

WRF Nesting: Set Up and Run

Wei Wang NCAR/NESL/MMM January 2015

Outline

- General comments
- Nest namelist options
- Running WRF with nests
 - two-way nesting
 - moving nest
 - one-way nesting
- Summary

Before You Run ..

- Make sure you have selected basic nest compile options and appropriate executables are created in WRFV3/main/ directory:
 - real.exe executable to create IC/BC
 - **wrf.exe** executable for model integration
 - ndown.exe utility program for one-way nesting
 - **tc.exe** utility program for TC bogusing
- If you are running a real-data case, be sure that files for *nest* domains from WPS are generated:
 - met_em.d01.<date>, met_em.d0*.<date>

(* terrain, static land data are in the nested files)

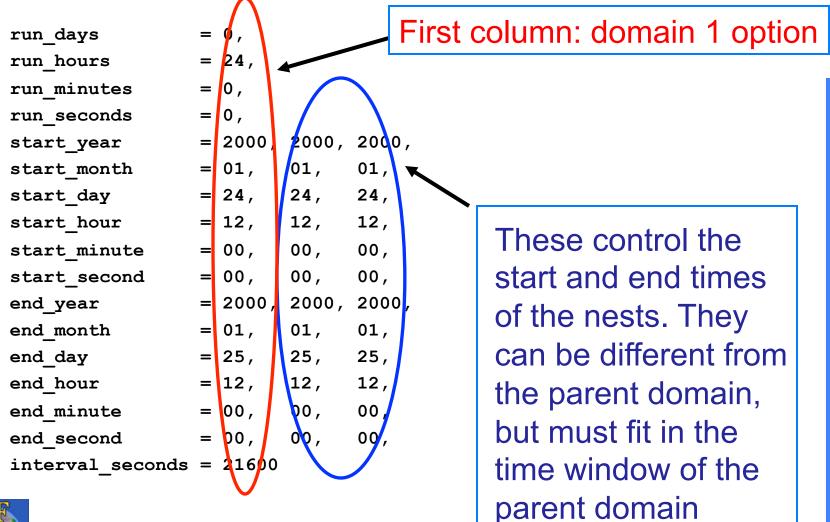
Steps to Run (same as before)

- 1. cd to *run/* or one of the *test case* directories
- 2. Move or link WPS output files to the directory for real-data cases
- 3. Edit *namelist.input* file for the appropriate grid and times of the case
- 4. Run initialization program, *real.exe*
- 5. Run model executable, *wrf.exe*

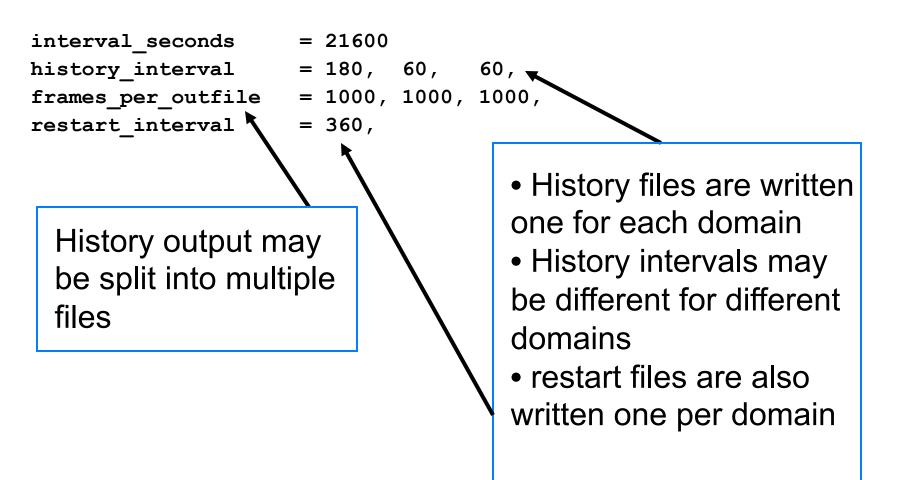
All in the namelist...

- Nearly all controls for a nested run can be achieved by editing the namelist file.
- Nest-specific namelist options will be explained next.

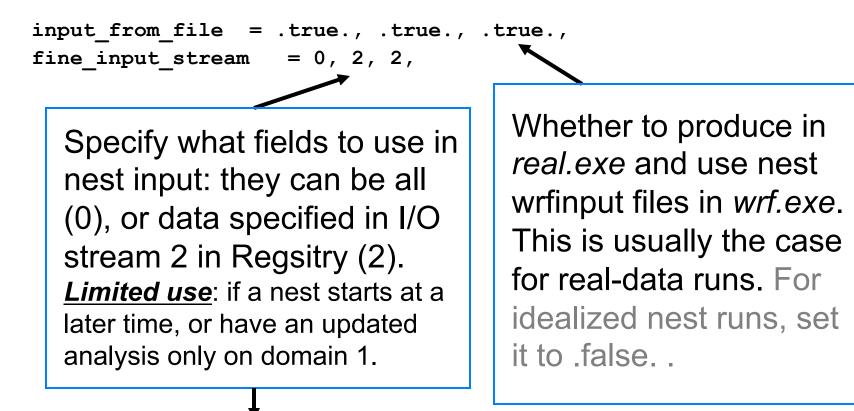
Important to note:


- Key variable: **max_dom** must be set to >= 2
- Need to pay attention to multi-column namelists

Nest namelist Options

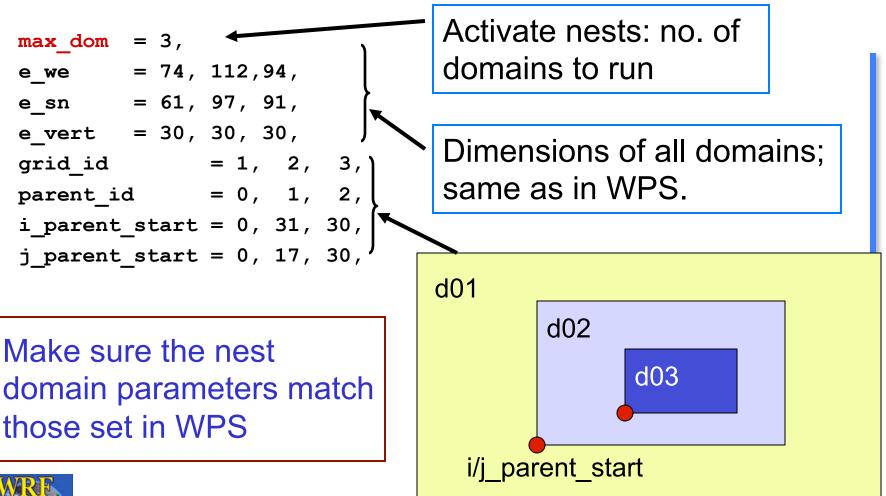


namelist record &time control


&time_control

&time_control

Nest input option:

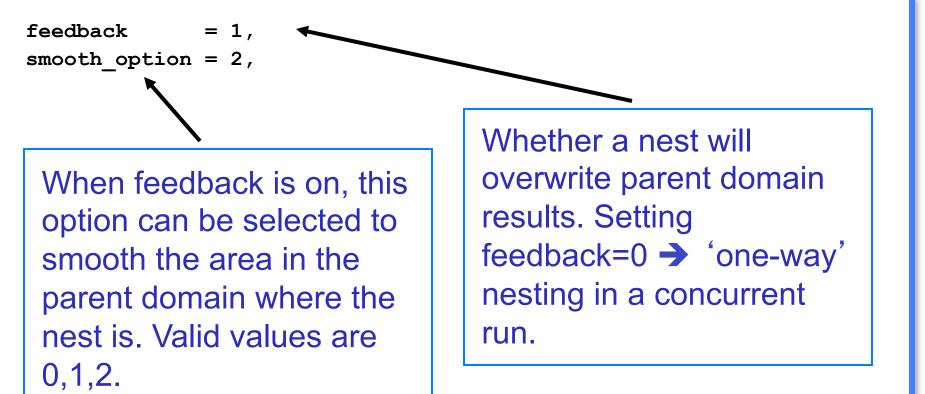


state real ht ij misc 1 - i012rhdus "HGT" "Terrain Height" "m"

Mesoscale & Microscale Meteorological Division / NCAR

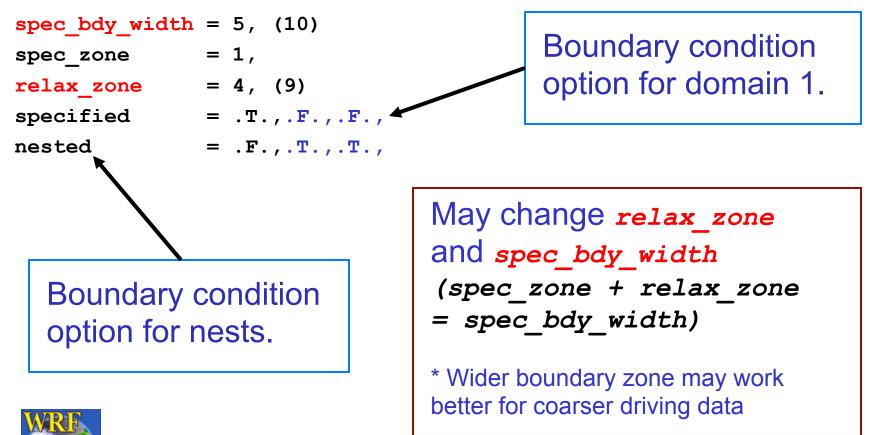
namelist record &domains

&domains


dx = 30000., 10000., 3333.33, dy = 30000., 10000., 3333.33, parent_grid_ratio = 1, 3, 3, parent_time_step_ratio = 1,3,3,

For fractional grid distance, use at least 2 decimal places

All 4 variables must be specified. *Grid ratio* can be any integer (3 and 5 are recommended), and *time step ratio* can be different from grid ratio. Grid distance is in meters, even for lat/lon map projection.



&domains

namelist record <a>bdy_control

Other notes on namelists

- Use same physics options for all domains.
 - An exception is cumulus scheme. One may need to turn it off for a nest that has grid distance of a few kilometers.
- Also use same physics calling frequency (e.g. radt, cudt, etc.) in all domains.

Where do I start?

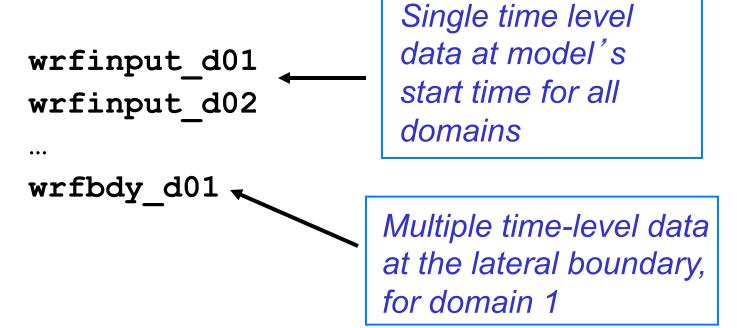
- Always start with a *namelist* template provided in a test case directory, whether it is a ideal case, or real data case.
- Not all namelists are function of domains. If in doubt, check Registry.EM_COMMON and registry.io_boilerplate (look for string 'namelist').
- Use document to guide the modification of the namelist values:
 - run/README.namelist
 - User's Guide, Chapter 5

• Files available from WPS:

met_em.d01.<date> (a few time periods)
met_em.d02.<date> (at least one time period data)
(* terrain, static land data are in the nested files)

• Move or link WPS output files to the run directory:

cd test/em_real



- Edit namelist.input file for runtime options (set max_dom >= 2 in &domains for a nested run)
- Run the real-data initialization program:

 /real.exe, if compiled serially / SMP, or
 mpirun -np N ./real.exe, for a MPI job
 where N is the number of processors requested

• Successfully running this program will create model initial and boundary files:

• Run the model executable by typing:

```
./wrf.exe >& wrf.out &
Or
mpirun -np N ./wrf.exe &
```

• Successfully running the model will create model *history* files, one for each domain:

wrfout_d01_2005-08-28_00:00:00

wrfout_d02_2005-08-28_00:00:00

And *restart* file if **restart_interval** is smaller than the integration time:

wrfrst_d01_<date>, wrfrst_d02_<date>

Moving Nest Case

- The main reason for using this option is to run the model economically.
- Must choose correct compile options when creating configure.wrf file

- Choose preset move, or vortex following

- Other options are controlled by the namelists.
- Can do specified move, and automatic vortex tracking (for tropical cyclone application).
- All nest domains can move, but driven by the innermost nest

Specified Moving Case

• namelists in **&domains**:

num_moves, move_id, move_interval, move_cd_x, move_cd_y

➔ nest can only move one parent-grid-cell at a time.

i.e., $move_cd_x = 1, -1, Or 0$

• Also specify initial nest location:

i_parent_start, j_parent_start

Automatic Moving Case

- Tropical cyclone applications only.
- Works better for well developed storms.
- Namelists in **&domains**:

vortex_interval (default 15 min)
max_vortex_speed (default 40 m/s)
corral_dist (default 8 coarse grid cells)
track_level (default 50000 Pa)
time_to_move (default is 0 h for all nests)

Also specify initial nest location

i_parent_start, j_parent_start

One-way Nesting: Two separate runs

Less common option:

- Prepare data as if one were to run a two-way nested case up to program real;
- Run WRF model for coarsest domain first. Should output model frequently (e.g. hourly);
- Use program ndown.exe, together with coarsest domain model output and nest domain wrfinput file, to generate wrfinput and wrfbdy file for the next model run;
- Run WRF model for the second domain.

(Also see Chapter 5, pages 15 - 18)

Summary

- Two-way, without nest input files
 (input_from_file=.f.; feedback = 1)
- Two-way, with nest input files
 (input_from_file =.t.; feedback = 1)
- Two-way, with static nest input only (input_from_file=.t., fine_input_stream=2)
- One-way, *concurrent* run (**feedback** =0)
- One-way, separate runs (treated like two single-domain runs, with ndown)
- Two-way, specified moving nest run
- Two-way, automatic vortex tracking run

Notes about Nesting

- When should I use nests?
 - Input data resolution is too coarse (for example, some reanalysis data: NNRP, NCEP2, climate model data)
 - Would like to simulate localized convection, topography- and/ or landuse-forced phenomena, etc.
 - Would like to provide better boundary conditions for the area of interest: boundary conditions from external sources are typically 3 – 6 hourly, while nested boundary conditions are in minutes (coarse domain time step)
 - There isn't sufficient computing resources
- Nest domain sizes should not be too small
 - No less than 100x100
 - Avoid boundary zones which are about 10 grid point wide
 - Avoid 'sweeping' effect from lateral boundaries

Avoid placing nest boundaries over high mountains

References

- Information on compiling and running WRF with nests, and a more extensive list of namelist options and their definition / explanation can be found in the User's Guide, Chapter 5
- Start with namelist templates in test/ directory, and refer to namelist used for different applications on pages 5-32 – 34 in the User's Guide

Practice with online tutorial, and in the class.