Introduction to Hurricane WRF

Mrinal Biswas

Developmental Testbed Center (DTC) National Center for Atmospheric Research Boulder

WRFTutorial July 2015

Outline for Introduction to HWRF

- What is the Hurricane WRF
- HWRF domains
- Overview of components
- Dynamic core
- Moving nest
- Initialization and data assimilation
- Physics
- Ocean and coupler
- Post-processor and tracker
- User support
- New in 2015 and future development

HWRF PROD IRENE 091 SFC PSR (hPa) AND 10 M WIND (kts) INIT 2011082318Z for 30 h FCST VALID 2011082500Z

What is the Hurricane WRF?

- A <u>US NWS operational model</u> used to provide numerical forecast guidance of track, intensity, and structure to the National Hurricane Center (NHC) for the North Atlantic and Eastern North Pacific basins
- A model that can be run for all Northern and Southern Hemisphere basins and that contains an idealized tropical cyclone capability
- A community supported code
- A model that is <u>always evolving</u> and improving: new operational implementations of HWRF occur every year in the beginning of the hurricane season
- This talk focuses on <u>2014 HWRF (some info on 2015 operational implementation and</u> upcoming public release is provided)

Operational forecasts http://www.emc.ncep.noaa.gov/gc_wmb/vxt/

HWRF 2014 grid configuration

Developmental Testbed Center

Atmospheric configuration
Horizontal grid spacing: 27, 9, 3 km
Inner nests move to follow storm
Domain location vary from run to run depending on storm location
61 vertical levels; top at 2 hPa

Oceanic configuration
Horizontal grid spacing: 1/12 deg
(~9km)
Legation of grid demends of legation of

•Location of grid depends of location of storm

- •Atlantic and Pacific
 - •3-D model
 - •23 vertical levels

HWRF has many components

HWRF v3.6a Overview

HWRF dynamical core

- WRF has two dynamic cores: ARW and NMM (Non-Hydrostatic Mesoscale Model)
- The dynamic core encompasses the grid projection, grid staggering, system of equations for solving the equations of motion and thermodynamics, the numerical methods, and the nesting mechanisms
- This Tutorial only covered the ARW core. For NMM core, refer to
 - WRF-NMM website: <u>http://www.dtcenter.org/wrf-nmm/users/</u>
 - Presentation about WRF-NMM in 2012 WRF tutorial <u>http://www.mmm.ucar.edu/wrf/users/tutorial/201201/</u> <u>NMM_Dynamics_jan2012_tut_cnvsym.pptx.pdf</u>
 - Scientific Documentation for the NMM Solver <u>http://opensky.library.ucar.edu/collections/TECH-NOTE-000-000-845</u>

HWRF Moving Nests

Developmental Testbed Center-

DTC

Why nesting is needed?

- Tropical cyclone forecasting needs high resolution
 - <5km to represent wind maxima and resolve meso-vortices
 - <3km to resolve clouds
- Running the model with 3km everywhere is expensive
- Some areas are more important than others
 - Need to resolve small scale features to determine intensity

and structure

Courtesy Sam Trahan, EMC

HWRF 2014 Initialization

Challenges

- Initializing a 3-km grid from a lower-resolution global model
 - Storm has wrong place, size and/or structure
 - Weak storm may dissipate in hurricane model

Solutions

- Use a vortex relocation and correction algorithm
 - Use current global GFS for first guess for parent domain and 6-hr GDAS forecast from previous cycle for nests
 - Remove vortex from GDAS forecasts
 - Insert a corrected vortex
 - Usually 6-h forecast from HWRF previous cycle
 - Vortex location, intensity, and structure corrected using observations

(Courtesy from Jeff Whitaker, GSI Tutorial, 2012)

HWRF 2014 operational physics

Physics	Parameterization	Option
Cumulus (only d01 & d02)	SAS deep and shallow convection	84
Microphysics	Ferrier for the tropics	85
Planetary Boundary Layer	GFS (modified Hong & Pan 1996)	3
Surface Layer	GFDL (modified)	88
Land Surface Model	GFDL slab model	88
Radiation	GFDL	98

Cumulus parameterization: only on d01 (27 km) and d02 (9 km).

In d03 (3 km), microphysical parameterization explicitly resolves clouds.

HWRF Ocean Component

- Message Passing Interface Princeton Ocean Model for Tropical Cyclones (MPIPOM-TC)
- MPIPOM-TC creates an accurate sea-surface-temperature (SST) field that <u>evolves</u> during the model run
- Moisture/heat fluxes from the ocean provide energy for hurricanes

HWRF Post-Processing

- Uses the Unified post-processor (UPP)
 - Interpolates the forecast
 - Horizontally from the WRF native grid to a lat-lon grid
 - Vertically from WRF native levels to isobaric levels
 - Generates output in GRIB format
 - Computes derived variables
- Domains processed separately, then combined
- Output is used for
 - Graphics
 - Running the external vortex tracker

Surface or isobaric fields

GFDL External Vortex Tracker

- Extracts storm properties from the 3D forecast fields
 - Location, intensity, structure
- Outputs text file which can be used for plotting
- Can be used for HWRF or any other model, as long as proper files are provided in GRIB1 format

FY15 HWRF Upgrades

System & Resolution Enhancements

- Pure Python scripting system, identical to DTC public release.
- GFS model upgrades significantly degraded TC forecasting skill
- Increase HWRF atmospheric horizontal resolution from 27/9/3 to 18/6/2 km.

Initialization/Data Assimilation Improvements

- Upgrade and improve HWRF vortex initialization scheme.
- Upgrade Data Assimilation System: Hybrid HWRF-based EnKF and GSI system.
 - <u>40 member 6hr forecast ensemble for forecast error covariances (TDR only)</u>

Physics Advancements

- Upgrade microphysics: Ferrier-Aligo
- Upgrade GFDL radiation to RRTMG scheme
 - Partial sub-gridscale cloudiness and space-time varying ozone.
- Upgrade surface physics and PBL, momentum exchange coefficient (Cd)
- Upgrade current GFDL slab model to NOAH LSM.

First time in 2015....

Run HWRF in all TC basins worldwide

Developmental Testbed Center-

Courtesy: Sam Trahan

DTC

Basin-Scale HWRF Model

- Large domain, multiple storms within.
- Expect improved track after system is fully developed

www.dtcenter.org/HurrWRF/users

Community support

Upcoming release August, 2015: HWRF v3.7a (2015 operational)

HWRF: A collaborative effort

- HWRF is developed under the coordination of NOAA/NWS/NCEP/EMC
- Besides EMC, many groups participate in HWRF development
- Many receive funding from NOAA Hurricane Forecast Improvement Project

Institution	Role
NOAA NWS Natl Hurricane Center	Main customer, evaluation, diagnostics
NOAA NWS/NCEP/EMC	Coordination and overall development
NOAA Research AOML/ESRL/GFDL	Nesting, physics, initialization, vortex tracking, diagnostics
NCAR	WRF model infrastructure
University of Rhode Island	Ocean component (POM-TC)
Developmental Testbed Center	Code management, community support, testing
Your institution!	You could be the next HWRF user and developer

DTC (NOAA, Air Force, NSF, & NCAR)

The purpose of the DTC is to facilitate the interaction & transition of NWP technology between research & operations. DTC facilitates:

- R2O transition by performing testing & evaluation of new NWP innovations over an extended period and moving them for possible operational implmentation
- O2R transition by making the operational NWP systems available to the research community & providing user support (WRF, HWRF etc.)
- Interaction between research & operations through the organization of community workshops on NWP & hosting <u>DTC Visitor Program</u>

Thank you!

- Questions?
 - http://www.dtcenter.org/HurrWRF/users
 - <u>biswas@ucar.edu</u>
 - wrfhelp@ucar.edu

