

run_minutes = 40,

run_seconds = 0,

start year = 2006, 2006, 2006,
my option 1 = 17

my option 2 =1, 2, 3

Examples

1) Add a variable to the namelist

2) Add an array to solver, and 10 stream

)

)
3) Compute a diagnostic
4) Add a physics package

Example 2: Add an Array

* Adding a state array to the solver, requires adding a single line in the
Registry

* Use the previous Registry instructions for a state or |1 variable

Example 2: Add an Array

* Select a variable similar to one that you would like to add
— 1d, 2d, or 3d
— Staggered (X, Y, Z, or not “-", do not leave blank)
— Associated with a package
— Part of a 4d array
— Input (012), output, restart
— Nesting, lateral forcing, feedback

Example 2: Add an Array

* Copy the “similar” field’s line and make a few edits

 Remember, no Registry change takes effect until a “clean -a" and
rebuild

state

state

state

state

state

real h diabatic ikj misc 1 - r

"h_diabatic" "PREVIOUS TIMESTEP CONDENSATIONAL HEATING"
real msft ij misc 1 - i012rhdu=(copy_ fcnm)
"MAPFAC M" "Map scale factor on mass grid"

real ht ij misc 1 - i012rhdus

"HGT" "Terrain Height"

real ht_input ij misc 1 - -

"HGT _INPUT" "Terrain Height from FG Input File"

real TSK_SAVE ij misc 1 - -

"TSK_SAVE" "SURFACE SKIN TEMPERATURE" "K"

Example 2: Add an Array

* Aways modify Registry.core_name_COMMON or Registry.core _name,
where core_name might be EM

state real h_diabatic ikj misc 1 - r
"h_diabatic" "PREVIOUS TIMESTEP CONDENSATIONAL HEATING"
state real msft ij misc 1 - i012rhdu=(copy_ fcnm)
"MAPFAC M" "Map scale factor on mass grid"
state real ht ij misc 1 - i012rhdus
"HGT" "Terrain Height"
state real ht _input ij misc 1 - -
"HGT _INPUT" "Terrain Height from FG Input File"
state real TSK_SAVE ij misc 1 - -

"TSK_SAVE" "SURFACE SKIN TEMPERATURE" "K"

Example 2: Add an Array

* Add a new 3D array that is sum of all moisture species, called
all_moist, in the Registry.EM_COMMON

— Type: real
— Dimensions: 3D and ikj ordering, not staggered
— Supposed to be output only: h

— Name in netCDF file: ALL_MOIST

state real all moist ikj
dyn _em 1 - h

"ALL MOIST"

"sum of all of moisture species"”
"kg kg-1"

~ 7 7

Example 2: Add an Array

Registry state variables become part of the derived data structure
usually called grid inside of the WRF model.

WRF model top => integrate > solve_interface > solve
Each step, the grid construct is carried along for the ride

No source changes for new output variables required until below the
solver routine

Example 2: Add an Array
* Top of solve_em.F
* grid is passed in
* No need to declare any new variables, such as all_moist

!WRF :MEDIATION LAYER:SOLVER
SUBROUTINE solve em (grid , &

config flags , &

Example 2: Add an Array
* The solve routine calls first_rk_step_part1
* grid is passed in
* No need to pass any variables, such as all_moist

!WRF :MEDIATION LAYER:SOLVER
CALL first rk step partl(grid , &

config flags , &

Example 2: Add an Array
* Top of first_rk_step_part1.F
* grid is passed in
* No need to declare any new variables, such as all_moist

!WRF :MEDIATION LAYER:SOLVER
MODULE module first rk step partl
CONTAINS
SUBROUTINE first rk step partl (grid , &

config flags , &

Example 2: Add an Array

* Infirst_rk_step_part1, add the new array to the call for the
microphysics driver

» Syntax for variable=local_variable is an association convenience
* All state arrays are contained within grid, and must be de-referenced

CALL microphysics driver (&
OV_CURR=moist (ims,kms,jms,P QV),
OC CURR=moist (ims,kms,jms,P QC),
OR CURR=moist (ims,kms,jms,P OR),
OI CURR=moist (ims,kms,jms,P OI),
OS CURR=moist (ims,kms,jms,P QS),
OG _CURR=moist (ims,kms,jms,P QG),
OH CURR=moist (ims,kms,jms,P QH),
all moist=grid%all moist -

"I "I - B B "~)

Example 2: Add an Array

* After the array is re-referenced from grid and we are inside the
microphysics_driver routine, we need to

— Pass the variable through the argument list
— Declare our passed in 3D array

,all moist &

REAL, DIMENSION(ims:ime ,kms:kme ,jms:jme), &
INTENT(OUT) :: all moist

Example 2: Add an Array

* After the array is re-referenced from grid and we are inside the
microphysics_driver routine, we need to

— Lero out the array at each time step

! Zero out moisture sum.

DO j jts,MIN(jde-1,jte)

DO k = kts,bkte

DO 1 = its,MIN(ide-1,ite)
all moist(i,k,j) = 0.0

END DO

END DO

END DO

Example 2: Add an Array

* After the array is re-referenced from grid and we are inside the
microphysics_driver routine, we need to

— At the end of the routine, for each of the moist species that
exists, add that component to all_moist

DO j = jts,MIN(jde-1,jte)
DO k = kts,kte
IF (£ OV) THEN
DO i = its,MIN(ide-1,ite)

all moist(i,k,j) = all moist(i,k,j) + &
qv_curr(i,k,j)
END DO
END IF

Examples

1) Add a variable to the namelist

2) Add an array

)

)
3) Compute a diagnostic
4) Add a physics package

Example 3: Compute a Diagnostic

* Problem: Output global average and global maximum and lat/lon
location of maximum for 10 meter wind speed in WRF

* Steps:
— Modify solve to compute wind-speed and then compute the local
sum and maxima at the end of each time step

— Use reduction operations built-in to WRF software to compute the
global qualities

— QOutput these on one process (process zero, the “monitor”
process)

Example 3: Compute a Diagnostic

* Compute local sum and local max and the local indices of the local maximum

--- File: dyn em/solve em.F (near the end) ---

! Compute local maximum and sum of 10m wind-speed

sum ws = 0.

max ws = 0.

DO j = Jjps, Jpe

DO i1 = ips, ipe
wind vel = sqrt(grid%ulO(i,j)**2+ grid3vl0(i,j)**2)
IF (wind vel .GT. max ws) THEN
max ws = wind vel

idex = 1
jdex = j
ENDIF
sum ws = sum ws + wind vel
ENDDO

ENDDO

Example 3: Compute a Diagnostic

* Compute global sum, global max, and indices of the global max (WRF
intrinsics)
! Compute global sum
sum ws = wrf dm sum real (sum ws)

! Compute global maximum and associated i,j point
CALL wrf dm maxval real (max ws, idex, jdex)

Example 3: Compute a Diagnostic

* On the process that contains the maximum value, obtain the latitude and
longitude of that point; on other processes set to an artificially low value.

* The use parallel reduction to store that result on every process

IF (ips
JpPs

glat =
glon =

ELSE

glat =

glon
ENDIF

.LE. idex .AND. idex .LE. ipe .AND. &
.LE. jdex .AND. jdex .LE. jpe) THEN

grid%xlat (idex, jdex)
grid%$xlong (idex, jdex)

-999909.
-99999.

! Compute global maximum to find glat and glon
glat = wrf dm max real (glat)
glon = wrf dm max real (glon)

Example 3: Compute a Diagnostic

* Qutput the value on process zero, the “monitor”

! Print out the result on the monitor process
IF (wrf dm on monitor()) THEN

WRITE (outstring,*) 'Avg. ', sum ws/((ide-ids+1l) * (jde-jds+l))
CALL wrf message (TRIM(outstring))
WRITE (outstring, *) 'Max. ', max ws,' Lat. ',6glat,é&

' Lon. ',glon

CALL wrf message (TRIM(outstring))
ENDIF

Example 3: Compute a Diagnostic
* Qutput from process zero of a multi-process run

-—— Output file: rsl.out.0000 ---

Avg. 5.159380
Max. 15.09370 Lat. 37.25022 Lon. -67.44571

Timing for main: time 2000-01-24 12:03:00 on domain 1: 8.96500 elapsed secs.
Avg. 5.166167
Max. 14.97418 Lat. 37.25022 Lon. -67.44571

Timing for main: time 2000-01-24 12:06:00 on domain 1: 4.89460 elapsed secs.
Avg. 5.205693
Max. 14.92687 Lat. 37.25022 Lon. -67.44571

Timing for main: time 2000-01-24 12:09:00 on domain 1: 4.83500 elapsed secs.

Examples

1) Add a variable to the namelist

2) Add an array

)

)
3) Compute a diagnostic
4) Add a physics package

Example 4: Input periodic SSTs

Add a new physics package with time varying input source to the
model

This is how we could supply a time varying value to the model for a
field that is traditionally fixed

Example is sea surface temperature

Example 4: Input periodic SSTs

Problem: adapt WRF to input a time-varying lower boundary
condition, e.g. SSTs, from an input file for a new surface scheme

Given: Input file in WRF |/O format containing 12-hourly SST’s

Modify WRF model to read these into a new state array and make
available to WRF surface physics

Example 4: Input periodic SSTs

* Steps

— Add a new state variable and definition of a new surface layer
package (that will use the variable) to the Registry

— Add to variable stream for an unused Auxiliary Input stream
— Adapt physics interface to pass new state variable to physics
— Setup namelist to input the file at desired interval

Example 4: Input periodic SSTs

* Add a new state variable to Registry/Registry.EM_COMMON and put it
in the variable set for input on Auxiliary Input Stream #4

type symbol dims use tl stag io

dname description units
state real nsst ij misc 1

- idh "NEW_SST" "Time Varying SST" "K“

* Also added to History and Restart

* Result;

— 2-D variable named grid%nsst defined and available in
solve_em

— Dimensions: ims:ime, jms:jme

— Input and output on the Auxinput #4 stream will include the
variable under the name NEW_SST

Example 4: Input periodic SSTs

Pass new state variable to surface physics

--- File: dyn _em/module first rk step partl.F ---

CALL surface driver (

! Optional

,QV_CURR=moist (ims,kms,jms,P QV), F QV=F QV
,QCZCURR=moist(ims,kms,jms,P_QC), F QOC=F QC
QR CURR=moist (ims,kms,jms,P QR), F QR=F QR
,QI CURR=moist (ims,kms,jms,P QI), F QI=F QI
,QS CURR=moist (ims,kms,jms,P QS), F QS=F QS
,OG_CURR=moist (jms,kms,jms,P_QG), F_QG=F QG

,NS§T=grid%nsst

2 R R 2R R R R R R

,CAPG=grid%capg, EMISS=grid%emiss, HOL=hol, MOL=grid3¥mol
,RAINBL=grid%rainbl, SR=grid%em sr
,RAINNCV=grid%rainncv, REGIME=regime, T2=grid%t2, THC=grid%thc

&
&
&
&
&
&
&
&
&
&

new

Example 4: Input periodic SSTs

* Add new variable nsst to Physics Driver in Mediation Layer

--- File: phys/module surface driver.F ---
SUBROUTINE surface driver (&

! Other optionals (more or less em specific)

& ,hsst &

& ,capg,emiss, hol,mol &

& ,rainncv,rainbl,regime, t2, thc &

& ,dsg,qvg,qcg,soiltl, tsnav &

& ,smfr3d, keepfr3dflag &
))
REAL, DIMENSION(ims:ime, jms:jme) ,|OPTIONAL,| INTENT (INOUT) :: nsst

* By making this an “Optional” argument, we preserve the driver’s
compatibility with other cores and with versions of WRF where this
variable hasn’t been added.

Example 4: Input periodic SSTs

* Add call to Model-Layer subroutine for new physics package to Surface Driver

--- File: phys/module_surface driver ---

!SOMP PARALLEL DO &
1$OMP PRIVATE (ij, i, j, k)
DO ij = 1 , num _tiles
sfclay select: SELECT CASE (sf sfclay physics)

CASE (SFCLAYSCHEME)

CASE (NEWSFCSCHEME) ! <- This is defined by the Registry “package” entry
IF (PRESENT (nsst)) THEN
CALL NEWSFCCHEME (&

nsst, &
ids,ide, jds,jde, kds,6kde, &
ims,ime, jms,jme, kms,6 kme, &
i start(ij),i_end(i]j), j_start(ij),j_end(ij), kts, kte)

ELSE

CALL wrf error fatal('Missing argument for NEWSCHEME in surface driver')
ENDIF

END SELECT sfclay select
ENDDO
!SOMP END PARALLEL DO

* Note the PRESENT test to make sure new optional variable nsst is available

Example 4: Input periodic SSTs

* Add definition for new physics package NEWSCHEME as setting 4 for
namelist variable sf_sfclay_physics

rconfig integer sf sfclay physics namelist,physics max_domains 0

package sfclayscheme sf sfclay physics==1
package myjsfcscheme sf sfclay physics==2
package gfssfcscheme sf sfclay physics==3
package newsfcscheme sf sfclay physics==4

* This creates a defined constant NEWSFCSCHEME and represents
selection of the new scheme when the namelist variable

sf_sfclay_physics is set to ‘4’ in the namelist.input file

 clean -a and recompile so code and Registry changes take effect

Example 4: Input periodic SSTs

* Setup namelist to input SSTs from the file at desired interval

-—-— File: namelist.input ---
&time control

auxinput4 inname
auxinput4 interval h

"sst_ input"
12

/. ..

&physics
sf sfclay physics = 4, 4, 4

/

* Run code with sst_input file in run-directory

Examples

1) Add a variable to the namelist

2) Add an array

4) Add a physics package

)
)
3) Compute a diagnostic
)
)

5) Simple Tracer example

Tracer Example

Modify Registry for new fields.

— Use the “tracer” array with a new 3D component.

— Use existing NML option, with a new value.

Initialize data in real.
— Identify (i,j) location
— Spread influence vertically

Set values in solver.

— “Release” each time step

JAPAN RUSSIA
T RYUSHU HOKKAIDO
1 eDaisetsuzan
\rﬁﬂ' Tokara- Sapporog National
" Son shoto Park
Amami- : _
shotd Sea of Japan .ADmOﬂ
(East Sea)
W“M.O.ijnawa
City
Miyako-shotd Niislh OSendai
Yacyama-shotd Noto-Hanto
Peninsula 1 C PACIFIC
SOUTH ' JAPAN TR
KOREA Matsue Mthq &goxvo -
Hirosh - o ‘okohama
roshima JYO00 NSeoya A
— a B~
KYOUSHO 88 SmiKoKU
Kirishima e @ 0 —300 km
National >eagaia Oemmm—————— 240 miles|
See Inset Park

Tracer Example

* Modify Registry for new fields.
* Registry/Registry.EM add our new field “PLUME” as part of “TRACER” array.

New tracer for example
state real plume ikjftb tracer \
1 - irhusdf=(bdy interp:dt) \
"PLUME" '"Fukushima Tracer" " "
4D arrays need an associated package
package tracer test3 tracer opt== -\

tracer:plume

Tracer Example

Modify the real and WRF programs to initialize and continuously re-supply the “PLUME” array
dyn_em/module_initialize_real.F (real)

dyn_em/solve_em.F (WRF)

Add in the Fukushima initial venting.

IF ((its .LE. 50) .AND. (ite .GE. 50) .AND. &
(jts .LE. 50) .AND. (jte .GE. 50)) THEN
tracer(50,1:5,50,P plume) = 1.
END IF

Tracer Example

* Modify the test/em_real/namelist.input file

* Include the new settings for the tracer option required from the Registry file

&dynamics

tracer opt = 3, 3, 3,

Fukushima 11-14 Mar 2011, 30-km, 100x100 (-}

130°E 135°E 140°E 145°E 150°E
Fuleushima 11-14 Mar 2011, 30-km, 100x100 {-)

