WRF Data and Utilities

*Kelly Werner*January 2016

Supported Post-processing Packages

http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html

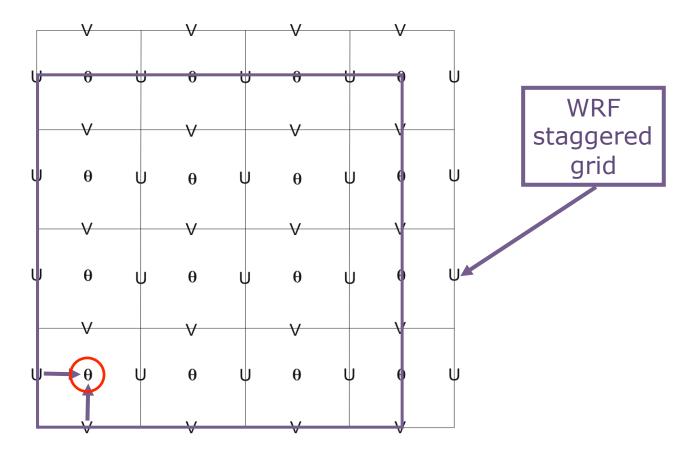
Package	Users' Guide Page #	Information
NCL	9-2	Graphical package Supported by NCAR/CISL (wrfhelp@ucar.edu and ncl-talk@ucar.edu)
ARWpost	9-29	Converter (GrADS) (wrfhelp@ucar.edu)
RIP4	9-20	Converter and interface to graphical Package, NCAR graphics (wrfhelp@ucar.edu)
UPP	9-36	Converter (GrADS & GEMPAK) (upp-help@ucar.edu)
VAPOR	9-38	Converter and graphical package Supported by VAPOR (vapor@ucar.edu)
IDV	None – see unidata.ucar.edu	GRIB (from UPP) GEMPAK (from wrf2gem) Vis5d CF compliant data (from wrf_to_cf) Supported by unidata (support@unidata.ucar.edu)
GEMPAK	None - see: unidata.ucar.edu/ software/gempak	Data from wrf2gem or UPP Supported by unidata (support@unidata.ucar.edu)

Choosing the Right Tool

- Can it read your data?
- Will you need to pre-process the data first?
- Is it purely a visualization tool, or does it include post-processing?
- Can it handle big datasets?
- Which diagnostic/statistical functions does it have?
- How easy is it to add diagnostics?
- 3D or 2D visualization?

- Can it handle staggered grids?
- How is data below the ground handled?
- Vertical grids?
- How are model time stamps handled?
- Easy to use?
- Cost of package?
- How well supported is it?

Data Handling


	NCL	RIP4	GrADS	UPP	VAPOR	IDV
netCDF		ripdp	ARWpost	converter	converter	converter
GRIB						
ASCII						
shapefiles						
geogrid & metgrid output						
intermediate file format	V6.2.0 V6.3.0					
wrfinput data						
Idealized data						
wrfoutput						
big data						

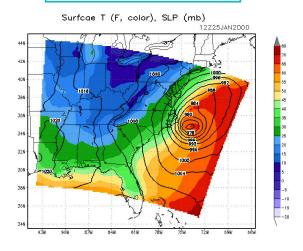
Post-processing

	NCL	RIP4	GrADS	UPP	VAPOR	IDV
Post-processing						
Data output						
3D						
diagnostics	some	a lot	some	some	limited	limited
Add diagnostics	Very easy	easy	easy	Relatively easy	Not as easy	Not as easy
Vertical output Coordinate	Model pressure height	Model pressure height	Model pressure height	pressure	model	model
Extrapolate Below ground						

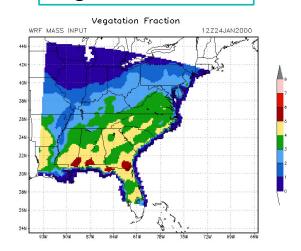
Model Staggering

Why is a converter necessary if a package can display netCDF files?

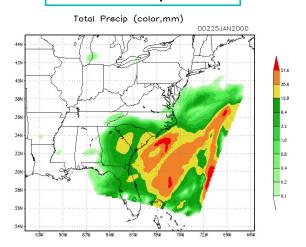
Converter co-locates data to mass points

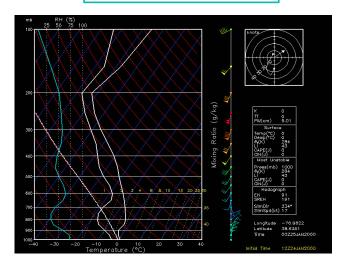

ARWpost: General Information

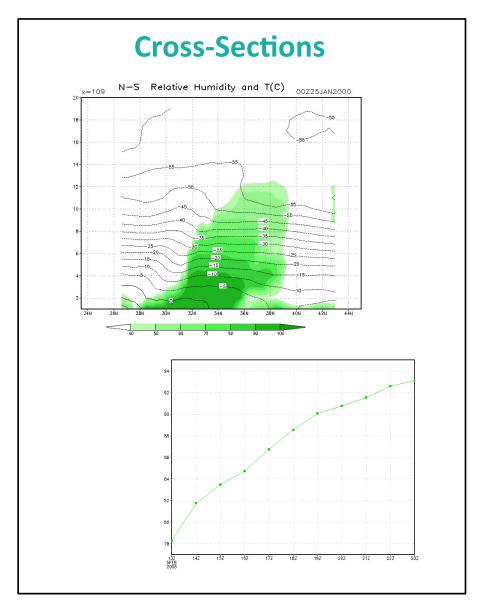
- Converter
 - Reads in wrf-arw model data, creates GrADS output files
 - Requires GrADS to display
- GrADS software is only needed to display data, not needed to compile the code
 - http://www.iges.org/grads/grads.html
- Generate a number of graphical plots
 - Horizonal
 - Cross-section
 - skewT
 - Meteogram
 - Panel

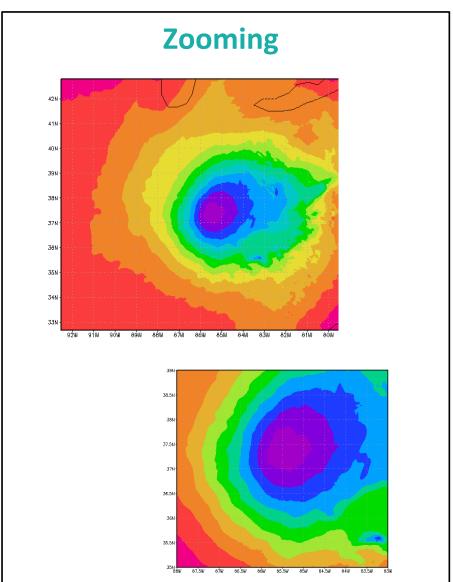

- Download Code
 - http://www2.mmm.ucar.edu/wrf/ users/download/get_sources.html
- Online Tutorial
 - http://www2.mmm.ucar.edu/wrf/ users/graphics/ARWpost/ARWpost.htm

ARWpost: Example Plots


Surface Temp


Vegetation Fraction

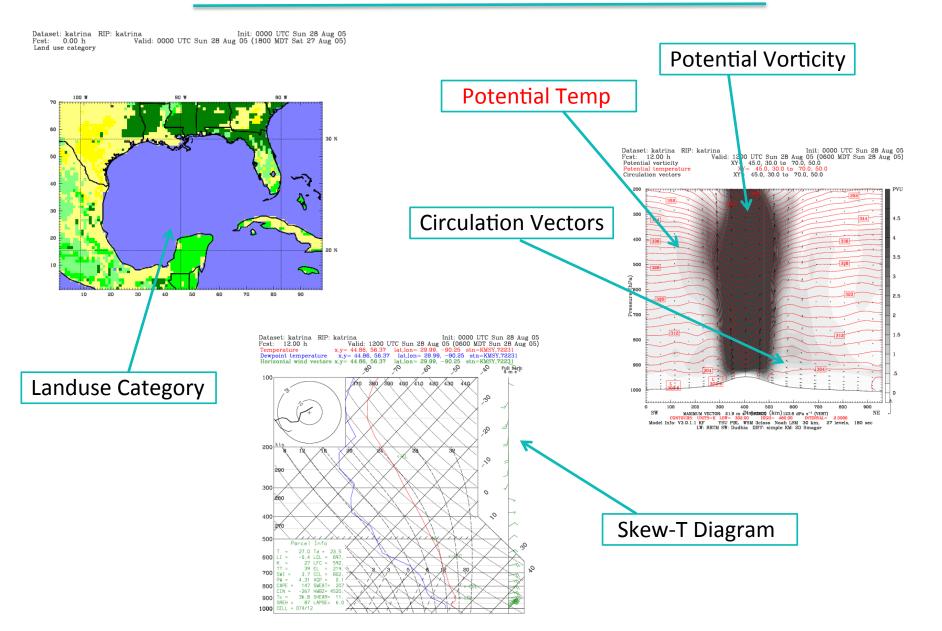

Total Precipitation



Skew-T Diagram

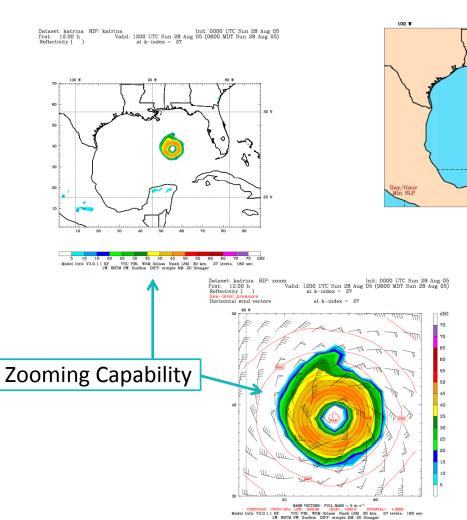
ARWpost: Example Functions

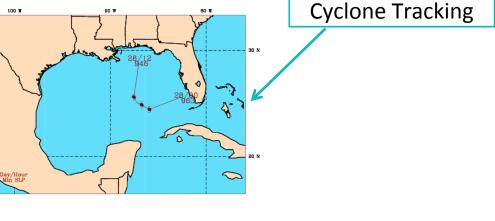
ARWpost: Diagnostics

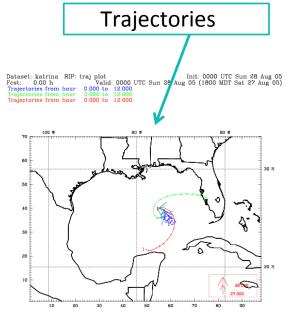

- cape 3d cape
- cin 3d cin
- mcape maximum cape
- mcin minimum cin
- clfr low/middle/high cloud fraction
- dbz 3d reflectivity
- max_dbz maximum reflectivity
- geopt geopotential
- height model height in km
- Icl lifting condensation level
- Ifc level of free convection
- pressure full model pressure in hPa
- rh relative humididy
- rh2 2 m relative humidity

- theta potential temperature
- tc temperature in degrees C
- tk temperature in degrees K
- td dew point temperature in degrees C
- td2 2m dew point temperature in degrees C
- slp sea level pressure
- umet & vmet winds rotated to Earth coordinates
- u10m & v10m 10 m winds rotated to Earth coordinates
- wdir wind direction
- wspd wind speed coordinates
- wd10 10 m wind direction
- ws10 10 m wind speed

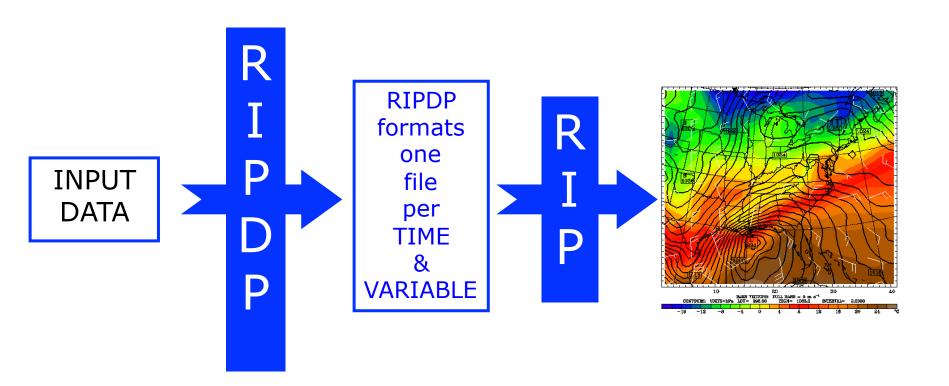
ARWpost: Scripts


Script Name	Description
cbar.gs	Plots a color bar on shaded plots
rgbset.gs	Allows you to add/change colors from color # 20 – 99
skew.gs	Program to plot a skewT
plot_all.gs	Automatically finds all .ctl files in the directory and lists them so the user can pick when to use, will plot all fields chosen
rain.gs (real data only)	Plots total rainfall (must have data that contain fields RAINC and RAINNC)
cross_z.gs (real data only)	Plots a NS and EW cross section of RH and T (C)


RIP4: Example Plots



RIP4: Example Plots


Dataset: katrina RIP: typhoon Init: 0000 UTC Sun 28 Aug 05 (1800 MDT Sat 27 Aug 05) Typhoon Track

RIP4: Program Flow

RIP4: General Information

- Requires NCAR Graphics Libraries
 - http://www.ncl.ucar.edu
- Source Code
 - http://www2.mmm.ucar.edu/wrf/users/download/ get_source.html
- Documentation
 - Included in program's tar file (in Doc/ directory)
 - http://www2.mmm.ucar.edu/wrf/users/docs/ripug.htm
- Online Tutorial
 - http://www2.mmm.ucar.edu/wrf/users/graphics/RIP4/ RIP4.htm

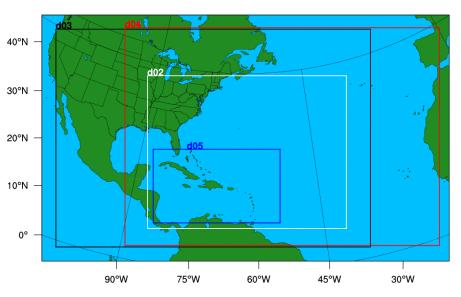
Utilities

- Graphics
- Designing a model domain
- OBSGRID
- netCDF tools
- Data
- MET

Graphics: ImageMagick

http://www.imagemagick.org

- Converts graphical files from one format to another
 convert file.pdf file.png
 convert file.png file.bmp
- Many options available
 - Rotate frames, trim white space, etc.
- Can make movies
 - Can create individual frames for each image
- Cannot deal with .ncgm files


Model Domain Design

```
mpres@mpFillColors
 (/"background", "DeepSkyBlue",
 "ForestGreen", "DeepSkyBlue",
 "transparent"/)
mpres@mpGridSpacingF
lnres@domLineColors
 "white", "Red" , "Red" , "Blue" /)
mpres@mpOutlineBoundarySets
 "NoBoundaries"
                 ; "Geophysical"
 "National"
                 : "USStates"
 "GeophysicalAndUSStates"
 "AllBoundaries"
pares = True
pmres@gsMarkerColor = "White"
pmres@gsMarkerIndex = 16
pmres@gsMarkerSizeF = 0.01
 gsn polymarker(wks,mp,-77.26,38.56
                pmres)
```

plotgrids.ncl

- WPS/util/plotgrids.ncl
- Reads namelist information to generate plot
- X11, png, pdf

Test Domain

Model Domain Design

```
DOMS = 1

DX = 36.

MAP = "mercator"

LAT1 = (/ -35.0, -45., -27. /)

LAT2 = (/ 0., -20., -23. /)

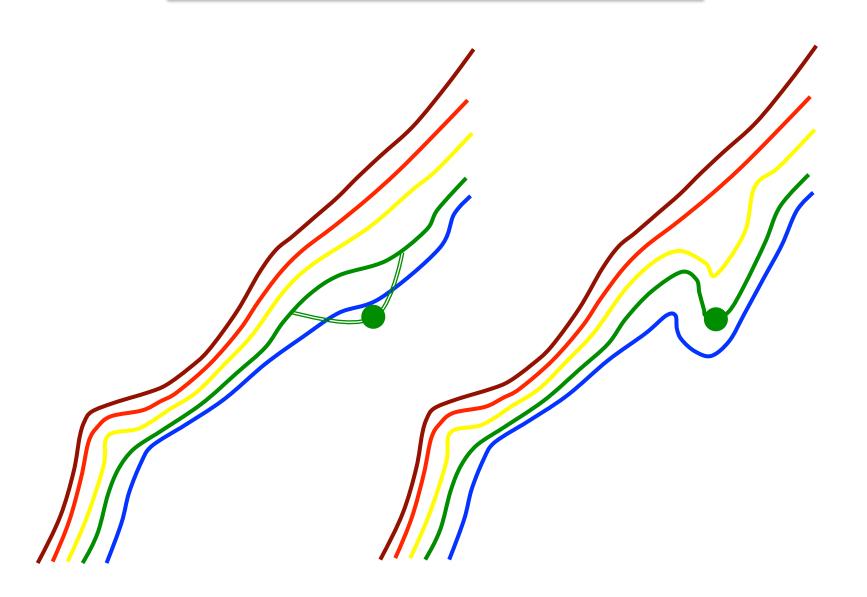
LON1 = (/ 131., 121., 125./)

LON2 = (/ 171., 159., 131./)

parent_id = (/ 0, 1, 2 /)

parent_grid_ratio = (/ 1, 3, 3 /)
```

design_grids.ncl


```
Suggested namelist options
       parent id = 0,
       parent grid ratio = 1,
       i parent start = 1,
       j parent start = 1,
       e we = 123,
       e sn = 107,
5°S −
       dx = 36000,
       dy = 36000,
10°S -
       map proj = 'mercator',
       ref lat = -17.50,
15°S -
       ref lon = 151.00,
       truelat1 = -17.00,
20°S -
       truelat2 = 0.00,
       stand lon = 151.00,
25°S -
30°S ·
          140°E
                   150°E
                            160°E
                                    170°E
```

OBSGRID

- To improve a first-guess gridded analysis by incorporating additional observational information
 - Traditionally first-guess analysis came from low-resolution global analysis and forecast grids
 - These days, higher-resolution, regional scale analyses are more readily available

- When is this method useful?
 - When using very coarse resolution first-guess input data
 - If you conducted a field campaign and have acquired very high-resolution station data (for example)

OBSGRID: Basic Concept

OBSGRID: How to Run

Get the source code

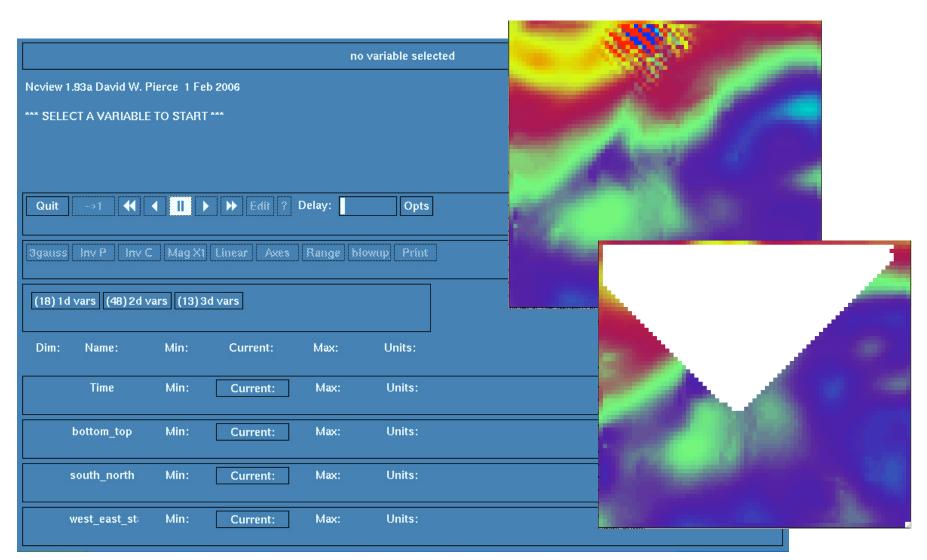
http://www2.mmm.ucar.edu/wrf/users/download/get_sources.html#utilities

- Compile
- Prepare observation files
- Edit the namelist
- Run the program
- Check your output

See the WRF Users' Guide for detailed information http://www2.mmm.ucar.edu/wrf/users/docs/ user guide V3/users guide chap7.htm

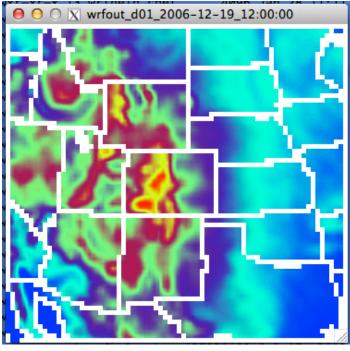
NCO Tools

http://nco.sourceforge.net

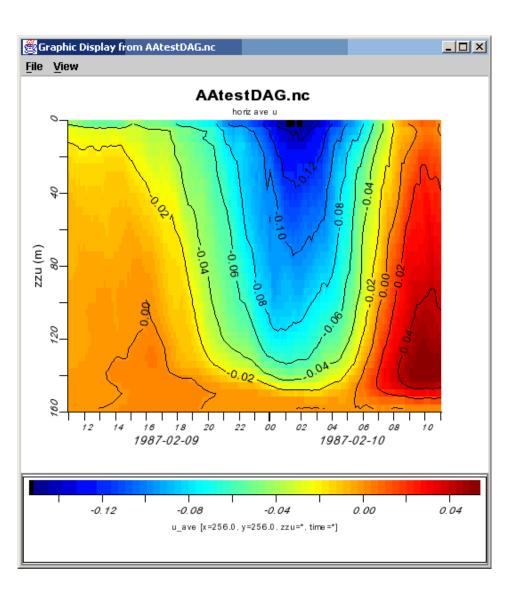

- ncdiff
 - Shows the differences between 2 files
 ncdiff input2.nc input2.nc output.nc
- ncrcat (nc cat)
 - Writes specified variables/times to a new file ncrcat -v RAINNC wrfout* RAINNC.nc ncrcat -d Time, 0, 231 -v RAINNC wrfout* RAINNC.nc
- ncra (nc average)
 - Averages variables and writes to a new file
 ncra -v OLR wrfout* -o OLR.nc
- ncks (nc kitchen sink)
 - Combination of all NCO tools in 1
 - Specifically nice for splitting files
 ncks -d Time, 1, 1 wrfout -o wrfout1.nc

NCO Tools: Other Available Operators

- ncap2: arithmetic processor
- ncatted: ATTribute editor
- ncbo: binary operator (includes ncadd, ncsubtract, ncmultiply, ncdivide)
- ncea: ensemble averager
- ncecat: ensemble conCATenator
- ncflint: FiLe INTerpolator
- ncpdq: permute dimensions quickly, pack data quietly
- ncrename: RENAME-er
- ncwa: weighter averager



http://meteora.ucsd.edu/~pierce/ncview_home_page.html


ncview

ncBrowse

http://www.epic.noaa.gov/java/ncBrowse/

ncdump

- Reads a netCDF dataset and prints information from that dataset
- ncdump -h file
 - Prints header (inclusive list of variables in the file)
- ncdump -v VAR file
 - Prints data for the variable 'VAR'
- ncdump -v Times file
 - Prints the times that are included in the file

ncdump -v Times

```
netcdf wrfout d01 2000-01-24 12:00:00 {
dimensions:
        Time = UNLIMITED ; // (3 currently)
        DateStrLen = 19 ;
        west east = 73;
        south north = 60;
        west east stag = 74;
        bottom top = 27;
        south north stag = 61;
       bottom top stag = 28;
variables:
        char Times(Time, DateStrLen) ;
        float LU INDEX(Time, south north, west east) ;
                LU INDEX:FieldType = 104;
                LU INDEX: MemoryOrder = "XY " ;
        LU INDEX:description = "LAND USE CATEGORY" ;
                LU INDEX:units = "" ;
                LU INDEX:stagger = "" ;
.....
global attributes:
                :TITLE = " OUTPUT FROM WRF V3.4.1 MODEL";
                :START DATE = "2000-01-24 12:00:00";
                :WEST-EAST GRID DIMENSION = 74;
                :SOUTH-NORTH GRID DIMENSION = 61 ;
                :BOTTOM-TOP GRID DIMENSION = 28;
                :DX = 30000.f;
                :DY = 30000.f;
data:
 Times =
  "2000-01-24 12:00:00",
  "2000-01-24 18:00:00",
  "2000-01-25 00:00:00"
```

Input Data: Mandatory Fields

3D Data (data on pressure levels, for example)

Temperature
U and V components of wind
Geopotential Height
Relative Humidity

2D Data

Surface pressure
Mean sea-level pressure
Skin temperature
2 meter temperature and relative humidity
10 meter U and V components of wind

Recommended Fields

LANDSEA
Soil data (temperature and moisture) and soil height
SST (required for climate runs)
Water equivalent snow depth
SEAICE

External Data Sources: Global

Name	Resolution	Coverage	Temporal Availability	Website
NCEP/NCAR Reanalysis	2.5°	Global	Jan 1948 – present	http://rda.ucar.edu/ datasets/ds090.0
NCEP/DOE Reanalysis	2.5°	Global	Jan 1979 – present	http://rda.ucar.edu/ datasets/ds091.0
ERA Interim Data	0.7°	Global	Jan 1979 – present	http://rda.ucar.edu/ datasets/ds627.0
ECMWF's Operational Model Analysis	Highest Resolution of the DA and forecast system		Jan 2011 – present	http://rda.ucar.edu/ datasets/ds113.0
NCEP GDAS/FNL Reanalysis	0.25°	Global	July 2015 – present	http://rda.ucar.edu/ datasets/ds083.3
GFS Real-time	1°	Global		http:// www.emc.ncep.noaa .gov
NCEP GFS/FNL Reanalysis	1°	Global	Aug 1999 – present	http://rda.ucar.edu/ datasets/ds083.2
GFS Gridded Model Data	0.5°	Global	Dec 2002 – present	http://rda.ucar.edu/ datasets/ds335.0
NCEP GFS 0.25°	0.25°	Global	Jan 2015 – present	http://rda.ucar.edu/ datasets/ds084.1

External Data Sources: North America

Name	Resolution	Coverage	Temporal Availability	Website
NAM Real-time	32/12 km	North America		http:// www.emc.ncep.noaa .gov
NAM Analysis	12 km	North America	Jan 2012 – present	http://rda.ucar.edu/ datasets/ds609.0
GCIP NCEP Eta	40 km	North America	April 1995 – present	http://rda.ucar.edu/ datasets/ds609.2
NCEP NARR	32 km	North America	Nov 1979 – present	http://rda.ucar.edu/ datasets/ds608.0

External Data Sources: Climate

Name	Resolution	Coverage	Temporal Availability	Website
NCEP Climate Forecast System Reanalysis (CFSR)	38 km	Global	Jan 1979 – Dec 2010	http://rda.ucar.edu/ datasets/ds093.0
NCEP Climate Forecast System Reanalysis II (CFSR2)	0.2°	Global	Jan 2011 – present	http://rda.ucar.edu/ datasets/ds094.0
NCAR CESM CMIP5 data (netCDF format)		Global	Jan 1950 – present	http://rda.ucar.edu/ datasets/ds316.0
NCAR CESM CMIP5 data (IM – Bias Corrected)		Global	Jan 1951 – present	http://rda.ucar.edu/ datasets/ds316.1
		SST DATA		
NCEP SST Analysis	1° - 1/12°	Global		http:// polar.ncep.noaa.gov /sst
NOMAD3 SST	1° - 0.25°	Global	Jan 1854 – present (depending which product)	http:// nomads.ncdc.noaa.g ov/data.php
NCEP & NCDC Reconstructed SST	1°	Global	Jan 1854 - present	http://rda.ucar.edu/ datasets/ds277.0

External Data Sources: NOMADS

http://nomads.ncdc.noaa.gov

NOAA National Operational Model Archive & Distribution System

data.

Data

Inventory

Documentation

User Guide

NCDC Model Data Pages

NOMADS Project

About NOMADS

Partners

Publications & Presentations

Service Records Retention System

Plans for the National Climate Model Portal

Contact Us

Contact Info

The NOAA National Operational Model Archive and Distribution System (NOMADS) is a Web-services based project providing both real-time and retrospective format independent access to climate and weather model

Update: 11.10.15

Website appearance changes.

We are upgrading our web appearance. <u>Click</u> here to view our new pages.

Important Notice: 12.17.15

Plot | FTP4U and offline ordering change.

Our offline ordering interface has transitioned from the Plot | FTP4U system to the HAS website. Links to the HAS website for each product have been added to the NOMADS Data Access page. The Plot | FTP4U system is still available for online data.

NAM

GFS

RUC

CFS

NARR

R1/R2

SST

DOC » NOAA » NESDIS » NCEI » NOMADS

Search NCEI

Disclaimer

GRIB Data Handling

- Documents and decoders
 - GRIB1 and GRIB2
 wgrib, wgrib2, unpackgrib2.c, grib2to1.c
 http://rda.ucar.edu/#!GRIB
- g1print.exe and g2print.exe
 - Show data available in GRIB1 and GRIB2 files
 - Available from util/ directory in WPS
- grib2ctl.pl
 - Create .ctl and .idx files, so that you can plot GRIB files with GrADS
 - http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html
- ncl_convert2nc

http://www.ncl.ucar.edu/Document/Tools/ncl_convert2nc.shtml

Writing Intermediate File Format

 http://www2.ucar.edu/wrf/users/docs/user_guide_V3/ users_guide_chap3.htm# Writing_Meteorological_Data

wrf_wps_write_int

```
FIELD = "SST"
UNITS = "K"
DESC = "Sea Surface Temperature"
opt = True
opt@map source
                                 = "ERA-I Data"
opt@projection
                                 = 0
opt@startloc
                                 = "SWCORNER"
opt@startlon
                                 = 0.0
opt@startlat
                                 = -90.0
opt@deltalon
                                 = 1.25
opt@deltalat
                                 = 0.942408
opt@is wind earth relative
                                 = False
opt@date
                                 = "2015-07-26 00:00:00"
opt@level
                                 = 200100.
wrf wps wrtie int(IM name,FIELD,UNITS,DESC,VAR(:,:),opt)
```

Reading Intermediate Format Files

wrf_wps_read_int

! opens file

istatus = wrf_wps_open_int(filename)

! reads header

wrf_wps_rdhead_int(istatus,head_real,field,h
date, \
units,map_source,desc)

! reads slab

Slab = wrf_wps_rddata_int(istatus,nx,ny)

! Loop until reaching the end of the file

rd_intermediate

```
FIELD = TT

UNITS = K DESCRIPTION = TEMPERATURE

DATE = 2000-01-24_12:00:00 FCST = 0.000000

SOURCE = unknown model from NCEP GRID 212

LEVEL = 200100.000000

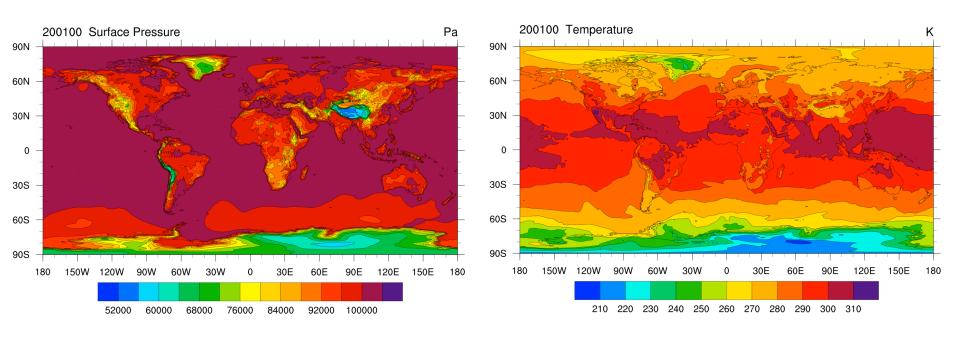
I,J DIMS = 185, 129

IPROJ = 1

REF_X, REF_Y = 1.000000, 1.000000

REF_LAT, REF_LON = 12.190000, -133.459000

DX, DY = 40.635250, 40.635250

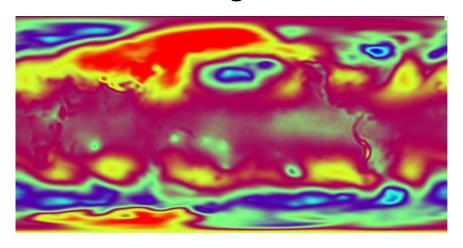

TRUELAT1 = 25.000002

DATA(1,1) = 295.910950
```

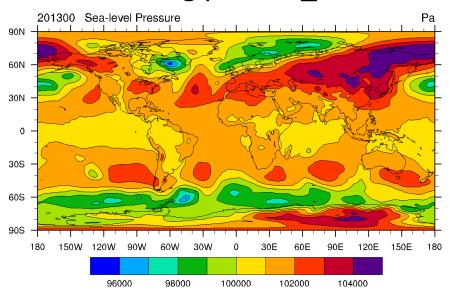
Utility: plotfmt

The plotfmt program plots the fields in the ungrib intermediate files

ncl plotfmt.ncl 'filename= FNL:2007-09-15_00"



Plotting Intermediate Files in netCDF Format


- Use the utility int2nc.exe
 - Converts intermediate files created by ungrib.exe to netcdf format
 - ./int2nc.exe
- To plot: plotfmt_nc.ncl

ncl plotfmt nc.ncl 'filename= FNL:2007-09-15 00"

Plot Using ncview

Plot Using plotfmt_nc.ncl

Special WRF Output Variables

 The WRF model outputs the state variables defined in the Registry file, and these state variables are used in the model's prognostic equations.
 Some of these variables are perturbation fields and therefore, the following definitions for reconstructing meteorological variables are necessary:

Total geopotential	PH + PHB
Total geopotential height in m	(PH + PHB) / 9.81
Total potential temp in K	T + 300
Total pressure in mb	(P + PB) * 0.01
Wind components, grid relative	U, V
Surface pressure in Pa	Psfc
Surface winds, grid relative	U10, V10 (valid at mass points)
Surface temp and mixing ratio	T2, Q2

MET Verification Software

- Model Evaluation Tools (MET)
- Provides all the basics (e.g., RMSE, bias, skill scores)
- Provides
 - Advanced spatial methods (wavelets, objects)
 - Confidence intervals
- Download it http://www.dtcenter.org/met/users/downloads/
- Support met help@ucar.edu
- Documentation http://www.dtcenter.org/met/users/docs/overview.php

Questions?