Introduction to Hurricane WRF

Mrinal Biswas

National Center for Atmospheric Research

Developmental Testbed Center (DTC)

Boulder

WRFTutorial January 2015

Outline for Introduction to HWRF

- What is the Hurricane WRF
- HWRF domains
- Overview of components
- Dynamic core
- Moving nest
- Initialization and data assimilation
- Physics
- Ocean and coupler
- Post-processor and tracker
- User support
- New in 2015 and future development

HWRF PROD IRENE 091 SFC PSR (hPa) AND 10 M WIND (kts) INIT 2011082318Z for 30 h FCST VALID 2011082500Z

What is the Hurricane WRF?

- A <u>US NWS operational model</u> used to provide numerical forecast guidance of track, intensity, and structure to the National Hurricane Center (NHC) for the North Atlantic and Eastern North Pacific basins
- A model that can be run for all Northern and Southern Hemisphere basins (coupled only in AL and EP) and that contains an idealized tropical cyclone capability
- A community supported code

Developmental Testbed Center

- A model that is <u>always evolving</u> and improving: new operational implementations of HWRF occur every year in the beginning of the hurricane season
- This talk focuses on <u>2014 HWRF (some info on plans for future provided)</u>

Operational forecasts

http://www.emc.ncep.noaa.gov/gc_wmb/vxt/

HWRF 2014 grid configuration

Developmental Testbed Center

Atmospheric configuration
Horizontal grid spacing: 27, 9, 3 km
Inner nests move to follow storm
Domain location vary from run to run depending on storm location
61 vertical levels; top at 2 hPa

Oceanic configuration
Horizontal grid spacing: 1/12 deg
(~9km)
Logation of grid depends of logation of

•Location of grid depends of location of storm

- •Atlantic and Pacific
 - •3-D model
 - •23 vertical levels

HWRF v3.6a Overview

HWRF dynamical core

- WRF has two dynamic cores: ARW and NMM (Non-Hydrostatic Mesoscale Model)
- The dynamic core encompasses the grid projection, grid staggering, system of equations for solving the equations of motion and thermodynamics, the numerical methods, and the nesting mechanisms
- This Tutorial only covered the ARW core. For NMM core, refer to
 - WRF-NMM website: <u>http://www.dtcenter.org/wrf-nmm/users/</u>
 - Presentation about WRF-NMM in 2012 WRF tutorial <u>http://www.mmm.ucar.edu/wrf/users/tutorial/201201/</u> <u>NMM_Dynamics_jan2012_tut_cnvsym.pptx.pdf</u>
 - Scientific Documentation for the NMM Solver <u>http://opensky.library.ucar.edu/collections/TECH-NOTE-000-000-845</u>

HWRF Moving Nests

Developmental Testbed Center-

DTC

Inner nest follows the vortex

- Why nests: need high-resolution to resolve convection in hurricane but cannot afford it everywhere in domain
- 27-km parent domain does not move during a run
- 9-km domain moves following the 3-km domain, which follows storm center
- A vortex tracking algorithm is used to track the center of the storm and automatically move the nest
- The storm center is determined based on surface p, winds and 850/700 hPa geopotential/winds
- Straight forward for well-defined vortices
- Challenge: following disorganized TS and mesovortices, so tracking algorithm is sophisticated

Chantal, 7/8/2013

HWRF 2014 Initialization

Challenges

- Initializing a 3-km grid from a lower-resolution global model
 - Storm has wrong place, size and/or structure
 - Weak storm may dissipate in hurricane model

Solutions

- Use a vortex relocation and correction algorithm
- Use current global GFS for first guess for parent domain and 6-hr GDAS forecast from previous cycle for nests
- Remove vortex from GDAS forecasts
- Insert a corrected vortex
 - Usually 6-h forecast from HWRF previous cycle
 - Vortex location, intensity, and structure corrected using observations

Developmental Testbed Center-

(Courtesy from Jeff Whitaker, GSI Tutorial, 2012)

Developmental Testbed Center

HWRF 2014 operational physics

Physics	Parameterization	Option
Cumulus (only d01 & d02)	SAS deep and shallow convection	84
Microphysics	Ferrier for the tropics	85
Planetary Boundary Layer	GFS (modified Hong & Pan 1996)	3
Surface Layer	GFDL (modified)	88
Land Surface Model	GFDL slab model	88
Radiation	GFDL	98

Cumulus parameterization: only on d01 (27 km) and d02 (9 km).

In d03 (3 km), microphysical parameterization explicitly resolves clouds.

HWRF Ocean Component

- Message Passing Interface Princeton Ocean Model for Tropical Cyclones (MPIPOM-TC)
- MPIPOM-TC creates an accurate sea-surface-temperature (SST) field that <u>evolves</u> during the model run
- Moisture/heat fluxes from the ocean provide energy for hurricanes

Warmer ocean leads to more intense storms

HWRF Post-Processing

- Uses the Unified post-processor (UPP)
 - Computes derived variables
 - Interpolates the forecast
 - Horizontally from the WRF native grid to a lat-lon grid
 - Vertically from WRF native levels to isobaric levels
 - Generates output in GRIB format
- Domains processed separately, then combined
- Output is used for
 - Graphics
 - Running the external vortex tracker

Surface or isobaric fields

170,105

159.706

70W 60W

Developmental Testbed Center-

205

160w 150w 140w 130w 120w 110w 100w 90w 80w

GFDL External Vortex Tracker

- Extracts storm properties from the 3D forecast fields
 - Location, intensity, structure
- Outputs text file which can be used for plotting
- Can be used for HWRF or any other model, as long as proper files are provided in GRIB1 format

Challenges and ongoing work for 2015 and beyond

- Increased resolution: Going to 18/6/2 km, use of T1534 GFS
- **Global application:** Coupling of MPIPOM-TC for all ocean basins
- Ocean: HYCOM
- **Ensemble**: Data assimilation to include 40 member HWRF ensemble for inner-core DA
- **Physics:** radiation (RRTMG), PBL, NOAH LSM, MP (Ferrier-Aligo), convection, sea spray
- **Coupling**: wave model, storm surge, inundation
- **Configuration:** larger grids with multiple

moving nests

www.dtcenter.org/HurrWRF/users

Community support

Home	WRF For Hurricanes	Events
erms of Use	Welcome to the users page on WRF for Hurricanes. The Weather Research	No Upcoming Events
Overview	and Forecasting (WRF) Model is designed to serve both operational forecasting and atmospheric research needs. It features two dynamic cores, multiple	
lser Support 🛛 📓	physical parameterizations, a variational data assimilation system, ability to	Announcements
ownloads 🔊	couple with an ocean model, and a software architecture allowing for	18 January 2013
ocumentation	computational parallelism and system extensibility. WRF is suitable for a broad spectrum of applications, including tropical storms.	operational capability in community code
utorial Information		• 4 January 2013
	Two robust configurations of WRF for tropical storms are the NOAA operational	HWRF 2012 FLUX testing and evaluation
esting and valuation	model <u>Hurricane WRF (HWRF)</u> and the National Center for Atmospheric Research (NCAR) Advanced Research Hurricane WRF (AHW). In this website	
dditional Links	users can obtain codes, datasets, and information for running both HWRF and	11 December 2012
	AHW.	HWRF V3.4a Online Tutorial Release
		• 29 August 2012
	The Developmental Testbed Center and the Mesoscale and Microscale	Release V3.4a of the HWRF system
	<u>Meteorology (MMM)</u> Division of NCAR support the use of all components of AHW and HWRE to the community, including the WRE atmospheric model	• 29 August 2012
	with its Preprocessing System (WPS), various vortex initialization procedures,	GEDL vortex tracker V3 4a community code
	the Princeton Ocean Model for Tropical Cyclones (POM-TC), the Gridpoint	Release
	Statistical Interpolation (GSI) three-dimensional variational data assimilation	- C Arril 2012
	coupler, the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) Vortex	• 6 April 2012
	Tracker, and various postprocessing packages and graphical utilities.	WRF V3.4 release
		 24 Feburary 2012
	The effort to develop AHW has been a collaborative partnership, principally	HWRF V3.3a Online Tutorial Release
	among NCAR, the <u>Rosenstiel School at the University of Miami</u> , and the <u>Air</u> Force Weather Agency (AFWA)	• 29 December 2011
	Torce weather Agency (ALWA).	HWRF 2011 Reference Configuration
	The effort to develop HWRF has been a collaborative partnership, principally	
	between NOAA (NCEP, AOML, and GFDL) and the University of Rhode Island.	Organizations contributing to this webs
		Developmental Testbed Center (DTC)
		NCAR's Mesoscale & Microscale Meteorology
		Division (MMM)
		Sponsors of WRF for Hurricanes
		and the address of the
		NORH A

Code downloads, datasets, documentation, online tutorial, helpdesk

800 registered users

Yearly releases corresponding to operational model of the year

Stable, tested code

Developmental Testbed Center-

Current release: HWRF v3.6a (2014 operational)

HWRF: A collaborative effort

- HWRF is developed under the coordination of NOAA/NWS/NCEP/EMC
- Besides EMC, many groups participate in HWRF development
- Many receive funding from NOAA Hurricane Forecast Improvement Project

evaluation, diagnostics
nd overall development
s, initialization, vortex tracking,
rastructure
ent (POM-TC)
ent, community support, testing
the next HWRF user and
SS E

Developmental Testbed Center

DTC (NOAA, Air Force, NSF, & NCAR)

The purpose of the DTC is to facilitate the interaction & transition of NWP technology between research & operations. DTC facilitates:

- R2O transition by performing testing & evaluation of new NWP innovations over an extended period and moving them for possible operational implmentation
- O2R transition by making the operational NWP systems available to the research community & providing user support (WRF, HWRF etc.)
- Interaction between research & operations through the organization of community workshops on NWP & hosting <u>DTC Visitor Program</u>

Developmental Testbed Center

Thank you!

- Questions?
 - http://www.dtcenter.org/HurrWRF/users
 - <u>biswas@ucar.edu</u>
 - wrfhelp@ucar.edu

DTC Developmental Testbed Center-