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Purpose & Outline

Purpose: Provide a brief but comprehensive review of the WRF-
Hydro system and its current componentry

Outline:
1. WRF-Hydro System Description

2. Support services
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Motivating Research Questions:

iy

How do horizontal routing processes impact the partitioning of
water and energy at the land-atmosphere interface?

How does organization of fine-scale surface heterogeneity
impact boundary layer exchange and mesoscale circulation
features?

How do spatial gradients and variability in meteorological
forcing impact terrestrial water dynamics?

How will eco-hydrologic processes evolve under various
disturbance mechanisms such as landscape and climatic change?

What is the ‘coupled-system’ predictability of extreme
hydrological events?



Overarching WRF-Hydro Development Objectives

A community-based, supported coupling architecture designed to provide:

1. An extensible multi-scale & multi-physics land-atmosphere modeling capability for
conservative, coupled and uncoupled assimilation & prediction of major water

cycle components such as precipitation, soil moisture, snowpack, groundwater,
streamflow, inundation

2. ‘Accurate’ and ‘reliable’ streamflow prediction across scales (from O-order
headwater catchments to continental river basins & minutes to seasons)

3. A robust framework for land-atmosphere coupling studies
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WRF-Hydro Operates in 2 Major Modes: Coupled or
Uncoupled to an Atmospheric Model

One-way ( uncoupled ) €2

Met. Forcing

/ |

Uncoupled mode critical for
spinup, data assimilation and
model calibration

Coupled mode critical for land-
atmosphere coupling research
and long-term predictions

Model forcing and feedback
components mediated by WREF-
Hydro:

e Forcings: T, Press, Precip., wind,
radiation, humidity, BGC-scalars

* Feedbacks: Sensible, latent,
momentum, radiation, BGC-scalars



Model Componentry
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Gridded .
Meteorological Analyses/Re-analyses/ Weath.er .and Climate
Nowcasts/Forecasts Prediction Models

One-way coupling Two-way coupling

WRF-Hydro Driver and
Data Assimilation Components
Conservative regridding and downscaling tools

Overland & Water

Column Subsurface
Channel Management

SL‘::d RFIO‘.N Flow Modules
urface outing Routing

Modules Modules Modules

System

Integrated Hydrological Models
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WRF-Hydro
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WRF-Hydro v2.0 Physics Components:
* Multi-scale aggregation/disaggregation:

Wlm Terrai 1 m b er_rlzﬂnn . Current ‘Regridding’
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WRF-Hydro v2.0 Physics Components:

Column Land Models:
 WRF-coupled and offline Noah and Noah-MP now supported as of April, 2014
 CLM coupling supported through CESM architecture (in progress under DOE

project)

 NOAA SAC-HTET (in progress under OHD project)

iogg

Precipitation

Unified Noah/OSU Land Surface Model

Basic Soil Water and Runoff Terms

n Evaposaton Turbulent Heat Flux to/from

Snowpack/So1l/Plant Canopy
E

A

\_Surface Runoff

Grawitational Flow
B o



WRF-Hydro v2.0 Physics Components:

* Surface routing: Explicit overland flow * Pixel-to-pixel routing

Infiltration excess e Steepest descent (1d) or 2d
ilable for hydraulic routi e
LT e » Diffusive wave/backwater
permitting

e Kinematic wave (in progress)
e Explicit solution

 Ponded water (surface
head) can be fully-
interactive with land
model

* Sub-grid variability of
ponded water on routing
grid is preserved between
land model calls
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Adapted from:
Julian et al, 1995 — CASC2D, GSSHA
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WRF-Hydro v2.0 Physics Components:

e Subsurface routing:

Surface Exfiltration from
Saturated Soil Columns

Lateral Flow from
Saturated Soil Layers

Adapted from:
Wigmosta et. al, 1994

Quasi steady-state, Boussinesq
saturated flow model

Exfiltration from fully-saturated soil
columns to overland flow

Anisotropy in vertical and horizontal
Ksat

No ‘perched’ flow
Soil depth is uniform

Critical initialization value: water table
depth



Ammer domain, 100 m
WRF-Hydro-Static

WRF-Hydro v2.0 Physics Components: - i

» Subsurface routing: | fj
— 2d groundwater model - - Y i

— Coupled to bottom of LSM
soil column through Darcy-
flux parameterization

— Independent hydraulic
characteristics vs. soil
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column TP
— Full coupling to gridded e
Vad o p
channel model through o 14 A
assumed channel depth and ” v -\
channel head IR, 7 S N
S 1 " - \.-'Q;' iy .~
— Detailed representation of e
wetlands Surface ponded water from coupled groundwater in

WRF-Hydro B. Fersch, KIT, Germany
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WRF-Hydro v2.0 Physics Components:

* Simple routing: simple catchment

aggregated channel inflow (very fast) -

-4"'1.—'::: ™
Adapted from:
RAPID , David et al., 2011

Collects ‘infiltration excess’
and ‘soil drainage’ from pre-
defined basins and dumps
directly into channel network

Most applicable for small
catchment networks (e.g.
NHDPlus, HUC10+, etc.)

Supports lumped/catchment
hydrological model
formulations
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WRF-Hydro v2.0 Physics Components:

* Channel routing: Gridded vs. Reach-basec

Solution Methods:
— Gridded diffusive wave (slower)
— ROUTPIX, Kinematic (in progress under OHD project)

— Reach-based Muskingam methods, custom & RAPID
(NHDPlusV2).....(very fast)

Parameters:

— A priori function of Strahler order or fully gridded (v2.1)

— Trapezoidal channel (bottom width, side slope)
— Channel roughness

/

120 PUD /
|auueyD

= One-way ov. flow into channel
= No sub-surface losses

= 'Infinite’ channel depth

= Surface water on channel {no overbank flow)

grid cells get deposited in

channel as ‘lateral inflow’ ﬂ 7 \:

2
2\ 3
g <
O rlow




WRF-Hydro v2.0 Physics Components:

e Optional lake/reservoir model:

— Level-pool routing (i.e. no lagging of wave or gradient in pool elevation)
— Inflows via channel and overland flow
— Discharge via orifice and spillway to channel network

— Parameters: lake and orifice elevations, max. pool elevation, spillway and
orifice characteristics; specified via parameter table

— Active management can be added via an operations table
— Presently no seepage or evaporative loss functions

Y
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Moving beyond ‘natural flows’ towards explicit
accounting of infrastructure

Including the control effects of,
and impacts on infrastructure:

— Dams and reservoirs (passive and
actively managed)

— Overbank storage and attenuation

— Diversion structures, headgates

— Levees, dikes

— Failures of infrastructure (exceeding
design capacity)

* Needs Infrastructure & Operations
Data Standards
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Reservoir and Gross Reservoirs. Colorado Front
Range
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HydroDART Overview

Start
Have Have
> initial M Have Vﬁﬁ ensemble Ye&ﬁ Have No
ensemble? observations?
states? streamflow?

Long-term spinup

Perturb initial state Equilibrate Assimilate

Assimilation States
(Restart Files)

namelist.hrldas

WRF Hydro States I perturb.namelist I I hydro.namelist I input.nml I
LSM States
Noah DART
NoahMP Perturb States WRF Hydro
Hydro States Observa-
High-res soil moisture <l | | No tions
Channel flow and stage at model
Groundwater level r time?
Forcings
= Yes
“AssimOnly” States
Model parameters
Forcing adjustments < Filter
| Update States

Y I Control files I

Decision I Executables I

Restart files

Ensemble members (if created)

Observations

Observation files

Task Forcing files




‘WRF-Hydro’ Process Permutations and
System Features:

* ~180 possible ‘physics” component configurations

- view Projections

for streamflow prediction:

— 3 up-to-date column physics land models (Noah,
NoahMP, CLM)

— 3 overland flow schemes (Diffusive Wave,
Kinematic Wave, Direct basin aggregation)

— 4 |ateral/baseflow groundwater schemes
(Boussinesq shallow-saturated flow, 2d aquifer
model, Direct Aggregation Storage-Release: pass-
through or exponential model

— 5 channel flow schemes: Diffusive wave, Kinematic

Wave, RAPID-Muskingam for NHDPlus, Custom Ensemble Flood Forecasting in the Southeast U.S.
Network Muskingam/Muskingam Cunge with WRF-Hydro
2014 WRF User’s Workshop, K. Mahoney (NOAA-

ESRL)
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 Simple level-pool reservoir with management
 DART, filter-based hydrologic data assimilation
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WRF-Hydro System-Level Coupling
Capabilities

Completed:
Stand-alone, ‘Un-coupled’ (1-d Noah & NoahMP land model driver)

Coup
Coup
Coup

ed with the Weather Research and Forecasting Model WRF-ARW)
ed with LIS (WRF-Hydro v1.0, LISv6.1)
ed into DART...

In Progress:
« NOAA/NEMS (NOAA Environmental Modeling System-Cecilia DelLuca)
» Update of LIS coupling to LIS v7/WRF-Hydro v2.1

* Coupled with CLM under CESM coupler (working on recent release of CLM
in WRF)
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‘WRF-Hydro’ Software Features:

Modularized F90/95 (and later)
Coupling options are specified at compilation and WRF-Hydro is

compiled as a new library in WRF when run in coupled mode

Physics options are switch-activated though a namelist/
configuration file

Options to output sub-grid state and flux fields to standards-based
netcdf point and grid files

Fully-parallelized to HPC systems (e.g. NCAR supercomputer) and
‘eood’ scaling performance

Ported to Intel, IBM and MacOS systems and a variety of compilers
(pg, gfort, ifort)

Wei Yu (RAL) - lead engineer



The WRF-Hydro Workflow

The National Center for Atmospheric Research



WRF-Hydro Implementation Workflow:

Collect & Prepare
Meteorological
Forcings:
(uncoupled runs)

Prepare
Atmospheric Model:
(coupled runs)

Collect geospatial
terrain and
hydrographic data

Prepare: Conduct uncoupled model runs
Land model grids (WPS) -physics selection
Routing Grids/Networks -calibration

(ArcGIS) -assimilation &/or spinup

Execute uncoupled forecast
cycles:
Nowcasts, NWP QPF

Execute coupled-model
forecast cycles
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Create output forecast &
evaluation products




WRF-Hydro Setup and Parameterization:
Python Pre-Processing Toolkit: «.sampson - developer

* Python-based scripts
* ESRI ArcGIS geospatial processing functions
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=  NHDPlus, Hydrosheds, EuroDEM
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< =1 {3l GIS Servers JiFs " | Input Geogrid File
Input Geogrid File
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(T *E Add WMTS Server RETOEPROPAC Yo
= x| ArcGIS on services.nati
1= = & arcgis on STRUCTURE S e
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a | . .
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watersheds, gridded channels, river
reaches, lakes, various parameters
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Forcing data supported:

NLDAS, NARR analyses

QPE products: MPE, StglV,
NCDC-served, dual-pol, Q3/
MRMS, gauge analyses

NOAA QPF products: GFS,
NAM, RAP, HRRR, EXREF

Nowcast (NCAR Trident/
TITAN)

NOHRSC SNODAS

ESMF/ncl regridding tools

Regridded MPE precipitation during the 2013 Colorado Floods
Unidata IDV display
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WRF-Hydro output products: Forecasts of water
CVCle Com ponents Maps of precipitation, soil moisture, ET, snowpack,

inundation depth, groundwater depth, streamflow
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Unidata IDV display



WRF-Hydro output Products: Forecasts of spatially-
explicit water cycle components
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Legend

2013-03-12 01:30:00Z | w | 44|40/ D[ [ID| DD/ @) ¥
= - B v] Maps

LY

B[v] Topographic Map

World Coastlines
Hi-Res US
US. County Outlines

Blv] Default Background .. [ [0

Blv] Plan Views

V- YORNDRER

e MPE-driven

Blv] ACRAIN - Color-Sha..
§ N "EEEE

0

Blv] Point Data

Blv] Point Data - Point Da.. [

streamflow during
the 2013 Colorado .
Floods

Layout model:WRF_Hydro_symb
streamflow:

0 30

* Unidata IDV Display
of gridded and

point netcdf output
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WRF-Hydro Support Services

File Edit View History Bookmarks Tools Help ‘_u:'\ —8—‘

L W e b P a g e ~ [™] Stream point filtering - goc... * | KML Layers % | RAL || WRF-Hydro Modeling S... oh
% ~

“ ucar.edu - 5 Se AP ¥4 A X B =

9, 3 2, Closures/Emergencies Locations/Directions. Find People -
— Lode aistripution
RAL home technology people/org publications events pressroom for staff

repository)
— Documentation (v2, 120 pages

Terms of Use WRF-Hydro
Welcome WRF-Hydro

w available

Overview 1st Europe Atmospheric-

Welcome to the us page for the WRF-Hydro modeling .
— Test cases (coupled an omiois | amor  as e  med =

National Center for Atmospheric Research and its research
Support &

Science Foundation and through research proj pported by
u I l CO u p e Related Links the U.S. National Aeronautics and Space Admins (NAS HYDROMETEOROLOGICAL PROCESSES AT THE

and the U.S. National Oceanic and Atmospheric Administration LAND SURFACE
(NOAA).

— Script Library (file prep,

coupling framework d
the Weather R

. .
m terrestrial hydrological models. WRF-Hydro is both a stand-alone
re O r a n g’ VI Z hydrological modeling architecture a ing

architecture for coupling of hydrological mod

partners through the genero

Current Projects

arch and Fore:

mod

— ArcGIS preparation tools e

singular suite of phy

WRF-Hydro is fully-parallelized to en

ge on
ems alike. Like the
ibe a particular or

designed to

to new hydrological parameterizations. Although it v

A F A designed to be used within the WRF model, it has evolved over
= mal e p SU p pO Ft {STAa imite o e
o el ey i movmr: i o cimEosieTs

— Google analytics (Jan 1 - Oct 1,

* Modularized component model coupling interfaces for many

2014) JM@
* Total page views: 14,664 B2
* Downloads: 1, 735 http://www.ral.ucar.edu/projects/wrf_hydro/

» (Stats have major gap in recording during
Oct. 2013)

e extensible

il Temperature, and

vation Network)

National Scie
NOAA Offi
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WRF-Hydro Support Services

* Training classes:

— Semi-annual WRF tutorial
training sessions (short 1-hr
system overviews)

— University hosted visits (~1-2/yr
on the order of 1-3 days)

— International training seminars
and colloquia (~1-2/yr, on the
order of 1-3 days)

L3

| 1]

.

|
e
Eare——

jif

. .
| i

= Next Training is May 4-7, 2015 ir
Boulder (sponsored by CUAHSI)  and WRF-Hydro Users workshop, U. of Calabria, Italy, June 2014

—
—
(g~
2.
oo
—_—
= o
)
-
oo
e
(@]
(g~
—
—_—
(g~
Lo -
>
Lo |
.=
—_—
=
=)
w
1=
=
(g~
e
(o)
- )
(g~
o
(g~
")
—
(o)
—n

http://www.ral.ucar.edu/projects/wrf_hydro/



WRF-Hydro Community of Developers
& Users:
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* Past or current implementations




Current WRF-Hydro Applications around the
warld:

Operatlonal Streamflow Forecasting:
U.S. National Weather Service, National Water Center
— Israeli Hydrological Service
— State of Colorado-Upper Rio Grande River Basin (CWCB, NSSL)
— NCAR-STEP Hydrometeorological Prediction Group
- U. of Calabria reservoir inflow forecasting

2. Streamflow prediction research (U. Ankara, Arizona State U., Karlsruhe Inst. Tech.)

3. Diagnosing climate change impacts on water resources
— Himalayan Mountain Front (Bierknes Inst.)

— Colorado Headwaters (U. Colorado)
— Bureau of Reclamation Dam Safety Group (USBR,NOAA/CIRES)

4. Diagnosing land-atmosphere coupling behavior in mountain-front regions of the U.S. and Mexico
(Arizona State U., U. Arizona)

5. Diagnosing the impacts of disturbed landscapes on coupled hydrometeorlogical predictions
— Western U.S. Fires (USGS)
— West African Monsoon (Karlsruhe Inst. Tech)
— S. America Parana river (U. Arizona)
— Texas Dust Emissions (Texas A&M U.)
— Landslide Hazard Modeling (USGS)

6. Hydrologic Data Assimilation, WRF-Hydro/DART coupling
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